1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkModifiedBSPTree.h"
#include "vtkAppendPolyData.h"
#include "vtkBox.h"
#include "vtkCubeSource.h"
#include "vtkGenericCell.h"
#include "vtkIdListCollection.h"
#include "vtkObjectFactory.h"
#include "vtkPolyData.h"
#include "vtkSMPTools.h"
#include <algorithm>
#include <array>
#include <stack>
#include <vector>
//------------------------------------------------------------------------------
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkModifiedBSPTree);
//------------------------------------------------------------------------------
enum
{
POS_X,
NEG_X,
POS_Y,
NEG_Y,
POS_Z,
NEG_Z
};
//////////////////////////////////////////////////////////////////////////////
// Main management and support for tree
//////////////////////////////////////////////////////////////////////////////
vtkModifiedBSPTree::vtkModifiedBSPTree()
{
this->NumberOfCellsPerNode = 32;
this->mRoot = nullptr;
this->UseExistingSearchStructure = 0;
this->npn = this->nln = this->tot_depth = 0;
}
//------------------------------------------------------------------------------
vtkModifiedBSPTree::~vtkModifiedBSPTree()
{
this->FreeSearchStructure();
this->FreeCellBounds();
}
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::FreeSearchStructure()
{
this->mRoot.reset();
this->Level = 0;
this->npn = this->nln = this->tot_depth = 0;
}
//////////////////////////////////////////////////////////////////////////////
// Here's the stuff for spatial subdivision
//////////////////////////////////////////////////////////////////////////////
class cell_extents
{
public:
double min, max;
vtkIdType cell_ID;
};
typedef cell_extents* cell_extents_List;
static int global_list_count = 0;
//------------------------------------------------------------------------------
class Sorted_cell_extents_Lists
{
public:
cell_extents_List Mins[3];
cell_extents_List Maxs[3];
//
Sorted_cell_extents_Lists(vtkIdType nCells)
{
for (int i = 0; i < 3; i++)
{
Mins[i] = new cell_extents[nCells]; // max num <= nCells/2 ?
Maxs[i] = new cell_extents[nCells];
}
global_list_count += 1;
}
~Sorted_cell_extents_Lists()
{
for (int i = 0; i < 3; i++)
{
delete[] (this->Mins[i]);
delete[] (this->Maxs[i]);
}
global_list_count -= 1;
}
};
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::BuildLocator()
{
// don't rebuild if build time is newer than modified and dataset modified time
if (this->mRoot.get() && this->BuildTime > this->MTime &&
this->BuildTime > this->DataSet->GetMTime())
{
return;
}
// don't rebuild if UseExistingSearchStructure is ON and a search structure already exists
if (this->mRoot.get() && this->UseExistingSearchStructure)
{
this->BuildTime.Modified();
vtkDebugMacro(<< "BuildLocator exited - UseExistingSearchStructure");
return;
}
this->BuildLocatorInternal();
}
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::ForceBuildLocator()
{
this->BuildLocatorInternal();
}
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::BuildLocatorInternal()
{
vtkIdType numCells;
if (!this->DataSet || (numCells = this->DataSet->GetNumberOfCells()) < 1)
{
vtkDebugMacro(<< "No Cells to divide");
return;
}
vtkDebugMacro(<< "Creating BSPTree for " << numCells << " cells");
// Make sure the appropriate data is available
this->FreeSearchStructure();
// create the root node
this->mRoot = std::make_shared<BSPNode>();
this->mRoot->mAxis = rand() % 3;
this->mRoot->depth = 0;
this->ComputeCellBounds();
// sort the cells into 6 lists using structure for subdividing tests
Sorted_cell_extents_Lists* lists = new Sorted_cell_extents_Lists(numCells);
vtkSMPTools::For(0, numCells,
[&](vtkIdType begin, vtkIdType end)
{
double cellBounds[6], *cellBoundsPtr;
cellBoundsPtr = cellBounds;
for (uint8_t i = 0; i < 3; ++i)
{
for (vtkIdType j = begin; j < end; ++j)
{
this->GetCellBounds(j, cellBoundsPtr);
lists->Mins[i][j].min = cellBoundsPtr[i * 2];
lists->Mins[i][j].max = cellBoundsPtr[i * 2 + 1];
lists->Mins[i][j].cell_ID = j;
lists->Maxs[i][j].min = cellBoundsPtr[i * 2];
lists->Maxs[i][j].max = cellBoundsPtr[i * 2 + 1];
lists->Maxs[i][j].cell_ID = j;
}
}
});
for (uint8_t i = 0; i < 3; i++)
{
// Sort
vtkSMPTools::Sort(lists->Mins[i], lists->Mins[i] + numCells,
[&](const cell_extents& tA, const cell_extents& tB) { return tA.min < tB.min; });
vtkSMPTools::Sort(lists->Maxs[i], lists->Maxs[i] + numCells,
[&](const cell_extents& tA, const cell_extents& tB) { return tA.max > tB.max; });
}
// call the recursive subdivision routine
vtkDebugMacro(<< "Beginning Subdivision");
Subdivide(this->mRoot.get(), lists, this->DataSet, numCells, 0, this->MaxLevel,
this->NumberOfCellsPerNode, this->Level);
delete lists;
// Child nodes are responsible for freeing the temporary sorted lists
this->BuildTime.Modified();
vtkDebugMacro(<< "BSP Tree Statistics \n"
<< "Num Parent/Leaf Nodes " << npn << "/" << nln << "\n"
<< "Average Depth " << double(tot_depth) / nln << " Original : " << numCells);
}
//------------------------------------------------------------------------------
// The main BSP subdivision routine : The code which does the division is only
// a small part of this, the rest is just bookkeeping - it looks worse than it is.
void vtkModifiedBSPTree::Subdivide(BSPNode* node, Sorted_cell_extents_Lists* lists,
vtkDataSet* dataset, vtkIdType nCells, int depth, int maxlevel, vtkIdType maxCells, int& MaxDepth)
{
// We've got lists sorted on the axes, so we can easily get BBox
// NOTE: this->mRoot->Bounds is set here
node->setMin(lists->Mins[0][0].min, lists->Mins[1][0].min, lists->Mins[2][0].min);
node->setMax(lists->Maxs[0][0].max, lists->Maxs[1][0].max, lists->Maxs[2][0].max);
// Update depth info
if (node->depth > MaxDepth)
{
MaxDepth = depth;
}
//
// Make sure child nodes are clear to start with
node->mChild[2] = node->mChild[1] = node->mChild[0] = nullptr;
//
// Do we want to subdivide this node ?
//
double pDiv = 0.0;
double cellBounds[6], *cellBoundsPtr;
cellBoundsPtr = cellBounds;
if ((nCells > maxCells) && (depth < maxlevel))
{
// test for optimal subdivision
bool found = false, abort = false;
int Daxis;
vtkIdType TargetCount = (3 * nCells) / 4;
//
for (vtkIdType k, j = 0; j < nCells && !found && !abort; j++)
{
// for each axis..
// test to see which x,y,z axis we should divide along
for (Daxis = node->mAxis, k = 0; k < 3; Daxis = (Daxis + 1) % 3, k++)
{
// eg for X axis, move left to right, and right to left
// when left overlaps right stop - at the same time, scan down and up
// in and out, and whichever crosses first - bingo !
if (lists->Mins[Daxis][j].min > lists->Maxs[Daxis][j].max)
{
pDiv = lists->Mins[Daxis][j].min - VTK_TOL;
node->mAxis = Daxis;
found = true;
break;
}
else
{
// if we have searched more than 3/4 of the cells and still
// not found a good plane, then abort division for this node
if (j >= TargetCount)
{
// vtkDebugMacro("Aborted node division : excessive overlap : Cell count = " << nCells);
abort = true;
break;
}
}
}
}
// construct the 3 children
if (found)
{
for (int i = 0; i < 3; i++)
{
node->mChild[i] = new BSPNode();
node->mChild[i]->depth = node->depth + 1;
node->mChild[i]->mAxis = rand() % 3;
}
Daxis = node->mAxis;
Sorted_cell_extents_Lists* left = new Sorted_cell_extents_Lists(nCells);
Sorted_cell_extents_Lists* mid = new Sorted_cell_extents_Lists(nCells);
Sorted_cell_extents_Lists* right = new Sorted_cell_extents_Lists(nCells);
// we ought to keep track of how many we are adding to each list
vtkIdType Cmin_l[3] = { 0, 0, 0 }, Cmin_m[3] = { 0, 0, 0 }, Cmin_r[3] = { 0, 0, 0 };
vtkIdType Cmax_l[3] = { 0, 0, 0 }, Cmax_m[3] = { 0, 0, 0 }, Cmax_r[3] = { 0, 0, 0 };
// Partition the cells into the correct child lists
// here we use the lists for the axis we're dividing along
for (vtkIdType i = 0; i < nCells; i++)
{
// process the MIN-List
cell_extents ext = lists->Mins[Daxis][i];
// max is on left of middle node
if (ext.max < pDiv)
{
left->Mins[Daxis][Cmin_l[Daxis]++] = ext;
}
// min is on right of middle node
else if (ext.min > pDiv)
{
right->Mins[Daxis][Cmin_r[Daxis]++] = ext;
}
// neither - must be one of ours
else
{
mid->Mins[Daxis][Cmin_m[Daxis]++] = ext;
}
//
// process the MAX-List
ext = lists->Maxs[Daxis][i];
// max is on left of middle node
if (ext.max < pDiv)
{
left->Maxs[Daxis][Cmax_l[Daxis]++] = ext;
}
// min is on right of middle node
else if (ext.min > pDiv)
{
right->Maxs[Daxis][Cmax_r[Daxis]++] = ext;
}
// neither - must be one of ours
else
{
mid->Maxs[Daxis][Cmax_m[Daxis]++] = ext;
}
}
// construct the sorted list of extents for the 2 remaining axes
// do everything in order so our sorted lists aren't munged
for (Daxis = (node->mAxis + 1) % 3; Daxis != node->mAxis; Daxis = (Daxis + 1) % 3)
{
for (vtkIdType i = 0; i < nCells; i++)
{
// process the MIN-List
cell_extents ext = lists->Mins[Daxis][i];
// check whether we intersect the cell bounds
this->GetCellBounds(ext.cell_ID, cellBoundsPtr);
if (cellBoundsPtr[2 * node->mAxis + 1] < pDiv)
{
left->Mins[Daxis][Cmin_l[Daxis]++] = ext;
}
else if (cellBoundsPtr[2 * node->mAxis] > pDiv)
{
right->Mins[Daxis][Cmin_r[Daxis]++] = ext;
}
else
{
mid->Mins[Daxis][Cmin_m[Daxis]++] = ext;
}
//
// process the MAX-List
ext = lists->Maxs[Daxis][i];
this->GetCellBounds(ext.cell_ID, cellBoundsPtr);
if (cellBoundsPtr[2 * node->mAxis + 1] < pDiv)
{
left->Maxs[Daxis][Cmax_l[Daxis]++] = ext;
}
else if (cellBoundsPtr[2 * node->mAxis] > pDiv)
{
right->Maxs[Daxis][Cmax_r[Daxis]++] = ext;
}
else
{
mid->Maxs[Daxis][Cmax_m[Daxis]++] = ext;
}
}
}
//
// Better check we didn't make a diddly
// this is overkill but for now I want a FULL DEBUG!
if ((Cmin_l[0] + Cmin_r[0] + Cmin_m[0]) != nCells)
{
vtkWarningMacro("Error count in min lists");
}
if ((Cmin_l[1] + Cmin_r[1] + Cmin_m[1]) != nCells)
{
vtkWarningMacro("Error count in min lists");
}
if ((Cmin_l[2] + Cmin_r[2] + Cmin_m[2]) != nCells)
{
vtkWarningMacro("Error count in min lists");
}
if ((Cmax_l[0] + Cmax_r[0] + Cmax_m[0]) != nCells)
{
vtkWarningMacro("Error count in max lists");
}
if ((Cmax_l[1] + Cmax_r[1] + Cmax_m[1]) != nCells)
{
vtkWarningMacro("Error count in max lists");
}
if ((Cmax_l[2] + Cmax_r[2] + Cmax_m[2]) != nCells)
{
vtkWarningMacro("Error count in max lists");
}
//
// Bug : Can sometimes get unbalanced leaves
//
if (!Cmin_l[0] || !Cmin_r[0])
{
// vtkDebugMacro(<<"Child 0 or 2 empty : Aborting subdivision for node " << Cmin_l[0] << " "
// << Cmin_m[0] << " " << Cmin_r[0]); clean up all the memory we allocated. Yikes.
for (int i = 0; i < 3; i++)
{
delete node->mChild[i];
node->mChild[i] = nullptr;
}
delete left;
delete mid;
delete right;
}
else
{
//
// Now we can delete the lists that the parent passed on to us
//
//
// And of course, we really ought to subdivide again - Hoorah!
// NB: it is possible for a node to be empty now, so check and delete if necessary
if (Cmin_l[0])
{
Subdivide(
node->mChild[0], left, dataset, Cmin_l[0], depth + 1, maxlevel, maxCells, MaxDepth);
}
else
{
vtkWarningMacro(<< "Child 0 Empty ! - this shouldn't happen");
}
delete left;
if (Cmin_m[0])
{
Subdivide(
node->mChild[1], mid, dataset, Cmin_m[0], depth + 1, maxlevel, maxCells, MaxDepth);
}
else
{
delete node->mChild[1];
node->mChild[1] = nullptr;
}
delete mid;
if (Cmin_r[0])
{
Subdivide(
node->mChild[2], right, dataset, Cmin_r[0], depth + 1, maxlevel, maxCells, MaxDepth);
}
else
{
vtkWarningMacro(<< "Child 2 Empty ! - this shouldn't happen");
}
delete right;
//
npn += 1; // Parent node
//
// we've done all we were asked to do
//
return;
}
}
}
// if we got here, either no further subdivision is necessary,
// or we couldn't find a split plane...(or we aborted)
//
// Copy the cell IDs into the actual node structure for proper use
node->num_cells = nCells;
nln += 1; // Leaf node
tot_depth += node->depth;
for (int i = 0; i < 6; i++)
{
node->sorted_cell_lists[i] = new vtkIdType[nCells];
}
//
for (int i = 0; i < 3; i++)
{
for (vtkIdType j = 0; j < nCells; j++)
{
node->sorted_cell_lists[i * 2][j] = lists->Mins[i][j].cell_ID;
node->sorted_cell_lists[i * 2 + 1][j] = lists->Maxs[i][j].cell_ID;
}
}
// Thank buggery that's all over.
}
//////////////////////////////////////////////////////////////////////////////
// Generate representation for viewing structure
//////////////////////////////////////////////////////////////////////////////
// OK so this is a quick a dirty one for testing, but I can't be arsed
// working out which faces are visible
class box
{
public:
double bounds[6];
box(double* b)
{
for (int i = 0; i < 6; i++)
{
bounds[i] = b[i];
}
}
};
//------------------------------------------------------------------------------
typedef std::vector<box> boxlist;
typedef std::stack<BSPNode*, std::vector<BSPNode*>> nodestack;
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::GenerateRepresentation(int level, vtkPolyData* pd)
{
this->BuildLocator();
if (this->mRoot == nullptr)
{
return;
}
nodestack ns;
boxlist bl;
BSPNode* node;
ns.push(this->mRoot.get());
// lets walk the tree and get all the level n node boxes
while (!ns.empty())
{
node = ns.top();
ns.pop();
if (node->depth == level)
{
bl.emplace_back(node->Bounds);
}
else
{
if (node->mChild[0])
{
ns.push(node->mChild[0]);
if (node->mChild[1])
{
ns.push(node->mChild[1]);
}
ns.push(node->mChild[2]);
}
else if (level == -1)
{
bl.emplace_back(node->Bounds);
}
}
}
// Ok, now create cube(oid)s and stuff'em into a polydata thingy
vtkAppendPolyData* polys = vtkAppendPolyData::New();
size_t s = bl.size();
for (size_t i = 0; i < s; i++)
{
vtkCubeSource* cube = vtkCubeSource::New();
cube->SetBounds(bl[i].bounds);
cube->Update();
polys->AddInputConnection(cube->GetOutputPort());
cube->Delete();
}
polys->Update();
pd->SetPoints(polys->GetOutput()->GetPoints());
pd->SetPolys(polys->GetOutput()->GetPolys());
polys->Delete();
}
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::GenerateRepresentationLeafs(vtkPolyData* pd)
{
GenerateRepresentation(-1, pd);
}
//////////////////////////////////////////////////////////////////////////////
// Ray/BSPtree Intersection stuff
//////////////////////////////////////////////////////////////////////////////
// Ray->Box edge t-distance tests
static double getMinDistPOS_X(const double origin[3], const double dir[3], const double B[6])
{
return ((B[0] - origin[0]) / dir[0]);
}
static double getMinDistNEG_X(const double origin[3], const double dir[3], const double B[6])
{
return ((B[1] - origin[0]) / dir[0]);
}
static double getMinDistPOS_Y(const double origin[3], const double dir[3], const double B[6])
{
return ((B[2] - origin[1]) / dir[1]);
}
static double getMinDistNEG_Y(const double origin[3], const double dir[3], const double B[6])
{
return ((B[3] - origin[1]) / dir[1]);
}
static double getMinDistPOS_Z(const double origin[3], const double dir[3], const double B[6])
{
return ((B[4] - origin[2]) / dir[2]);
}
static double getMinDistNEG_Z(const double origin[3], const double dir[3], const double B[6])
{
return ((B[5] - origin[2]) / dir[2]);
}
//------------------------------------------------------------------------------
int BSPNode::getDominantAxis(const double dir[3])
{
double tX = (dir[0] > 0) ? dir[0] : -dir[0];
double tY = (dir[1] > 0) ? dir[1] : -dir[1];
double tZ = (dir[2] > 0) ? dir[2] : -dir[2];
if (tX > tY && tX > tZ)
{
return ((dir[0] > 0) ? POS_X : NEG_X);
}
else if (tY > tZ)
{
return ((dir[1] > 0) ? POS_Y : NEG_Y);
}
else
{
return ((dir[2] > 0) ? POS_Z : NEG_Z);
}
}
//------------------------------------------------------------------------------
int vtkModifiedBSPTree::IntersectWithLine(const double p1[3], const double p2[3], double tol,
double& t, double x[3], double pcoords[3], int& subId, vtkIdType& cellId, vtkGenericCell* cell)
{
this->BuildLocator();
if (this->mRoot == nullptr)
{
return 0;
}
BSPNode *node, *Near, *Mid, *Far;
double tmin, tmax, tDist, tHitCell, tBest = VTK_DOUBLE_MAX, xBest[3], pCoordsBest[3];
double rayDir[3], x0[3], x1[3], hitCellBoundsPosition[3], cellBounds[6], *cellBoundsPtr;
cellBoundsPtr = cellBounds;
int plane1, plane2, subIdBest = -1;
vtkMath::Subtract(p2, p1, rayDir);
vtkIdType cId, cellIdBest = -1;
double* bounds = this->mRoot->Bounds;
cellId = -1;
// Does ray pass through root BBox
if (vtkBox::IntersectWithLine(bounds, p1, p2, tmin, tmax, x0, x1, plane1, plane2) == 0)
{
return false;
}
std::vector<bool> cellHasBeenVisited(this->DataSet->GetNumberOfCells(), false);
// Ok, setup a stack and various params
nodestack ns;
// setup our axis optimized ray box edge stuff
int axis = BSPNode::getDominantAxis(rayDir);
double (*_getMinDist)(const double origin[3], const double dir[3], const double B[6]);
switch (axis)
{
case POS_X:
_getMinDist = getMinDistPOS_X;
break;
case NEG_X:
_getMinDist = getMinDistNEG_X;
break;
case POS_Y:
_getMinDist = getMinDistPOS_Y;
break;
case NEG_Y:
_getMinDist = getMinDistNEG_Y;
break;
case POS_Z:
_getMinDist = getMinDistPOS_Z;
break;
default:
_getMinDist = getMinDistNEG_Z;
break;
}
// OK, lets walk the tree and find intersections
ns.push(this->mRoot.get());
while (!ns.empty())
{
node = ns.top();
ns.pop();
// We do as few tests on the way down as possible, because our BBoxes
// can be quite tight and we want to reject as many boxes as possible without
// testing them at all - mainly because we quickly get to a leaf node and
// test candidates, once we've found a hit, we note the intersection t val,
// as soon as we pull a BBox of the stack that has a closest point further
// than the t val, we know we can stop.
//
while (node->mChild[0]) // this must be a parent node
{
// Which child node is closest to ray origin - given direction
node->Classify(p1, rayDir, tDist, Near, Mid, Far);
// if the distance to the far edge of the near box is > tmax, no need to test far box
// (we still need to test Mid because it may overlap slightly)
if ((tDist > tmax) || (tDist <= 0)) // <=0 for ray on edge
{
if (Mid)
{
ns.push(Mid);
}
node = Near;
}
// if the distance to the far edge of the near box is < tmin, no need to test near box
else if (tDist < tmin)
{
if (Mid)
{
ns.push(Far);
node = Mid;
}
else
{
node = Far;
}
}
// All the child nodes may be candidates, keep near, push far then mid
else
{
ns.push(Far);
if (Mid)
{
ns.push(Mid);
}
node = Near;
}
}
// Ok, so we're a leaf node, first check the BBox against the ray
// then test the candidates in our sorted ray direction order
for (int i = 0; i < node->num_cells; i++)
{
cId = node->sorted_cell_lists[axis][i];
if (!cellHasBeenVisited[cId])
{
cellHasBeenVisited[cId] = true;
this->GetCellBounds(cId, cellBoundsPtr);
if (_getMinDist(p1, rayDir, cellBoundsPtr) > tBest)
{
break;
}
// check whether we intersect the cell bounds
int hitCellBounds =
vtkBox::IntersectBox(cellBoundsPtr, p1, rayDir, hitCellBoundsPosition, tHitCell, tol);
if (hitCellBounds)
{
this->DataSet->GetCell(cId, cell);
if (cell->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId))
{
if (t < tBest)
{
tBest = t;
xBest[0] = x[0];
xBest[1] = x[1];
xBest[2] = x[2];
pCoordsBest[0] = pcoords[0];
pCoordsBest[1] = pcoords[1];
pCoordsBest[2] = pcoords[2];
subIdBest = subId;
cellIdBest = cId;
}
}
}
}
}
}
// If a cell has been intersected, recover the information and return.
if (cellIdBest >= 0)
{
this->DataSet->GetCell(cellIdBest, cell);
t = tBest;
x[0] = xBest[0];
x[1] = xBest[1];
x[2] = xBest[2];
pcoords[0] = pCoordsBest[0];
pcoords[1] = pCoordsBest[1];
pcoords[2] = pCoordsBest[2];
subId = subIdBest;
cellId = cellIdBest;
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
struct IntersectionInfo
{
vtkIdType CellId;
std::array<double, 3> IntersectionPoint;
double T;
IntersectionInfo(vtkIdType cellId, double x[3], double t)
: CellId(cellId)
, IntersectionPoint({ x[0], x[1], x[2] })
, T(t)
{
}
};
//------------------------------------------------------------------------------
int vtkModifiedBSPTree::IntersectWithLine(const double p1[3], const double p2[3], double tol,
vtkPoints* points, vtkIdList* cellIds, vtkGenericCell* cell)
{
this->BuildLocator();
if (this->mRoot == nullptr)
{
return 0;
}
// Initialize the list of points/cells
if (points)
{
points->Reset();
}
if (cellIds)
{
cellIds->Reset();
}
BSPNode *node, *Near, *Mid, *Far;
double tmin, tmax, tDist, tHitCell;
double rayDir[3], x0[3], x1[3], hitCellBoundsPosition[3], cellBounds[6], *cellBoundsPtr;
cellBoundsPtr = cellBounds;
vtkMath::Subtract(p2, p1, rayDir);
double* bounds = this->mRoot->Bounds;
vtkIdType cId;
int plane0, plane1, subId;
double t, x[3], pcoords[3];
// Does ray pass through root BBox
if (vtkBox::IntersectWithLine(bounds, p1, p2, tmin, tmax, x0, x1, plane0, plane1) == 0)
{
return 0; // No intersections possible, line is outside the locator
}
// Initialize intersection query array if necessary. This is done
// locally to ensure thread safety.
std::vector<bool> cellHasBeenVisited(this->DataSet->GetNumberOfCells(), false);
// Ok, setup a stack and various params
nodestack ns;
// setup our axis optimized ray box edge stuff
int axis = BSPNode::getDominantAxis(rayDir);
// we will sort intersections by t, so keep track using these lists
std::vector<IntersectionInfo> cellIntersections;
// OK, lets walk the tree and find intersections
ns.push(this->mRoot.get());
while (!ns.empty())
{
node = ns.top();
ns.pop();
// We do as few tests on the way down as possible, because our BBoxes
// can be quite tight and we want to reject as many boxes as possible without
// testing them at all - mainly because we quickly get to a leaf node and
// test candidates, once we've found a hit, we note the intersection t val,
// as soon as we pull a BBox of the stack that has a closest point further
// than the t val, we know we can stop.
//
while (node->mChild[0])
{ // this must be a parent node
// Which child node is closest to ray origin - given direction
node->Classify(p1, rayDir, tDist, Near, Mid, Far);
// if the distance to the far edge of the near box is > tmax, no need to test far box
// (we still need to test Mid because it may overlap slightly)
if ((tDist > tmax) || (tDist <= 0))
{ // <=0 for ray on edge
if (Mid)
{
ns.push(Mid);
}
node = Near;
}
// if the distance to the far edge of the near box is < tmin, no need to test near box
else if (tDist < tmin)
{
if (Mid)
{
ns.push(Far);
node = Mid;
}
else
{
node = Far;
}
}
// All the child nodes may be candidates, keep near, push far then mid
else
{
ns.push(Far);
if (Mid)
{
ns.push(Mid);
}
node = Near;
}
}
// Ok, so we're a leaf node, first check the BBox against the ray
// then test the candidates in our sorted ray direction order
for (int i = 0; i < node->num_cells; i++)
{
cId = node->sorted_cell_lists[axis][i];
if (!cellHasBeenVisited[cId])
{
cellHasBeenVisited[cId] = true;
this->GetCellBounds(cId, cellBoundsPtr);
// check whether we intersect the cell bounds
int hitCellBounds =
vtkBox::IntersectBox(cellBoundsPtr, p1, rayDir, hitCellBoundsPosition, tHitCell, tol);
if (hitCellBounds)
{
// Note because of cellHasBeenVisited[], we know this cId is unique
if (cell)
{
this->DataSet->GetCell(cId, cell);
if (cell->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId))
{
cellIntersections.emplace_back(cId, x, t);
}
}
else
{
cellIntersections.emplace_back(cId, hitCellBoundsPosition, tHitCell);
}
}
}
}
}
// if we had intersections, sort them by increasing t
if (!cellIntersections.empty())
{
vtkIdType numIntersections = static_cast<vtkIdType>(cellIntersections.size());
std::sort(cellIntersections.begin(), cellIntersections.end(),
[&](const IntersectionInfo& a, const IntersectionInfo& b) { return a.T < b.T; });
if (points)
{
points->SetNumberOfPoints(numIntersections);
for (vtkIdType i = 0; i < numIntersections; ++i)
{
points->SetPoint(i, cellIntersections[i].IntersectionPoint.data());
}
}
if (cellIds)
{
cellIds->SetNumberOfIds(numIntersections);
for (vtkIdType i = 0; i < numIntersections; ++i)
{
cellIds->SetId(i, cellIntersections[i].CellId);
}
}
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
vtkIdType vtkModifiedBSPTree::FindCell(
double x[3], double, vtkGenericCell* cell, int& subId, double pcoords[3], double* weights)
{
this->BuildLocator();
if (this->mRoot == nullptr)
{
return -1;
}
// check if x outside of bounds
if (!vtkAbstractCellLocator::IsInBounds(this->mRoot->Bounds, x))
{
return -1;
}
vtkIdType cellId;
nodestack ns;
BSPNode* node;
ns.push(this->mRoot.get());
double closestPoint[3], dist2;
//
while (!ns.empty())
{
node = ns.top();
ns.pop();
if (node->mChild[0])
{ // this must be a parent node
if (node->mChild[0]->Inside(x))
{
ns.push(node->mChild[0]);
}
if (node->mChild[1] && node->mChild[1]->Inside(x))
{
ns.push(node->mChild[1]);
}
if (node->mChild[2]->Inside(x))
{
ns.push(node->mChild[2]);
}
}
else
{ // a leaf, so test the cells
for (int i = 0; i < node->num_cells; i++)
{
cellId = node->sorted_cell_lists[0][i];
if (vtkAbstractCellLocator::InsideCellBounds(x, cellId))
{
this->DataSet->GetCell(cellId, cell);
if (cell->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, weights) == 1)
{
return cellId;
}
}
}
}
}
return -1;
}
//------------------------------------------------------------------------------
vtkIdListCollection* vtkModifiedBSPTree::GetLeafNodeCellInformation()
{
if (this->mRoot == nullptr)
{
return nullptr;
}
//
vtkIdListCollection* LeafCellsList = vtkIdListCollection::New();
nodestack ns;
BSPNode* node = nullptr;
ns.push(this->mRoot.get());
//
while (!ns.empty())
{
node = ns.top();
ns.pop();
if (node->mChild[0])
{ // this must be a parent node
ns.push(node->mChild[0]);
if (node->mChild[1])
{
ns.push(node->mChild[1]);
}
if (node->mChild[2])
{
ns.push(node->mChild[2]);
}
}
else
{ // a leaf
vtkSmartPointer<vtkIdList> newList = vtkSmartPointer<vtkIdList>::New();
LeafCellsList->AddItem(newList);
newList->SetNumberOfIds(node->num_cells);
for (int i = 0; i < node->num_cells; i++)
{
newList->SetId(i, node->sorted_cell_lists[0][i]);
}
}
}
return LeafCellsList;
}
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::ShallowCopy(vtkAbstractCellLocator* locator)
{
vtkModifiedBSPTree* cellLocator = vtkModifiedBSPTree::SafeDownCast(locator);
if (!cellLocator)
{
vtkErrorMacro("Cannot cast " << locator->GetClassName() << " to vtkModifiedBSPTree.");
return;
}
// we only copy what's actually used by vtkModifiedBSPTree
// vtkLocator parameters
this->SetUseExistingSearchStructure(cellLocator->GetUseExistingSearchStructure());
this->SetMaxLevel(cellLocator->GetMaxLevel());
this->Level = cellLocator->Level;
// vtkAbstractCellLocator parameters
this->SetNumberOfCellsPerNode(cellLocator->GetNumberOfCellsPerNode());
this->CacheCellBounds = cellLocator->CacheCellBounds;
this->CellBoundsSharedPtr = cellLocator->CellBoundsSharedPtr; // This is important
this->CellBounds = this->CellBoundsSharedPtr.get() ? this->CellBoundsSharedPtr->data() : nullptr;
// vtkCellTreeLocator parameters
this->mRoot = cellLocator->mRoot; // This is important
this->npn = cellLocator->npn;
this->nln = cellLocator->nln;
this->tot_depth = cellLocator->tot_depth;
this->BuildTime.Modified();
}
//------------------------------------------------------------------------------
void vtkModifiedBSPTree::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "npn: " << this->npn << "\n";
os << indent << "nln: " << this->nln << "\n";
os << indent << "tot_depth: " << this->tot_depth << "\n";
}
//////////////////////////////////////////////////////////////////////////////
// BSPNode routines
//////////////////////////////////////////////////////////////////////////////
void BSPNode::Classify(const double origin[3], const double dir[3], double& rDist, BSPNode*& Near,
BSPNode*& Mid, BSPNode*& Far) const
{
double tOriginToDivPlane = mChild[0]->Bounds[mAxis * 2 + 1] - origin[mAxis];
double tDivDirection = dir[mAxis];
if (tOriginToDivPlane > 0)
{
Near = mChild[0];
Mid = mChild[1];
Far = mChild[2];
}
else if (tOriginToDivPlane < 0)
{
Far = mChild[0];
Mid = mChild[1];
Near = mChild[2];
}
// Ray was exactly on edge of box, check direction
else
{
if (tDivDirection < 0)
{
Near = mChild[0];
Mid = mChild[1];
Far = mChild[2];
}
else
{
Far = mChild[0];
Mid = mChild[1];
Near = mChild[2];
}
}
rDist = (tDivDirection) ? tOriginToDivPlane / tDivDirection : VTK_FLOAT_MAX;
}
//------------------------------------------------------------------------------
bool BSPNode::Inside(double point[3]) const
{
return this->Bounds[0] <= point[0] && point[0] <= this->Bounds[1] &&
this->Bounds[2] <= point[1] && point[1] <= this->Bounds[3] && this->Bounds[4] <= point[2] &&
point[2] <= this->Bounds[5];
}
VTK_ABI_NAMESPACE_END
|