1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkGenericContourFilter
* @brief generate isocontours from input dataset
*
* vtkGenericContourFilter is a filter that takes as input any (generic)
* dataset and generates on output isosurfaces and/or isolines. The exact
* form of the output depends upon the dimensionality of the input data.
* Data consisting of 3D cells will generate isosurfaces, data consisting of
* 2D cells will generate isolines, and data with 1D or 0D cells will
* generate isopoints. Combinations of output type are possible if the input
* dimension is mixed.
*
* To use this filter you must specify one or more contour values.
* You can either use the method SetValue() to specify each contour
* value, or use GenerateValues() to generate a series of evenly
* spaced contours. You can use ComputeNormalsOn to compute the normals
* without the need of a vtkPolyDataNormals
*
* This filter has been implemented to operate on generic datasets, rather
* than the typical vtkDataSet (and subclasses). vtkGenericDataSet is a more
* complex cousin of vtkDataSet, typically consisting of nonlinear,
* higher-order cells. To process this type of data, generic cells are
* automatically tessellated into linear cells prior to isocontouring.
*
* @sa
* vtkContourFilter vtkGenericDataSet
*/
#ifndef vtkGenericContourFilter_h
#define vtkGenericContourFilter_h
#include "vtkFiltersGenericModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
VTK_ABI_NAMESPACE_BEGIN
class vtkContourValues;
class vtkIncrementalPointLocator;
class vtkPointData;
class vtkCellData;
class VTKFILTERSGENERIC_EXPORT vtkGenericContourFilter : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkGenericContourFilter, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Construct object with initial range (0,1) and single contour value
* of 0.0.
*/
static vtkGenericContourFilter* New();
typedef double PointType[3]; // Arbitrary definition of a point
///@{
/**
* Methods to set / get contour values.
*/
void SetValue(int i, float value);
double GetValue(int i);
double* GetValues();
void GetValues(double* contourValues);
void SetNumberOfContours(int number);
vtkIdType GetNumberOfContours();
void GenerateValues(int numContours, double range[2]);
void GenerateValues(int numContours, double rangeStart, double rangeEnd);
///@}
/**
* Modified GetMTime Because we delegate to vtkContourValues
*/
vtkMTimeType GetMTime() override;
///@{
/**
* Set/Get the computation of normals. Normal computation is fairly
* expensive in both time and storage. If the output data will be
* processed by filters that modify topology or geometry, it may be
* wise to turn Normals and Gradients off.
*/
vtkSetMacro(ComputeNormals, vtkTypeBool);
vtkGetMacro(ComputeNormals, vtkTypeBool);
vtkBooleanMacro(ComputeNormals, vtkTypeBool);
///@}
///@{
/**
* Set/Get the computation of gradients. Gradient computation is
* fairly expensive in both time and storage. Note that if
* ComputeNormals is on, gradients will have to be calculated, but
* will not be stored in the output dataset. If the output data
* will be processed by filters that modify topology or geometry, it
* may be wise to turn Normals and Gradients off.
*/
vtkSetMacro(ComputeGradients, vtkTypeBool);
vtkGetMacro(ComputeGradients, vtkTypeBool);
vtkBooleanMacro(ComputeGradients, vtkTypeBool);
///@}
///@{
/**
* Set/Get the computation of scalars.
*/
vtkSetMacro(ComputeScalars, vtkTypeBool);
vtkGetMacro(ComputeScalars, vtkTypeBool);
vtkBooleanMacro(ComputeScalars, vtkTypeBool);
///@}
///@{
/**
* Set / get a spatial locator for merging points. By default,
* an instance of vtkMergePoints is used.
*/
void SetLocator(vtkIncrementalPointLocator* locator);
vtkGetObjectMacro(Locator, vtkIncrementalPointLocator);
///@}
/**
* Create default locator. Used to create one when none is
* specified. The locator is used to merge coincident points.
*/
void CreateDefaultLocator();
///@{
/**
* If you want to contour by an arbitrary scalar attribute, then set its
* name here.
* By default this in nullptr and the filter will use the active scalar array.
*/
vtkGetStringMacro(InputScalarsSelection);
virtual void SelectInputScalars(const char* fieldName);
///@}
protected:
vtkGenericContourFilter();
~vtkGenericContourFilter() override;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int, vtkInformation*) override;
vtkContourValues* ContourValues;
vtkTypeBool ComputeNormals;
vtkTypeBool ComputeGradients;
vtkTypeBool ComputeScalars;
vtkIncrementalPointLocator* Locator;
char* InputScalarsSelection;
vtkSetStringMacro(InputScalarsSelection);
// Used internal by vtkGenericAdaptorCell::Contour()
vtkPointData* InternalPD;
vtkPointData* SecondaryPD;
vtkCellData* SecondaryCD;
private:
vtkGenericContourFilter(const vtkGenericContourFilter&) = delete;
void operator=(const vtkGenericContourFilter&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif
|