File: vtkSelectPolyData.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (944 lines) | stat: -rw-r--r-- 30,625 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkSelectPolyData.h"

#include "vtkCellData.h"
#include "vtkDijkstraGraphGeodesicPath.h"
#include "vtkExecutive.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkLine.h"
#include "vtkPointData.h"
#include "vtkPointLocator.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkTriangleFilter.h"

VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkSelectPolyData);

vtkCxxSetObjectMacro(vtkSelectPolyData, Loop, vtkPoints);

// Description:
// Instantiate object with InsideOut turned off.
vtkSelectPolyData::vtkSelectPolyData()
  : SelectionScalarsArrayName(nullptr)
{
  this->GenerateSelectionScalars = 0;
  this->SetSelectionScalarsArrayName("Selection");
  this->InsideOut = 0;
  this->EdgeSearchMode = VTK_GREEDY_EDGE_SEARCH;
  this->Loop = nullptr;
  this->SelectionMode = VTK_INSIDE_SMALLEST_REGION;
  this->ClosestPoint[0] = this->ClosestPoint[1] = this->ClosestPoint[2] = 0.0;
  this->GenerateUnselectedOutput = 0;

  this->SetNumberOfOutputPorts(3);

  vtkNew<vtkPolyData> output2;
  this->GetExecutive()->SetOutputData(1, output2);

  vtkNew<vtkPolyData> output3;
  this->GetExecutive()->SetOutputData(2, output3);
}

//------------------------------------------------------------------------------
vtkSelectPolyData::~vtkSelectPolyData()
{
  this->SetSelectionScalarsArrayName(nullptr);
  if (this->Loop)
  {
    this->Loop->Delete();
  }
}

//------------------------------------------------------------------------------
vtkPolyData* vtkSelectPolyData::GetUnselectedOutput()
{
  if (this->GetNumberOfOutputPorts() < 2)
  {
    return nullptr;
  }
  return vtkPolyData::SafeDownCast(this->GetExecutive()->GetOutputData(1));
}

//------------------------------------------------------------------------------
vtkAlgorithmOutput* vtkSelectPolyData::GetUnselectedOutputPort()
{
  return this->GetOutputPort(1);
}

//------------------------------------------------------------------------------
vtkPolyData* vtkSelectPolyData::GetSelectionEdges()
{
  if (this->GetNumberOfOutputPorts() < 3)
  {
    return nullptr;
  }

  return vtkPolyData::SafeDownCast(this->GetExecutive()->GetOutputData(2));
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::GreedyEdgeSearch(vtkPolyData* mesh, vtkIdList* edgePointIds)
{
  vtkIdType numLoopPts = this->Loop->GetNumberOfPoints();

  // First thing to do is find the closest mesh points to the loop
  // points. This creates a list of mesh point ids corresponding to the loop point positions.
  vtkNew<vtkIdList> loopIds;
  loopIds->SetNumberOfIds(numLoopPts);

  vtkPoints* inPts = mesh->GetPoints();
  vtkIdType numPts = mesh->GetNumberOfPoints();
  for (vtkIdType loopPointId = 0; loopPointId < numLoopPts; loopPointId++)
  {
    if (this->CheckAbort())
    {
      break;
    }
    double xLoop[3];
    this->Loop->GetPoint(loopPointId, xLoop);
    vtkIdType closestMeshPointId = 0;
    double closestDist2 = VTK_DOUBLE_MAX;

    for (vtkIdType meshPointId = 0; meshPointId < numPts; meshPointId++)
    {
      double x[3];
      inPts->GetPoint(meshPointId, x);
      double dist2 = vtkMath::Distance2BetweenPoints(x, xLoop);
      if (dist2 < closestDist2)
      {
        closestMeshPointId = meshPointId;
        closestDist2 = dist2;
      }
    } // for all input points

    loopIds->SetId(loopPointId, closestMeshPointId);
  } // for all loop points

  edgePointIds->InsertNextId(loopIds->GetId(0));

  // Now that we've got point ids, we build the loop. Start with the
  // first two points in the loop (which define a line), and find the
  // mesh edge that is directed along the line, and whose
  // end point is closest to the line. Continue until loop closes in on
  // itself.
  vtkNew<vtkIdList> neighbors;
  neighbors->Allocate(10000);
  for (vtkIdType loopPointIndex = 0; loopPointIndex < numLoopPts; loopPointIndex++)
  {
    if (this->CheckAbort())
    {
      break;
    }
    vtkIdType currentId = loopIds->GetId(loopPointIndex);
    vtkIdType nextId = loopIds->GetId((loopPointIndex + 1) % numLoopPts);
    vtkIdType prevId = (-1);
    double x[3];
    double x0[3];
    double x1[3];
    double vec[3];
    inPts->GetPoint(currentId, x);
    inPts->GetPoint(currentId, x0);
    inPts->GetPoint(nextId, x1);
    for (int j = 0; j < 3; j++)
    {
      vec[j] = x1[j] - x0[j];
    }

    // track edge
    for (vtkIdType id = currentId; id != nextId;)
    {
      vtkSelectPolyData::GetPointNeighbors(mesh, id, neighbors); // points connected by edge
      vtkIdType numNei = neighbors->GetNumberOfIds();
      vtkIdType closest = -1;
      double closestDist2 = VTK_DOUBLE_MAX;
      for (vtkIdType j = 0; j < numNei; j++)
      {
        vtkIdType neiId = neighbors->GetId(j);
        if (neiId == nextId)
        {
          closest = neiId;
          break;
        }
        else
        {
          double neiX[3];
          inPts->GetPoint(neiId, neiX);
          double dir[3];
          for (vtkIdType k = 0; k < 3; k++)
          {
            dir[k] = neiX[k] - x[k];
          }
          if (neiId != prevId && vtkMath::Dot(dir, vec) > 0.0) // candidate
          {
            double dist2 = vtkLine::DistanceToLine(neiX, x0, x1);
            if (dist2 < closestDist2)
            {
              closest = neiId;
              closestDist2 = dist2;
            }
          } // in direction of line
        }
      } // for all neighbors

      if (closest < 0)
      {
        vtkErrorMacro(<< "Can't follow edge. Set EdgeSearchMode to Dijkstra to avoid this error.");
        edgePointIds->Initialize(); // clear edge list to indicate error
        return;
      }
      else
      {
        edgePointIds->InsertNextId(closest);
        prevId = id;
        id = closest;
        inPts->GetPoint(id, x);
      }
    } // for tracking edge
  }   // for all edges of loop
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::DijkstraEdgeSearch(vtkPolyData* mesh, vtkIdList* edgePointIds)
{
  vtkNew<vtkDijkstraGraphGeodesicPath> edgeSearchFilter;
  edgeSearchFilter->StopWhenEndReachedOn();
  edgeSearchFilter->SetInputData(mesh);

  vtkNew<vtkPointLocator> pointLocator;
  pointLocator->SetDataSet(mesh);

  vtkPoints* inPts = mesh->GetPoints();
  vtkIdType numLoopPts = this->Loop->GetNumberOfPoints();

  vtkIdType currentId = 0;
  double xLoop[3];
  this->Loop->GetPoint(0, xLoop);
  vtkIdType nextId = pointLocator->FindClosestPoint(xLoop);
  for (vtkIdType i = 0; i < numLoopPts; i++)
  {
    if (this->CheckAbort())
    {
      break;
    }
    currentId = nextId;
    this->Loop->GetPoint((i + 1) % numLoopPts, xLoop);
    nextId = pointLocator->FindClosestPoint(xLoop);

    edgeSearchFilter->SetStartVertex(currentId);
    edgeSearchFilter->SetEndVertex(nextId);
    edgeSearchFilter->Update();
    vtkPolyData* outputPath = edgeSearchFilter->GetOutput();
    double x0[3];
    inPts->GetPoint(currentId, x0);
    for (int j = outputPath->GetNumberOfPoints() - 1; j >= 0; --j)
    {
      double x[3];
      outputPath->GetPoint(j, x);
      double dist2 = vtkMath::Distance2BetweenPoints(x, x0);
      if (dist2 > 0.0)
      {
        // Find point ID to add in the input mesh to remember the next edge point
        edgePointIds->InsertNextId(pointLocator->FindClosestPoint(x));
        for (int k = 0; k < 3; ++k)
        {
          // Remember last added point so that it does not get added twice
          x0[k] = x[k];
        }
      }
    }
  }
}

//------------------------------------------------------------------------------
int vtkSelectPolyData::RequestData(vtkInformation* vtkNotUsed(request),
  vtkInformationVector** inputVector, vtkInformationVector* outputVector)
{
  // get the input and output objects
  vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation* outInfo = outputVector->GetInformationObject(0);
  vtkPolyData* input = vtkPolyData::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData* output = vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));

  // Initialize and check data
  vtkDebugMacro(<< "Selecting data...");

  this->GetUnselectedOutput()->Initialize();
  this->GetSelectionEdges()->Initialize();

  // CHeck if inputs are valid
  if (input->GetNumberOfPoints() < 1)
  {
    vtkErrorMacro("Input contains no points");
    return 1;
  }
  vtkIdType numLoopPts;
  if (this->Loop == nullptr || (numLoopPts = this->Loop->GetNumberOfPoints()) < 3)
  {
    vtkErrorMacro("Please define a loop with at least three points");
    return 1;
  }

  // Convert to triangle mesh. All further computations are done on the triangulated mesh.
  vtkSmartPointer<vtkPolyData> triMesh;
  {
    vtkNew<vtkTriangleFilter> tf;
    tf->SetInputData(input);
    tf->PassLinesOff();
    tf->PassVertsOff();
    tf->SetContainerAlgorithm(this);
    tf->Update();
    triMesh = tf->GetOutput();
  }
  vtkCellArray* inPolys = triMesh->GetPolys();
  if (inPolys->GetNumberOfCells() < 1)
  {
    vtkErrorMacro("This filter operates on surface primitives");
    return 1;
  }

  // Create a mesh that only contains points and polys
  // (probably to avoid potential interference of other cell types)
  // and links are computed (so that neighbors can be retrieved).
  vtkNew<vtkPolyData> mesh;
  vtkPoints* inPts = triMesh->GetPoints();
  mesh->SetPoints(inPts);
  mesh->SetPolys(inPolys);
  mesh->BuildLinks(); // to do neighborhood searching
  vtkIdType numCells = mesh->GetNumberOfCells();

  // Get a list of point IDs of the mesh that forms a continuous closed loop
  vtkNew<vtkIdList> edgePointIds;
  edgePointIds->Allocate(numLoopPts * 10, 1000);
  switch (this->EdgeSearchMode)
  {
    case VTK_GREEDY_EDGE_SEARCH:
      this->GreedyEdgeSearch(mesh, edgePointIds);
      break;
    case VTK_DIJKSTRA_EDGE_SEARCH:
      this->DijkstraEdgeSearch(triMesh, edgePointIds);
      break;
    default:
      vtkErrorMacro("Unknown edge search mode: " << this->EdgeSearchMode);
  }
  if (edgePointIds->GetNumberOfIds() == 0 || this->CheckAbort())
  {
    return 1;
  }

  // Save the found edge list into SelectionEdges polydata
  vtkIdType numMeshLoopPts = edgePointIds->GetNumberOfIds();
  vtkNew<vtkCellArray> selectionEdges;
  selectionEdges->AllocateEstimate(1, numMeshLoopPts);
  selectionEdges->InsertNextCell(numMeshLoopPts);
  for (vtkIdType i = 0; i < numMeshLoopPts; i++)
  {
    selectionEdges->InsertCellPoint(edgePointIds->GetId(i));
  }
  this->GetSelectionEdges()->SetPoints(inPts);
  this->GetSelectionEdges()->SetLines(selectionEdges);

  // Store distance from edge in point and cell marks and
  // get ID of the cell that is farthest from the loop.
  vtkNew<vtkIntArray> pointMarks;
  vtkNew<vtkIntArray> cellMarks;
  vtkIdType cellIdInSelectedRegion =
    this->ComputeTopologicalDistance(mesh, edgePointIds, pointMarks, cellMarks);

  // If the region that is closest to a specific point needs to be extracted then get
  // a cell that is closes to that position.
  if (this->SelectionMode == VTK_INSIDE_CLOSEST_POINT_REGION)
  {
    // find closest point and use as a seed
    cellIdInSelectedRegion = this->GetClosestCellId(mesh, pointMarks);
  }

  // Set point and cell mark values in the selected region to -1.
  // We'll end up having >0 values outside the selected region, -1 inside.
  this->FillMarksInRegion(mesh, edgePointIds, pointMarks, cellMarks, cellIdInSelectedRegion);

  // Invert mark value if we want to get the smallest region.
  if (this->SelectionMode == VTK_INSIDE_SMALLEST_REGION)
  {
    for (vtkIdType i = 0; i < numCells; i++)
    {
      int markValue = cellMarks->GetValue(i);
      cellMarks->SetValue(i, -markValue);
    }
    vtkIdType numPts = pointMarks->GetNumberOfValues();
    for (vtkIdType i = 0; i < numPts; i++)
    {
      int markValue = pointMarks->GetValue(i);
      pointMarks->SetValue(i, -markValue);
    }
  }

  // Write filter output.
  vtkPointData* inPD = triMesh->GetPointData();
  vtkCellData* inCD = triMesh->GetCellData();
  if (this->GenerateSelectionScalars)
  {
    // Write distance from contour as scalars to the output mesh.
    // This can be used for example for later cliipping the mesh with vtkClipPolyData.
    this->SetSelectionScalarsToOutput(inPD, inCD, mesh, edgePointIds, pointMarks, output);
  }
  else
  {
    // crop the input mesh to the selected region
    this->SetClippedResultToOutput(inPD, inCD, mesh, cellMarks, output);
  }

  return 1;
}

//------------------------------------------------------------------------------
vtkIdType vtkSelectPolyData::ComputeTopologicalDistance(
  vtkPolyData* mesh, vtkIdList* edgePointIds, vtkIntArray* pointMarks, vtkIntArray* cellMarks)
{
  vtkIdType numPts = mesh->GetNumberOfPoints();
  vtkIdType numCells = mesh->GetNumberOfCells();

  // Next, prepare to mark off inside/outside and on boundary of loop.
  // Mark the boundary of the loop using point marks. Also initialize
  // the advancing front (used to mark traversal/compute scalars).
  // Prepare to compute the advancing front

  // Mark all points and cells as unvisited
  cellMarks->SetNumberOfValues(numCells);
  const int unvisited = VTK_INT_MAX;
  for (vtkIdType i = 0; i < numCells; i++)
  {
    cellMarks->SetValue(i, unvisited);
  }
  pointMarks->SetNumberOfValues(numPts);
  for (vtkIdType i = 0; i < numPts; i++)
  {
    pointMarks->SetValue(i, unvisited);
  }

  // Current and next front contain point IDs
  vtkSmartPointer<vtkIdList> currentFront = vtkSmartPointer<vtkIdList>::New();
  vtkSmartPointer<vtkIdList> nextFront = vtkSmartPointer<vtkIdList>::New();
  vtkIdType numMeshLoopPts = edgePointIds->GetNumberOfIds();
  for (vtkIdType i = 0; i < numMeshLoopPts; i++)
  {
    vtkIdType id = edgePointIds->GetId(i);
    pointMarks->SetValue(id, 0); // marks the start of the front
    currentFront->InsertNextId(id);
  }

  // Traverse the front as long as we can. We're basically computing a
  // topological distance.
  int maxFrontValue = 0;
  vtkIdType maxFrontCell = (-1);
  int currentFrontValue = 1;
  vtkIdType numPtsInFront = 0;
  while ((numPtsInFront = currentFront->GetNumberOfIds()))
  {
    // Process all triangles around the current front points
    for (vtkIdType i = 0; i < numPtsInFront; i++)
    {
      vtkIdType id = currentFront->GetId(i);
      vtkIdType* cells;
      vtkIdType ncells;
      mesh->GetPointCells(id, ncells, cells);
      for (vtkIdType j = 0; j < ncells; j++)
      {
        id = cells[j];
        if (cellMarks->GetValue(id) != unvisited)
        {
          // the cell is already visited
          continue;
        }
        // This cell has not been visited yet
        if (currentFrontValue > maxFrontValue)
        {
          // update maximum distance
          maxFrontCell = id;
        }
        cellMarks->SetValue(id, currentFrontValue);
        // Add all unvisited points of this triangle to the front
        const vtkIdType* pts;
        vtkIdType npts;
        mesh->GetCellPoints(id, npts, pts);
        for (vtkIdType k = 0; k < npts; k++)
        {
          if (pointMarks->GetValue(pts[k]) == unvisited)
          {
            pointMarks->SetValue(pts[k], 1);
            nextFront->InsertNextId(pts[k]);
          }
        }
      }
    }

    // All points in the current front has been processed, start a new iteration
    currentFrontValue++;
    // Swap currentFront and nextFront
    vtkSmartPointer<vtkIdList> tmpFront = currentFront;
    currentFront = nextFront;
    nextFront = tmpFront;
    nextFront->Reset();
  }

  return maxFrontCell;
}

//------------------------------------------------------------------------------
vtkIdType vtkSelectPolyData::GetClosestCellId(vtkPolyData* mesh, vtkIntArray* pointMarks)
{
  vtkPoints* inPts = mesh->GetPoints();
  vtkIdType numPts = inPts->GetNumberOfPoints();

  vtkIdType closestCellId = -1;
  double closestDist2 = VTK_DOUBLE_MAX;
  vtkIdType closestPointId = -1;
  for (vtkIdType pointId = 0; pointId < numPts; pointId++)
  {
    double x[3];
    inPts->GetPoint(pointId, x);
    double dist2 = vtkMath::Distance2BetweenPoints(x, this->ClosestPoint);
    // get closest point not on the boundary
    if (dist2 < closestDist2 && pointMarks->GetValue(pointId) != 0)
    {
      closestPointId = pointId;
      closestDist2 = dist2;
    }
  }
  if (closestPointId >= 0)
  {
    vtkIdType ncells;
    vtkIdType* cells;
    mesh->GetPointCells(closestPointId, ncells, cells);
    if (ncells > 0)
    {
      closestCellId = cells[0];
    }
  }
  return closestCellId;
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::FillMarksInRegion(vtkPolyData* mesh, vtkIdList* edgePointIds,
  vtkIntArray* pointMarks, vtkIntArray* cellMarks, vtkIdType cellIdInSelectedRegion)
{
  // We do the fill as a moving front. This is an alternative to recursion. The
  // fill negates one region of the mesh on one side of the loop.
  // In contrast to ComputeTopologicalDistance, current and next front
  // in this method contain cell IDs.
  vtkSmartPointer<vtkIdList> currentFront = vtkSmartPointer<vtkIdList>::New();
  vtkSmartPointer<vtkIdList> nextFront = vtkSmartPointer<vtkIdList>::New();
  currentFront->InsertNextId(cellIdInSelectedRegion);

  // Initialize the front with the received cell ID
  const int fillValue = -1;
  const int boundaryValue = 0;
  cellMarks->SetValue(cellIdInSelectedRegion, fillValue);

  vtkNew<vtkIdList> neighbors;
  neighbors->Allocate(10000);
  vtkIdType numCellsInFront;
  while ((numCellsInFront = currentFront->GetNumberOfIds()) > 0)
  {
    // Iterate through all the triangles and visit all the neighbor triangles
    for (vtkIdType i = 0; i < numCellsInFront; i++)
    {
      vtkIdType id = currentFront->GetId(i);

      const vtkIdType* pts;
      vtkIdType npts;
      mesh->GetCellPoints(id, npts, pts);
      for (vtkIdType j = 0; j < 3; j++)
      {
        vtkIdType cellPointId1 = pts[j];
        vtkIdType cellPointId2 = pts[(j + 1) % 3];
        int cellPointValue1 = pointMarks->GetValue(cellPointId1);
        int cellPointValue2 = pointMarks->GetValue(cellPointId2);

        if (cellPointValue1 != boundaryValue)
        {
          pointMarks->SetValue(cellPointId1, fillValue);
        }

        if (cellPointValue1 == boundaryValue && cellPointValue2 == boundaryValue)
        {
          // This may be a boundary edge or just an edge that connects two boundary points.
          // Do a full search in the boundary edge list to find out.
          if (vtkSelectPolyData::IsBoundaryEdge(cellPointId1, cellPointId2, edgePointIds))
          {
            // cannot cross boundary
            continue;
          }
        }

        // add neighbors of this edge to the advancing front
        mesh->GetCellEdgeNeighbors(id, cellPointId1, cellPointId2, neighbors);
        vtkIdType numNei = neighbors->GetNumberOfIds();
        for (vtkIdType k = 0; k < numNei; k++)
        {
          vtkIdType neiId = neighbors->GetId(k);
          int val = cellMarks->GetValue(neiId);
          if (val == fillValue)
          {
            // already processed
            continue;
          }
          cellMarks->SetValue(neiId, fillValue);
          nextFront->InsertNextId(neiId);
        }

      } // for all edges of cell
    }   // all cells in front

    // Swap currentFront and nextFront
    vtkSmartPointer<vtkIdList> tmpFront = currentFront;
    currentFront = nextFront;
    nextFront = tmpFront;
    nextFront->Reset();
  } // while still advancing
}

//------------------------------------------------------------------------------
bool vtkSelectPolyData::IsBoundaryEdge(
  vtkIdType pointId1, vtkIdType pointId2, vtkIdList* edgePointIds)
{
  vtkIdType numMeshLoopPts = edgePointIds->GetNumberOfIds();
  for (vtkIdType edgePointIndex = 0; edgePointIndex < numMeshLoopPts; ++edgePointIndex)
  {
    vtkIdType edgePointId = edgePointIds->GetId(edgePointIndex);
    if (edgePointId == pointId1)
    {
      vtkIdType wrappedEdgePointIndex = (edgePointIndex + 1) % numMeshLoopPts;
      vtkIdType edgePointIdAfter = edgePointIds->GetId(wrappedEdgePointIndex);
      if (edgePointIdAfter == pointId2)
      {
        // boundary edge
        return true;
      }

      // Conceptually (edgePointIndex - 1) % numMeshLoopPts, but avoiding negatives.
      wrappedEdgePointIndex = (edgePointIndex > 0) ? (edgePointIndex - 1) : (numMeshLoopPts - 1);
      vtkIdType edgePointIdBefore = edgePointIds->GetId(wrappedEdgePointIndex);
      if (edgePointIdBefore == pointId2)
      {
        // boundary edge
        return true;
      }
    }
    if (edgePointId == pointId2)
    {
      vtkIdType wrappedEdgePointIndex = (edgePointIndex + 1) % numMeshLoopPts;
      vtkIdType edgePointIdAfter = edgePointIds->GetId(wrappedEdgePointIndex);
      if (edgePointIdAfter == pointId1)
      {
        // boundary edge
        return true;
      }

      // Conceptually (edgePointIndex - 1) % numMeshLoopPts, but avoiding negatives.
      wrappedEdgePointIndex = (edgePointIndex > 0) ? (edgePointIndex - 1) : (numMeshLoopPts - 1);
      vtkIdType edgePointIdBefore = edgePointIds->GetId(wrappedEdgePointIndex);
      if (edgePointIdBefore == pointId1)
      {
        // boundary edge
        return true;
      }
    }
  }
  // not a boundary edge
  return false;
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::SetSelectionScalarsToOutput(vtkPointData* originalPointData,
  vtkCellData* originalCellData, vtkPolyData* mesh, vtkIdList* edgePointIds,
  vtkIntArray* pointMarks, vtkPolyData* output)
{
  vtkPoints* inPts = mesh->GetPoints();
  vtkIdType numPts = inPts->GetNumberOfPoints();

  vtkNew<vtkFloatArray> selectionScalars;
  selectionScalars->SetName(this->SelectionScalarsArrayName);
  selectionScalars->SetNumberOfTuples(numPts);

  // "Boundary" here refers to a polyline that connects the loop point positions.

  // Compute signed distance to loop for non-boundary points.
  vtkIdType numLoopPts = this->Loop->GetNumberOfPoints();
  for (vtkIdType pointId = 0; pointId < numPts; pointId++)
  {
    if (this->CheckAbort())
    {
      break;
    }

    if (pointMarks->GetValue(pointId) == 0)
    {
      // boundary point, we'll deal with these later
      continue;
    }

    // Not an edge point.
    double x[3];
    inPts->GetPoint(pointId, x);
    double closestDist2 = VTK_DOUBLE_MAX;
    for (vtkIdType i = 0; i < numLoopPts; i++)
    {
      double x0[3];
      double x1[3];
      this->Loop->GetPoint(i, x0);
      this->Loop->GetPoint((i + 1) % numLoopPts, x1);
      double t;
      double xLoop[3];
      double dist2 = vtkLine::DistanceToLine(x, x0, x1, t, xLoop);
      if (dist2 < closestDist2)
      {
        closestDist2 = dist2;
      }
    }
    // Set signed distance
    double closestDist = 0.0;
    if (pointMarks->GetValue(pointId) < 0)
    {
      closestDist = -sqrt(closestDist2);
    }
    else
    {
      closestDist = sqrt(closestDist2);
    }
    selectionScalars->SetComponent(pointId, 0, closestDist);
  }

  // Compute signed distance to loop for boundary points.
  vtkIdType numMeshLoopPts = edgePointIds->GetNumberOfIds();
  vtkNew<vtkIdList> neighbors;
  neighbors->Allocate(10000);
  for (vtkIdType edgePointIndex = 0; edgePointIndex < numMeshLoopPts; edgePointIndex++)
  {
    if (this->CheckAbort())
    {
      break;
    }
    vtkIdType edgePointId = edgePointIds->GetId(edgePointIndex);
    double x[3];
    inPts->GetPoint(edgePointId, x);

    // Find the boundary line segment closest to this point
    double closestPointOnBoundaryPos[3] = { 0.0, 0.0,
      0.0 };                              // closest position of edgePoint on the boundary
    double closestDist2 = VTK_DOUBLE_MAX; // distance from closest boundary
    {
      for (vtkIdType loopPointId = 0; loopPointId < numLoopPts; loopPointId++)
      {
        double x0[3];
        double x1[3];
        this->Loop->GetPoint(loopPointId, x0);
        this->Loop->GetPoint((loopPointId + 1) % numLoopPts, x1);
        double t;
        double xLoop[3]; // closest position on the boundary
        double dist2 = vtkLine::DistanceToLine(x, x0, x1, t, xLoop);
        if (dist2 < closestDist2)
        {
          closestDist2 = dist2;
          closestPointOnBoundaryPos[0] = xLoop[0];
          closestPointOnBoundaryPos[1] = xLoop[1];
          closestPointOnBoundaryPos[2] = xLoop[2];
        }
      }
    }

    // Find neighbor farthest from the boundary (inside/outside information
    // is the most reliable for this neighbor).
    vtkIdType farthestNeighborPointId = 0;
    {
      vtkSelectPolyData::GetPointNeighbors(mesh, edgePointId, neighbors);
      vtkIdType numNei = neighbors->GetNumberOfIds();
      double maxDist = 0.0;
      for (vtkIdType i = 0; i < numNei; i++)
      {
        vtkIdType neiId = neighbors->GetId(i);
        if (pointMarks->GetValue(neiId) != 0) // find the furthest away
        {
          double dist = fabs(selectionScalars->GetComponent(neiId, 0));
          if (dist > maxDist)
          {
            farthestNeighborPointId = neiId;
            maxDist = dist;
          }
        }
      }
    }

    // First compute distance assuming that x is on the same side of the boundary as the farthest
    // neighbor.
    double dist = sqrt(closestDist2);
    if (pointMarks->GetValue(farthestNeighborPointId) < 0)
    {
      dist = -dist;
    }
    // If x and the farthest neighbor are actually different sides of the boundary then invert the
    // signed distance value.
    double farthestNeighborPointPos[3];
    inPts->GetPoint(farthestNeighborPointId, farthestNeighborPointPos);
    if (vtkMath::Distance2BetweenPoints(farthestNeighborPointPos, x) >
      vtkMath::Distance2BetweenPoints(farthestNeighborPointPos, closestPointOnBoundaryPos))
    {
      // x is on the other side of the boundary
      dist = -dist;
    }

    selectionScalars->SetComponent(edgePointId, 0, dist);
  } // for all boundary points

  output->CopyStructure(mesh); // pass geometry/topology unchanged

  vtkPointData* outPD = output->GetPointData();
  outPD->CopyAllOn();
  outPD->PassData(originalPointData);
  int idx = outPD->AddArray(selectionScalars);
  outPD->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS);

  vtkCellData* outCD = output->GetCellData();
  outCD->PassData(originalCellData);
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::SetClippedResultToOutput(vtkPointData* originalPointData,
  vtkCellData* originalCellData, vtkPolyData* mesh, vtkIntArray* cellMarks, vtkPolyData* output)
{
  vtkCellData* outCD = output->GetCellData();
  outCD->CopyAllOn(vtkDataSetAttributes::COPYTUPLE);
  outCD->CopyAllocate(originalCellData);

  // spit out all the negative cells
  vtkNew<vtkCellArray> newPolys;
  vtkIdType numCells = mesh->GetNumberOfCells();
  newPolys->AllocateEstimate(numCells / 2, 3);
  vtkIdType newID = 0;
  for (vtkIdType i = 0; i < numCells; i++)
  {
    if (this->CheckAbort())
    {
      break;
    }
    if ((cellMarks->GetValue(i) < 0) || (cellMarks->GetValue(i) > 0 && this->InsideOut))
    {
      const vtkIdType* pts;
      vtkIdType npts;
      mesh->GetCellPoints(i, npts, pts);
      newID = newPolys->InsertNextCell(npts, pts);
      outCD->CopyData(originalCellData, i, newID);
    }
  }
  vtkPoints* inPts = mesh->GetPoints();
  output->SetPoints(inPts);
  output->SetPolys(newPolys);
  vtkPointData* outPD = output->GetPointData();
  outPD->PassData(originalPointData);

  if (this->GenerateUnselectedOutput)
  {
    vtkCellData* unCD = this->GetUnselectedOutput()->GetCellData();
    unCD->CopyAllOn(vtkDataSetAttributes::COPYTUPLE);
    unCD->CopyAllocate(originalCellData);

    vtkNew<vtkCellArray> unPolys;
    unPolys->AllocateEstimate(numCells / 2, 3);
    for (vtkIdType i = 0; i < numCells; i++)
    {
      if (this->CheckAbort())
      {
        break;
      }
      if ((cellMarks->GetValue(i) >= 0) || this->InsideOut)
      {
        const vtkIdType* pts;
        vtkIdType npts;
        mesh->GetCellPoints(i, npts, pts);
        newID = unPolys->InsertNextCell(npts, pts);
        unCD->CopyData(originalCellData, i, newID);
      }
    }
    this->GetUnselectedOutput()->SetPoints(inPts);
    this->GetUnselectedOutput()->SetPolys(unPolys);
    this->GetUnselectedOutput()->GetPointData()->PassData(originalPointData);
  }
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::GetPointNeighbors(vtkPolyData* mesh, vtkIdType ptId, vtkIdList* nei)
{
  nei->Reset();
  vtkIdType ncells;
  vtkIdType* cells;
  mesh->GetPointCells(ptId, ncells, cells);
  for (vtkIdType i = 0; i < ncells; i++)
  {
    const vtkIdType* pts;
    vtkIdType npts;
    mesh->GetCellPoints(cells[i], npts, pts);
    for (vtkIdType j = 0; j < 3; j++)
    {
      if (pts[j] != ptId)
      {
        nei->InsertUniqueId(pts[j]);
      }
    }
  }
}

//------------------------------------------------------------------------------
vtkMTimeType vtkSelectPolyData::GetMTime()
{
  vtkMTimeType mTime = this->Superclass::GetMTime();
  vtkMTimeType time;

  if (this->Loop != nullptr)
  {
    time = this->Loop->GetMTime();
    mTime = (time > mTime ? time : mTime);
  }

  return mTime;
}

//------------------------------------------------------------------------------
void vtkSelectPolyData::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent
     << "Generate Unselected Output: " << (this->GenerateUnselectedOutput ? "On\n" : "Off\n");

  os << indent << "Inside Mode: ";
  os << this->GetSelectionModeAsString() << "\n";

  os << indent << "Closest Point: (" << this->ClosestPoint[0] << ", " << this->ClosestPoint[1]
     << ", " << this->ClosestPoint[2] << ")\n";

  os << indent
     << "Generate Selection Scalars: " << (this->GenerateSelectionScalars ? "On\n" : "Off\n");

  if (this->GenerateSelectionScalars)
  {
    os << indent << "Selection Scalars array name: " << this->SelectionScalarsArrayName << "\n";
  }

  os << indent << "Inside Out: " << (this->InsideOut ? "On\n" : "Off\n");

  os << indent << "Edge Search Mode: ";
  os << this->GetEdgeSearchModeAsString() << "\n";

  if (this->Loop)
  {
    os << indent << "Loop of " << this->Loop->GetNumberOfPoints() << "points defined\n";
  }
  else
  {
    os << indent << "Loop not defined\n";
  }
}
VTK_ABI_NAMESPACE_END