1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkHyperTreeGrid
* @brief A dataset containing a grid of vtkHyperTree instances
* arranged as a rectilinear grid.
*
*
* An hypertree grid is a dataset containing a rectilinear grid of root nodes,
* each of which can be refined as a vtkHyperTree grid. This organization of the
* root nodes allows for the definition of tree-based AMR grids that do not have
* uniform geometry.
* Some filters can be applied on this dataset: contour, outline, geometry.
*
* The order and number of points must match that specified by the dimensions
* of the grid. The point order increases in i fastest (from 0<=i<dims[0]),
* then j (0<=j<dims[1]), then k (0<=k<dims[2]) where dims[] are the
* dimensions of the grid in the i-j-k topological directions. The number of
* points is dims[0]*dims[1]*dims[2]. The same is true for the cells of the
* grid. The order and number of cells must match that specified by the
* dimensions of the grid. The cell order increases in i fastest (from
* 0<=i<(dims[0]-1)), then j (0<=j<(dims[1]-1)), then k (0<=k<(dims[2]-1))
* The number of cells is (dims[0]-1)*(dims[1]-1)*(dims[2]-1).
*
* Dimensions : number of points by direction of rectilinear grid
* CellDims : number of cells by directions of rectilinear grid
* (1 for each dimensions 1)
*
* Interface : plane that cuts a HTG cell.
* It is defined (for each cell) by a normal and the distance between the origin and the plane along
* that normal (i.e. the orthogonal distance). The name of the arrays containing each information is
* specified in `InterfaceInterceptsName` and `InterfaceNormalsName` The normals array is a 3D array
* that contains the 3D normal for each cell's interface (for lower dimensions, some values are
* ignored). The intercepts (or distances) array is also a 3D array containing:
* - the distance to the first plane (if exists, otherwise ignored)
* - the distance to the second plane (if exists, otherwise ignored)
* - the type of cell (mixed/pure, cf. vtkHyperTreeGridGeometryImpl.h:CellInterfaceType)
*
* @warning
* It is not a spatial search object. If you are looking for this kind of
* octree see vtkCellLocator instead.
* Extent support is not finished yet.
*
* @sa
* vtkHyperTree vtkRectilinearGrid
*
* @par Thanks:
* This class was written by Philippe Pebay, Joachim Pouderoux, and Charles Law, Kitware 2013
* This class was modified by Guenole Harel and Jacques-Bernard Lekien 2014
* This class was rewritten by Philippe Pebay, 2016
* This class was modified by Jacques-Bernard Lekien 2018
* This work was supported by Commissariat a l'Energie Atomique
* CEA, DAM, DIF, F-91297 Arpajon, France.
*/
#ifndef vtkHyperTreeGrid_h
#define vtkHyperTreeGrid_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkDataObject.h"
#include "vtkNew.h" // vtkSmartPointer
#include "vtkSmartPointer.h" // vtkSmartPointer
#include <cassert> // std::assert
#include <map> // std::map
#include <memory> // std::shared_ptr
VTK_ABI_NAMESPACE_BEGIN
class vtkBitArray;
class vtkBoundingBox;
class vtkCellLinks;
class vtkCollection;
class vtkDataArray;
class vtkHyperTree;
class vtkHyperTreeGridOrientedCursor;
class vtkHyperTreeGridOrientedGeometryCursor;
class vtkHyperTreeGridNonOrientedCursor;
class vtkHyperTreeGridNonOrientedGeometryCursor;
class vtkHyperTreeGridNonOrientedUnlimitedGeometryCursor;
class vtkHyperTreeGridNonOrientedVonNeumannSuperCursor;
class vtkHyperTreeGridNonOrientedVonNeumannSuperCursorLight;
class vtkHyperTreeGridNonOrientedMooreSuperCursor;
class vtkHyperTreeGridNonOrientedMooreSuperCursorLight;
class vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor;
class vtkDoubleArray;
class vtkDataSetAttributes;
class vtkIdTypeArray;
class vtkLine;
class vtkPixel;
class vtkPoints;
class vtkCellData;
class vtkUnsignedCharArray;
class VTKCOMMONDATAMODEL_EXPORT vtkHyperTreeGrid : public vtkDataObject
{
public:
static vtkInformationIntegerKey* LEVELS();
static vtkInformationIntegerKey* DIMENSION();
static vtkInformationIntegerKey* ORIENTATION();
static vtkInformationDoubleVectorKey* SIZES();
static vtkHyperTreeGrid* New();
vtkTypeMacro(vtkHyperTreeGrid, vtkDataObject);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Invalid index that is returned for undefined nodes, for example for nodes that are out of
* bounds (they can exist with the super cursors).
*/
static constexpr vtkIdType InvalidIndex = ~0;
/**
* Set/Get mode squeeze
*/
vtkSetStringMacro(ModeSqueeze); // By copy
vtkGetStringMacro(ModeSqueeze);
/**
* Squeeze this representation.
*/
virtual void Squeeze();
/**
* Return what type of dataset this is.
*/
int GetDataObjectType() VTK_FUTURE_CONST override { return VTK_HYPER_TREE_GRID; }
/**
* Copy the internal geometric and topological structure of a
* vtkHyperTreeGrid object.
*/
virtual void CopyStructure(vtkDataObject*);
/**
* Copy the internal structure with no data associated.
*/
virtual void CopyEmptyStructure(vtkDataObject*);
// --------------------------------------------------------------------------
// RectilinearGrid common API
// --------------------------------------------------------------------------
///@{
/**
* Set/Get sizes of this rectilinear grid dataset
*/
void SetDimensions(const unsigned int dims[3]);
void SetDimensions(const int dims[3]);
void SetDimensions(unsigned int i, unsigned int j, unsigned int k);
void SetDimensions(int i, int j, int k);
///@}
///@{
/**
* Get dimensions of this rectilinear grid dataset.
* The dimensions correspond to the number of points
*/
const unsigned int* GetDimensions() const VTK_SIZEHINT(3);
void GetDimensions(int dim[3]) const;
void GetDimensions(unsigned int dim[3]) const;
///@}
///@{
/**
* Different ways to set the extent of the data array. The extent
* should be set before the "Scalars" are set or allocated.
* The Extent is stored in the order (X, Y, Z).
* Set/Get extent of this rectilinear grid dataset.
*/
void SetExtent(const int extent[6]);
void SetExtent(int x1, int x2, int y1, int y2, int z1, int z2);
vtkGetVector6Macro(Extent, int);
///@}
///@{
/**
* Get grid sizes of this structured cells dataset.
* Values are deduced from the Dimensions/Extent
* Dimensions default to 1 if not specified.
*/
const unsigned int* GetCellDims() const VTK_SIZEHINT(3);
void GetCellDims(int cellDims[3]) const;
void GetCellDims(unsigned int cellDims[3]) const;
///@}
// --------------------------------------------------------------------------
///@{
/**
* Get the dimensionality of the grid from the Dimensions/Extent.
*/
unsigned int GetDimension() const { return this->Dimension; }
///@}
///@{
/**
* Return the index of the valid dimension.
*/
void Get1DAxis(unsigned int& axis) const
{
assert("pre: valid_dim" && this->GetDimension() == 1);
axis = this->Axis[0];
}
///@}
///@{
/**
* Return the indices of the two valid dimensions.
*/
void Get2DAxes(unsigned int& axis1, unsigned int& axis2) const
{
assert("pre: valid_dim" && this->GetDimension() == 2);
axis1 = this->Axis[0];
axis2 = this->Axis[1];
}
///@}
///@{
/**
* Get the axis information (used for CopyStructure)
*/
const unsigned int* GetAxes() const { return this->Axis; }
///@}
///@{
/**
* The number of children each node can have.
*/
// vtkGetMacro(NumberOfChildren, unsigned int); not const
unsigned int GetNumberOfChildren() const { return this->NumberOfChildren; }
///@}
///@{
/**
* Specify whether indexing mode of grid root cells must be transposed to
* x-axis first, z-axis last, instead of the default z-axis first, k-axis last
*/
vtkSetMacro(TransposedRootIndexing, bool);
vtkGetMacro(TransposedRootIndexing, bool);
void SetIndexingModeToKJI() { this->SetTransposedRootIndexing(false); }
void SetIndexingModeToIJK() { this->SetTransposedRootIndexing(true); }
///@}
///@{
/**
* Get the orientation of 1D or 2D grids:
* - in 1D: 0, 1, 2 = aligned along X, Y, Z axis
* - in 2D: 0, 1, 2 = normal to X, Y, Z axis
* NB: Not used in 3D
*/
unsigned int GetOrientation() const { return this->Orientation; }
///@}
///@{
/**
* Get the state of frozen
*/
vtkGetMacro(FreezeState, bool);
///@}
///@{
/**
* Set/Get the subdivision factor in the grid refinement scheme
*/
void SetBranchFactor(unsigned int);
unsigned int GetBranchFactor() const { return this->BranchFactor; }
///@}
/**
* Return the maximum number of trees in the level 0 grid.
*/
vtkIdType GetMaxNumberOfTrees() const;
/**
* Get the number of non empty trees in this grid.
*/
vtkIdType GetNumberOfNonEmptyTrees();
/**
* Get the number of leaves in the primal tree grid.
*/
vtkIdType GetNumberOfLeaves();
/**
* Return the number of levels in an individual (primal) tree.
*/
unsigned int GetNumberOfLevels(vtkIdType);
/**
* Return the number of levels in the hyper tree grid.
*/
unsigned int GetNumberOfLevels();
///@{
/**
* Set/Get the grid coordinates in the x-direction.
*/
virtual void SetXCoordinates(vtkDataArray*);
vtkGetObjectMacro(XCoordinates, vtkDataArray);
///@}
///@{
/**
* Set/Get the grid coordinates in the y-direction.
*/
virtual void SetYCoordinates(vtkDataArray*);
vtkGetObjectMacro(YCoordinates, vtkDataArray);
///@}
///@{
/**
* Set/Get the grid coordinates in the z-direction.
*/
virtual void SetZCoordinates(vtkDataArray*);
vtkGetObjectMacro(ZCoordinates, vtkDataArray);
///@}
///@{
/**
* Utility methods to set coordinates.
*/
virtual void CopyCoordinates(const vtkHyperTreeGrid* output);
virtual void SetFixedCoordinates(unsigned int axis, double value);
///@}
///@{
/**
* Set/Get the blanking mask of primal leaf cells
*/
void SetMask(vtkBitArray*);
vtkGetObjectMacro(Mask, vtkBitArray);
///@}
/**
* Determine whether blanking mask is empty or not
*/
bool HasMask();
///@{
/**
* Set/Get presence or absence of interface
*/
vtkSetMacro(HasInterface, bool);
vtkGetMacro(HasInterface, bool);
vtkBooleanMacro(HasInterface, bool);
///@}
///@{
/**
* Set/Get names of interface normal vectors arrays
*/
vtkSetStringMacro(InterfaceNormalsName);
vtkGetStringMacro(InterfaceNormalsName);
///@}
///@{
/**
* Set/Get names of interface intercepts arrays
*/
vtkSetStringMacro(InterfaceInterceptsName);
vtkGetStringMacro(InterfaceInterceptsName);
///@}
///@{
/**
* Set/Get depth limiter value
*/
vtkSetMacro(DepthLimiter, unsigned int);
vtkGetMacro(DepthLimiter, unsigned int);
///@}
///@{
/**
* Used to initialize a cursor of the given type.
*
* cursor: the cursor to initialize
*
* index: the index of the tree to use in the HTG
*
* create: allow to construct the hyper tree if the slot is empty
*/
void InitializeOrientedCursor(
vtkHyperTreeGridOrientedCursor* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridOrientedCursor* NewOrientedCursor(vtkIdType index, bool create = false);
void InitializeOrientedGeometryCursor(
vtkHyperTreeGridOrientedGeometryCursor* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridOrientedGeometryCursor* NewOrientedGeometryCursor(
vtkIdType index, bool create = false);
void InitializeNonOrientedCursor(
vtkHyperTreeGridNonOrientedCursor* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedCursor* NewNonOrientedCursor(vtkIdType index, bool create = false);
void InitializeNonOrientedGeometryCursor(
vtkHyperTreeGridNonOrientedGeometryCursor* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedGeometryCursor* NewNonOrientedGeometryCursor(
vtkIdType index, bool create = false);
void InitializeNonOrientedUnlimitedGeometryCursor(
vtkHyperTreeGridNonOrientedUnlimitedGeometryCursor* cursor, vtkIdType index,
bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedUnlimitedGeometryCursor* NewNonOrientedUnlimitedGeometryCursor(
vtkIdType index, bool create = false);
///@}
/**
* Return a geometric cursor pointing to one of the nodes at position `x`
*/
vtkHyperTreeGridNonOrientedGeometryCursor* FindNonOrientedGeometryCursor(double x[3]);
private:
unsigned int RecurseDichotomic(
double value, vtkDoubleArray* coord, double tol, unsigned int ideb, unsigned int ifin) const;
unsigned int FindDichotomic(double value, vtkDataArray* coord, double tol) const;
public:
virtual unsigned int FindDichotomicX(double value, double tol = 0.0) const;
virtual unsigned int FindDichotomicY(double value, double tol = 0.0) const;
virtual unsigned int FindDichotomicZ(double value, double tol = 0.0) const;
///@{
/**
* Used to initialize a cursor of the given type.
*
* cursor: the cursor to initialize
*
* index: the index of the tree to use in the HTG
*
* create: allow to construct the hyper tree if the slot is empty
*/
void InitializeNonOrientedVonNeumannSuperCursor(
vtkHyperTreeGridNonOrientedVonNeumannSuperCursor* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedVonNeumannSuperCursor* NewNonOrientedVonNeumannSuperCursor(
vtkIdType index, bool create = false);
void InitializeNonOrientedVonNeumannSuperCursorLight(
vtkHyperTreeGridNonOrientedVonNeumannSuperCursorLight* cursor, vtkIdType index,
bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedVonNeumannSuperCursorLight* NewNonOrientedVonNeumannSuperCursorLight(
vtkIdType index, bool create = false);
void InitializeNonOrientedMooreSuperCursor(
vtkHyperTreeGridNonOrientedMooreSuperCursor* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedMooreSuperCursor* NewNonOrientedMooreSuperCursor(
vtkIdType index, bool create = false);
void InitializeNonOrientedMooreSuperCursorLight(
vtkHyperTreeGridNonOrientedMooreSuperCursorLight* cursor, vtkIdType index, bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedMooreSuperCursorLight* NewNonOrientedMooreSuperCursorLight(
vtkIdType index, bool create = false);
void InitializeNonOrientedUnlimitedMooreSuperCursor(
vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* cursor, vtkIdType index,
bool create = false);
VTK_NEWINSTANCE
vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* NewNonOrientedUnlimitedMooreSuperCursor(
vtkIdType index, bool create = false);
///@}
/**
* Restore data object to initial state.
*/
void Initialize() override;
/**
* Return tree located at given index of hyper tree grid
* NB: This will construct a new HyperTree if grid slot is empty.
*/
virtual vtkHyperTree* GetTree(vtkIdType, bool create = false);
/**
* Assign given tree to given index of hyper tree grid
* NB: This will create a new slot in the grid if needed.
*/
void SetTree(vtkIdType, vtkHyperTree*);
/**
* Remove the tree at the given index.
* Return the number of trees removed (0 or 1).
*/
size_t RemoveTree(vtkIdType index);
/**
* Create shallow copy of hyper tree grid.
*/
void ShallowCopy(vtkDataObject*) override;
/**
* Create deep copy of hyper tree grid.
*/
void DeepCopy(vtkDataObject*) override;
/**
* Structured extent. The extent type is a 3D extent.
*/
int GetExtentType() VTK_FUTURE_CONST override { return VTK_3D_EXTENT; }
/**
* Return the actual size of the data in bytes. This number
* is valid only after the pipeline has updated. The memory size
* returned is guaranteed to be greater than or equal to the
* memory required to represent the data (e.g., extra space in
* arrays, etc. are not included in the return value). THIS METHOD
* IS THREAD SAFE.
*/
virtual unsigned long GetActualMemorySizeBytes();
/**
* Return the actual size of the data in kibibytes (1024 bytes). This number
* is valid only after the pipeline has updated. The memory size
* returned is guaranteed to be greater than or equal to the
* memory required to represent the data (e.g., extra space in
* arrays, etc. are not included in the return value). THIS METHOD
* IS THREAD SAFE.
*/
unsigned long GetActualMemorySize() override;
/**
* Returns true if type is CELL, false otherwise
*/
bool SupportsGhostArray(int type) override;
private:
/**
* Recursively initialize pure material mask
*/
bool RecursivelyInitializePureMask(vtkHyperTreeGridNonOrientedCursor*, vtkDataArray*);
/**
* Clean pure material mask
*
* Filters modifying the mask will call SetMask which will call CleanPureMask
* in order to allow an update during the next GetPureMask
*/
void CleanPureMask();
public:
/**
* Get or create pure material mask
*
* PureMask is a boolean array size to the number of cells which describes,
* for each cell, if it is pure material mask (PMM), a mask which is true if
* the cell is not pure.
* The PMM of a cell is true:
* - if the cell is hidden; we do not take into account if the cell is leaf or coarse;
* - if the fine/leaf cell is mixed (HasInterface is true, InterfaceInterceptsName and
* InterfaceNormalsName are the vector value field names with 3 components);
* the description of its type at the interface (the third component of the field
* named InterfaceInterceptsName) is < 2
* (2 indicates that this cell contains only one material, cell is pure);
* - if the coarse cell has at least one of its child cells which has set PMM to true.
*
* The PureMask array is deleted during a call to the SetMask method (which itself
* calls the CleanPureMask method).
* It will be (re)built during the first call to this GetPureMask method.
* A second call to this same method will be free because this array is stored
* permanently in memory, as long as the CleanPureMask method is not called.
*/
vtkBitArray* GetPureMask();
/**
* Return hard-coded bitcode correspondng to child mask
* Dimension 1:
* Factor 2:
* 0: 100, 1: 001
* Factor 3:
* 0: 100, 1: 010, 2: 001
* Dimension 2:
* Factor 2:
* 0: 1101 0000 0, 1: 0110 0100 0
* 2: 0001 0011 0, 3: 0000 0101 1
* Factor 3:
* 0: 1101 0000 0, 1: 0100 0000 0, 2: 0110 0100 0
* 3: 0001 0000 0, 4: 0000 1000 0, 5: 0000 0100 0
* 6: 0001 0011 0, 7: 0000 0001 0, 8: 0000 0101 1
* Dimension 3:
* Factor 2:
* 0: 1101 1000 0110 1000 0000 0000 000, 1: 0110 1100 0011 0010 0000 0000 000
* 2: 0001 1011 0000 1001 1000 0000 000, 3: 0000 1101 1000 0010 1100 0000 000
* 4: 0000 0000 0110 1000 0011 0110 000, 5: 0000 0000 0011 0010 0001 1011 000
* 6: 0000 0000 0000 1001 1000 0110 110, 7: 0000 0000 0000 0010 1100 0011 011
* Factor 3:
* 0: 1101 1000 0110 1000 0000 0000 000
* 1: 0100 1000 0010 0000 0000 0000 000
* 2: 0110 1100 0011 0010 0000 0000 000
* 3: 0001 1000 0000 1000 0000 0000 000
* 4: 0000 1000 0000 0000 0000 0000 000
* 5: 0000 1100 0000 0010 0000 0000 000
* 6: 0001 1011 0000 1001 1000 0000 000
* 7: 0000 1001 0000 0000 1000 0000 000
* 8: 0000 1101 1000 0010 1100 0000 000
* 9: 0000 0000 0110 1000 0000 0000 000
* 10: 0000 0000 0010 0000 0000 0000 000
* 11: 0000 0000 0011 0010 0000 0000 000
* 12: 0000 0000 0000 1000 0000 0000 000
* 13: 0000 0000 0000 0100 0000 0000 000
* 14: 0000 0000 0000 0010 0000 0000 000
* 15: 0000 0000 0000 1001 1000 0000 000
* 16: 0000 0000 0000 0000 1000 0000 000
* 17: 0000 0000 0000 0010 1100 0000 000
* 18: 0000 0000 0110 1000 0011 0110 000
* 19: 0000 0000 0010 0000 0001 0010 000
* 20: 0000 0000 0011 0010 0001 1011 000
* 21: 0000 0000 0000 1000 0000 0110 000
* 22: 0000 0000 0000 0000 0000 0010 000
* 23: 0000 0000 0000 0010 0000 0011 000
* 24: 0000 0000 0000 1001 1000 0110 110
* 25: 0000 0000 0000 0000 1000 0010 010
* 26: 0000 0000 0000 0010 1100 0011 011
*/
unsigned int GetChildMask(unsigned int);
/**
* Convert the Cartesian coordinates of a root in the grid to its global index.
*/
void GetIndexFromLevelZeroCoordinates(vtkIdType&, unsigned int, unsigned int, unsigned int) const;
/**
* Return the root index of a root cell with given index displaced.
* by a cartesian vector in the grid (di,dj,dk).
*
* However, in HTG 2D, this method used Orientation information.
* According to the orientation values (0/1/2), the association of
* the topological axes changes with the real axes (YZ/XZ/XY).
*
* NB: No boundary checks are performed.
*/
vtkIdType GetShiftedLevelZeroIndex(vtkIdType, int, int, int) const;
/**
* Convert the global index of a root to its Cartesian coordinates in the grid.
*/
void GetLevelZeroCoordinatesFromIndex(
vtkIdType, unsigned int&, unsigned int&, unsigned int&) const;
/**
* Convert the global index of a root to its Spatial coordinates origin and size.
*/
virtual void GetLevelZeroOriginAndSizeFromIndex(vtkIdType, double*, double*);
/**
* Convert the global index of a root to its Spatial coordinates origin and size.
*/
virtual void GetLevelZeroOriginFromIndex(vtkIdType, double*);
/**
* Return the maximum global index value.
* Can be useful to allocate new cell arrays.
*/
vtkIdType GetGlobalNodeIndexMax();
/**
* Initialize local indexes for every individual Hyper Tree after they have been refined.
*/
void InitializeLocalIndexNode();
/**
* Returns true if a ghost cell array is defined.
*/
bool HasAnyGhostCells() const;
/**
* Gets the array that defines the ghost type of each cell.
* see also GetTreeGhostArray().
*/
vtkUnsignedCharArray* GetGhostCells();
/**
* Gets the array that defines the ghost type of each cell.
* Unlike GetGhostCells(), we cache the pointer to the array
* to save a lookup involving string comparisons
*/
vtkUnsignedCharArray* GetTreeGhostArray();
/**
* Allocate ghost array for points.
*/
vtkUnsignedCharArray* AllocateTreeGhostArray();
/**
* An iterator object to iteratively access trees in the grid.
*/
class VTKCOMMONDATAMODEL_EXPORT vtkHyperTreeGridIterator
{
public:
vtkHyperTreeGridIterator() = default;
/**
* Initialize the iterator on the tree set of the given grid.
*/
void Initialize(vtkHyperTreeGrid*);
/**
* Get the next tree and set its index then increment the iterator.
* Returns 0 at the end.
*/
vtkHyperTree* GetNextTree(vtkIdType& index);
/**
* Get the next tree and set its index then increment the iterator.
* Returns 0 at the end.
*/
vtkHyperTree* GetNextTree();
protected:
std::map<vtkIdType, vtkSmartPointer<vtkHyperTree>>::iterator Iterator;
vtkHyperTreeGrid* Grid;
};
/**
* Initialize an iterator to browse level 0 trees.
* FIXME: this method is completely unnecessary.
*/
void InitializeTreeIterator(vtkHyperTreeGridIterator&);
///@{
/**
* Retrieve an instance of this class from an information object
*/
static vtkHyperTreeGrid* GetData(vtkInformation* info);
static vtkHyperTreeGrid* GetData(vtkInformationVector* v, int i = 0);
///@}
/**
* Compute the hyper tree grid bounding box ignoring masked cells.
* THIS METHOD IS NOT THREAD SAFE.
*/
virtual void ComputeBounds();
///@{
/**
* Return a pointer to the geometry bounding box in the form
* (xmin,xmax, ymin,ymax, zmin,zmax).
*
* This method was incorrectly providing grid bounds before vtk 9.4,
* grid bounds are available in GetGridBounds() if needed.
* THIS METHOD IS NOT THREAD SAFE.
*/
virtual double* GetBounds() VTK_SIZEHINT(6);
void GetBounds(double bounds[6]);
///@}
/**
* Return a pointer to the grid bounding box in the form
* (xmin,xmax, ymin,ymax, zmin,zmax).
* THIS METHOD IS NOT THREAD SAFE.
*/
virtual void GetGridBounds(double bounds[6]);
/**
* Get the center of the bounding box.
* THIS METHOD IS NOT THREAD SAFE.
*/
double* GetCenter() VTK_SIZEHINT(3);
/**
* Get the center of the bounding box.
* THIS METHOD IS NOT THREAD SAFE.
*/
void GetCenter(double center[3]);
/**
* Return a pointer to this dataset's hypertree node data.
* THIS METHOD IS THREAD SAFE
*/
vtkCellData* GetCellData();
/**
* Returns the hypertree node field data stored as cell data.
* If type != vtkDataObject::AttributeTypes::CELL,
* it defers to vtkDataObject;
*/
vtkFieldData* GetAttributesAsFieldData(int type) override;
/**
* Returns the number of nodes.
* Ii type == vtkDataObject::AttributeTypes::CELL,
* it defers to vtkDataObject.
*/
vtkIdType GetNumberOfElements(int type) override;
/**
* Return the number of cells.
* It matches the total number of internal nodes and leaves of the underlying hypertrees.
*/
vtkIdType GetNumberOfCells();
protected:
/**
* Constructor with default bounds (0,1, 0,1, 0,1).
*/
vtkHyperTreeGrid();
/**
* Destructor
*/
~vtkHyperTreeGrid() override;
/**
* ModeSqueeze
*/
char* ModeSqueeze;
double Bounds[6]; // (xmin,xmax, ymin,ymax, zmin,zmax) geometric bounds
double Center[3]; // geometric center
bool FreezeState;
unsigned int BranchFactor; // 2 or 3
unsigned int Dimension; // 1, 2, or 3
///@{
/**
* These arrays pointers are caches used to avoid a string comparison (when
* getting ghost arrays using GetArray(name))
*/
vtkUnsignedCharArray* TreeGhostArray;
bool TreeGhostArrayCached;
///@}
private:
unsigned int Orientation; // 0, 1, or 2
unsigned int Axis[2];
vtkTimeStamp ComputeTime;
protected:
unsigned int NumberOfChildren;
bool TransposedRootIndexing;
// --------------------------------
// RectilinearGrid common fields
// --------------------------------
private:
unsigned int Dimensions[3]; // Just for GetDimensions
unsigned int CellDims[3]; // Just for GetCellDims
protected:
int DataDescription;
int Extent[6];
bool WithCoordinates;
vtkDataArray* XCoordinates;
vtkDataArray* YCoordinates;
vtkDataArray* ZCoordinates;
// --------------------------------
vtkBitArray* Mask;
vtkBitArray* PureMask;
bool HasInterface;
char* InterfaceNormalsName;
char* InterfaceInterceptsName;
std::map<vtkIdType, vtkSmartPointer<vtkHyperTree>> HyperTrees;
vtkNew<vtkCellData> CellData; // Scalars, vectors, etc. associated w/ each point
unsigned int DepthLimiter;
private:
vtkHyperTreeGrid(const vtkHyperTreeGrid&) = delete;
void operator=(const vtkHyperTreeGrid&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif
|