File: vtkCubicLine.h

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (125 lines) | stat: -rw-r--r-- 4,621 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-FileCopyrightText: Copyright (c) EDF - www.edf.fr
// SPDX-License-Identifier: BSD-3-Clause
/**
 * @class   vtkCubicLine
 * @brief   cell represents a cubic , isoparametric 1D line
 *
 * vtkCubicLine is a concrete implementation of vtkNonLinearCell to represent a 1D Cubic line.
 * The Cubic Line is the 4 nodes isoparametric parabolic line . The
 * interpolation is the standard finite element, cubic isoparametric
 * shape function. The cell includes two mid-edge nodes. The ordering of the
 * four points defining the cell is point ids (0,1,2,3) where id #2 and #3 are the
 * mid-edge nodes. Please note that the parametric coordinates lie between -1 and 1
 * in accordance with most standard documentations.
 * @par Thanks:
 * \verbatim
 * This file has been developed by Oxalya - www.oxalya.com
 * \endverbatim
 */

#ifndef vtkCubicLine_h
#define vtkCubicLine_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"

VTK_ABI_NAMESPACE_BEGIN
class vtkLine;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkCubicLine : public vtkNonLinearCell
{
public:
  static vtkCubicLine* New();
  vtkTypeMacro(vtkCubicLine, vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  ///@{
  /**
   * See the vtkCell API for descriptions of these methods.
   */
  int GetCellType() override { return VTK_CUBIC_LINE; }
  int GetCellDimension() override { return 1; }
  int GetNumberOfEdges() override { return 0; }
  int GetNumberOfFaces() override { return 0; }
  vtkCell* GetEdge(int) override { return nullptr; }
  vtkCell* GetFace(int) override { return nullptr; }
  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
    double& dist2, double weights[]) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  int TriangulateLocalIds(int index, vtkIdList* ptIds) override;
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  double* GetParametricCoords() override;
  ///@}

  /**
   * Return the distance of the parametric coordinate provided to the
   * cell. If inside the cell, a distance of zero is returned.
   */
  double GetParametricDistance(const double pcoords[3]) override;

  /**
   * Clip this line using scalar value provided. Like contouring, except
   * that it cuts the line to produce other lines.
   */
  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
    vtkIdType cellId, vtkCellData* outCd, int insideOut) override;

  /**
   * Return the center of the triangle in parametric coordinates.
   */
  int GetParametricCenter(double pcoords[3]) override;

  /**
   * Line-line intersection. Intersection has to occur within [0,1] parametric
   * coordinates and with specified tolerance.
   */
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;

  static void InterpolationFunctions(const double pcoords[3], double weights[4]);
  static void InterpolationDerivs(const double pcoords[3], double derivs[4]);
  ///@{
  /**
   * Compute the interpolation functions/derivatives
   * (aka shape functions/derivatives)
   */
  void InterpolateFunctions(const double pcoords[3], double weights[4]) override
  {
    vtkCubicLine::InterpolationFunctions(pcoords, weights);
  }
  void InterpolateDerivs(const double pcoords[3], double derivs[4]) override
  {
    vtkCubicLine::InterpolationDerivs(pcoords, derivs);
  }
  ///@}

protected:
  vtkCubicLine();
  ~vtkCubicLine() override;

  vtkLine* Line;
  vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping

private:
  vtkCubicLine(const vtkCubicLine&) = delete;
  void operator=(const vtkCubicLine&) = delete;
};

//----------------------------------------------------------------------------
inline int vtkCubicLine::GetParametricCenter(double pcoords[3])
{

  pcoords[0] = pcoords[1] = pcoords[2] = 0.0;
  return 0;
}

VTK_ABI_NAMESPACE_END
#endif