File: vtkHyperTreeGridGhostCellsGeneratorInternals.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (742 lines) | stat: -rw-r--r-- 28,669 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause

#include "vtkHyperTreeGridGhostCellsGeneratorInternals.h"

#include "vtkArrayDispatch.h"
#include "vtkCellData.h"
#include "vtkCommunicator.h"
#include "vtkCompositeArray.h"
#include "vtkDataArray.h"
#include "vtkHyperTreeGrid.h"
#include "vtkMath.h"
#include "vtkMultiProcessController.h"
#include "vtkSetGet.h"
#include "vtkSmartPointer.h"
#include "vtkUnsignedCharArray.h"

#include <cassert>
#include <vector>

VTK_ABI_NAMESPACE_BEGIN
namespace
{

using CellDataArray = vtkHyperTreeGridGhostCellsGeneratorInternals::CellDataArray;
using CellDataAttributes = vtkHyperTreeGridGhostCellsGeneratorInternals::CellDataAttributes;

/**
 * build the output celldata with composite array for each input cell data
 */
struct AddIndexedArrayWorker
{
  template <typename ArrayType>
  void operator()(ArrayType* inputArray, CellDataArray& cdHandler, vtkCellData* outputCD) const
  {
    using ValueType = vtk::GetAPIType<ArrayType>;
    std::vector<vtkDataArray*> arrayList = { cdHandler.InternalArray, cdHandler.GhostCDBuffer };

    vtkSmartPointer<vtkCompositeArray<ValueType>> compositeArr =
      vtk::ConcatenateDataArrays<ValueType>(arrayList);
    compositeArr->SetName(inputArray->GetName());
    cdHandler.GhostCDBuffer->UnRegister(inputArray); // transfer ownership to composite

    // Replace existing array
    outputCD->AddArray(compositeArr);
  }
};

/**
 * Probe for the given tag.
 * Return the an iterator to the item in the map corresponding to the rank sending the probed tag.
 */
template <typename MapType>
typename MapType::iterator ProbeFind(
  vtkMultiProcessController* controller, int tag, MapType& recvMap)
{
  int processBuff = -1;
  auto targetRecv = recvMap.end();
  if (controller->Probe(vtkMultiProcessController::ANY_SOURCE, tag, &processBuff) != 1)
  {
    vtkErrorWithObjectMacro(nullptr, "Probe failed on reception of tag " << tag);
    return targetRecv;
  }
  if (processBuff < 0)
  {
    vtkErrorWithObjectMacro(
      nullptr, "Probe returned erroneous process ID " << processBuff << "reception of tag " << tag);
    return targetRecv;
  }
  targetRecv = recvMap.find(processBuff);
  if (targetRecv == recvMap.end())
  {
    vtkErrorWithObjectMacro(nullptr,
      "Receiving unexpected communication from " << processBuff << " process on tag " << tag
                                                 << ".");
    return targetRecv;
  }
  return targetRecv;
}

/**
 * Subroutine to compute the number of values attached to a single cell in the output HTG.
 */
int GetNumberOfCellValues(vtkCellData* cellData)
{
  int totalCellSize = 0;
  int nbArray = cellData->GetNumberOfArrays();
  for (int arrayId = 0; arrayId < nbArray; arrayId++)
  {
    vtkDataArray* outArray = cellData->GetArray(arrayId);
    totalCellSize += outArray->GetNumberOfComponents();
  }
  return totalCellSize;
}

/**
 * Creates a ghost tree in the output. It is built in mirror with
 * vtkHyperTreeGridGhostCellsGenerator::ExtractInterface.
 *
 * @param outCursor Cursor on the output tree that will create the hyper tree.
 * @param isParent Input vtkBitArray produced by a neighbor process to tell if the current node is
 * a leaf or not.
 * @param isMasked Optional input vtkBitArray produced by a neighbor process to tell if the current
 * node is a masked or not.
 * @param indices Output array mapping the created nodes to their position in the output data
 * arrays.
 * @param pos Parameter which should be left untouched, it is used to keep track of the number of
 * inserted data.
 */
vtkIdType CreateGhostTree(vtkHyperTreeGridNonOrientedCursor* outCursor, vtkBitArray* isParent,
  vtkBitArray* isMasked, vtkBitArray* outputMask, vtkIdType* indices, vtkIdType&& pos = 0)
{
  indices[pos] = outCursor->GetGlobalNodeIndex();

  if (outputMask)
  {
    outputMask->InsertValue(indices[pos], isMasked->GetValue(pos));
    if (isMasked->GetValue(pos))
    {
      pos++;
      return pos;
    }
  }
  if (isParent->GetValue(pos++))
  {
    outCursor->SubdivideLeaf();
    for (int ichild = 0; ichild < outCursor->GetNumberOfChildren(); ++ichild)
    {
      outCursor->ToChild(ichild);
      ::CreateGhostTree(
        outCursor, isParent, isMasked, outputMask, indices, std::forward<vtkIdType&&>(pos));
      outCursor->ToParent();
    }
  }
  return pos;
}

/**
 * Reads the input interface with neighbor processes.
 * This method is built in mirror with vtkHyperTreeGridGhostCellsGenerator::CreateGhostTree
 *
 * @param inCursor Cursor on the current tree to read from the input
 * @param isParent A bit array being produced by this filter,
 * telling if the corresponding node is parent or not. A node is
 * a parent if it is not a leaf. The map of the tracking is stored in indices.
 * For example, if the data array of the input is called inArray,
 * isParent->GetValue(m) equals one if inArray->GetTuple1(indices[m]) is not a leaf.
 * @param isMasked A bit array filed by this filter. isMasked->GetValue(m) is set to 1 if the
 * corresponding cell is masked, and 0 otherwise.
 * @param indices An array produced by this filter mapping the nodes of the interface with their
 * location in the input data array.
 * @param grid Input vtkHyperTreeGrid used to have the neighborhood profile. This neighborhood
 * profile is tested with the mask parameter to know whether to descend or not in the current
 * hyper tree.
 * @param mask Input parameter which should be shaped as vtkHyperTreeGrid::GetChildMask() of the
 * input. This parameter is used to only descend on the interface with the other processes.
 * @param pos This parameter will be equal to the number of nodes in the hyper tree to send to the
 * other processes.
 */
void ExtractInterface(vtkHyperTreeGridNonOrientedCursor* inCursor, vtkBitArray* isParent,
  vtkBitArray* isMasked, std::vector<vtkIdType>& indices, vtkHyperTreeGrid* grid, unsigned int mask,
  vtkIdType& pos)
{
  isParent->InsertTuple1(pos, !inCursor->IsLeaf());
  isMasked->InsertTuple1(pos, inCursor->IsMasked());
  indices[pos++] = inCursor->GetGlobalNodeIndex();

  if (!inCursor->IsLeaf() && !inCursor->IsMasked())
  {
    for (int ichild = 0; ichild < inCursor->GetNumberOfChildren(); ++ichild)
    {
      inCursor->ToChild(ichild);
      unsigned int newMask = mask & grid->GetChildMask(ichild);
      if (newMask)
      {
        ::ExtractInterface(inCursor, isParent, isMasked, indices, grid, newMask, pos);
      }
      else
      {
        isParent->InsertTuple1(pos, 0);
        isMasked->InsertTuple1(pos, inCursor->IsMasked());
        indices[pos++] = inCursor->GetGlobalNodeIndex();
      }
      inCursor->ToParent();
    }
  }
}

const int HTGGCG_SIZE_EXCHANGE_TAG = 5098;
const int HTGGCG_DATA_EXCHANGE_TAG = 5099;
const int HTGGCG_DATA2_EXCHANGE_TAG = 5100;
}

//------------------------------------------------------------------------------
vtkHyperTreeGridGhostCellsGeneratorInternals::vtkHyperTreeGridGhostCellsGeneratorInternals(
  vtkHyperTreeGridGhostCellsGenerator* self, vtkMultiProcessController* controller,
  vtkHyperTreeGrid* inputHTG, vtkHyperTreeGrid* outputHTG)
  : Self(self)
  , Controller(controller)
  , InputHTG(inputHTG)
  , OutputHTG(outputHTG)
{
  unsigned int cellDims[3];
  this->InputHTG->GetCellDims(cellDims);
  this->HyperTreesMapToProcesses.resize(cellDims[0] * cellDims[1] * cellDims[2]);
  this->NumberOfVertices = inputHTG->GetNumberOfElements(vtkHyperTreeGrid::CELL);
  this->InitialNumberOfVertices = this->NumberOfVertices;

  if (inputHTG->HasMask())
  {
    this->OutputMask.TakeReference(vtkBitArray::New());
    this->OutputMask->DeepCopy(inputHTG->GetMask());
  }
  outputHTG->ShallowCopy(inputHTG);
  outputHTG->SetMask(nullptr); // externally handled
}

//------------------------------------------------------------------------------
void vtkHyperTreeGridGhostCellsGeneratorInternals::InitializeCellData()
{
  int nbArrays = this->InputHTG->GetCellData()->GetNumberOfArrays();
  auto nbCells = this->InputHTG->GetNumberOfCells();
  // estimate boundary size from # cells:
  // in 2D: root square of nb cells
  // in 3D: pow (2/3)
  vtkIdType alloc =
    std::pow(nbCells, (this->InputHTG->GetDimension() - 1.0) / this->InputHTG->GetDimension());

  for (int iA = 0; iA < nbArrays; iA++)
  {
    auto da = vtkDataArray::SafeDownCast(this->InputHTG->GetCellData()->GetAbstractArray(iA));
    if (!da || !da->GetName()) // Name are required here
    {
      continue;
    }
    if (this->ImplicitCD.count(da->GetName()) == 0)
    {
      CellDataArray cdHandler;
      cdHandler.InternalArray = da;
      cdHandler.GhostCDBuffer = da->NewInstance();
      cdHandler.GhostCDBuffer->SetNumberOfComponents(da->GetNumberOfComponents());
      cdHandler.GhostCDBuffer->SetNumberOfTuples(0);
      cdHandler.GhostCDBuffer->Allocate(alloc);
      this->ImplicitCD.emplace(da->GetName(), cdHandler);
    }
  }

  // Also set the structure to the output cell data for later use
  this->OutputHTG->GetCellData()->CopyStructure(this->InputHTG->GetCellData());
}

//------------------------------------------------------------------------------
void vtkHyperTreeGridGhostCellsGeneratorInternals::BroadcastTreeLocations()
{
  unsigned cellDims[3];
  this->InputHTG->GetCellDims(cellDims);
  vtkIdType nbHTs = cellDims[0] * cellDims[1] * cellDims[2];

  int processId = this->Controller->GetLocalProcessId();

  std::vector<int> broadcastHyperTreesMapToProcesses(nbHTs, -1);

  vtkNew<vtkHyperTreeGridNonOrientedCursor> inCursor;
  vtkHyperTreeGrid::vtkHyperTreeGridIterator inputIterator;
  vtkIdType inTreeIndex = 0;
  this->InputHTG->InitializeTreeIterator(inputIterator);
  while (inputIterator.GetNextTree(inTreeIndex))
  {
    this->InputHTG->InitializeNonOrientedCursor(inCursor, inTreeIndex);
    if (inCursor->HasTree())
    {
      broadcastHyperTreesMapToProcesses[inTreeIndex] = processId;
    }
  }
  this->Controller->AllReduce(broadcastHyperTreesMapToProcesses.data(),
    this->HyperTreesMapToProcesses.data(), nbHTs, vtkCommunicator::MAX_OP);

  assert(this->InputHTG->GetDimension() > 1);
}

//------------------------------------------------------------------------------
void vtkHyperTreeGridGhostCellsGeneratorInternals::DetermineNeighbors()
{
  unsigned cellDims[3];
  this->InputHTG->GetCellDims(cellDims);
  vtkNew<vtkHyperTreeGridOrientedCursor> inOrientedCursor;
  vtkHyperTreeGrid::vtkHyperTreeGridIterator inputIterator;
  vtkIdType inTreeIndex = 0;
  unsigned int i, j, k = 0;
  int thisProcessId = this->Controller->GetLocalProcessId();
  this->InputHTG->InitializeTreeIterator(inputIterator);
  switch (this->InputHTG->GetDimension())
  {
    case 2:
    {
      while (inputIterator.GetNextTree(inTreeIndex))
      {
        this->InputHTG->InitializeOrientedCursor(inOrientedCursor, inTreeIndex);
        this->InputHTG->GetLevelZeroCoordinatesFromIndex(inTreeIndex, i, j, k);
        // Avoiding over / under flowing the grid
        for (int rj = ((j > 0) ? -1 : 0); rj < (((j + 1) < cellDims[1]) ? 2 : 1); ++rj)
        {
          for (int ri = ((i > 0) ? -1 : 0); ri < (((i + 1) < cellDims[0]) ? 2 : 1); ++ri)
          {
            vtkIdType neighTreeId = -1;
            this->InputHTG->GetIndexFromLevelZeroCoordinates(neighTreeId, i + ri, j + rj, 0);
            int neighProcessId = this->HyperTreesMapToProcesses[neighTreeId];
            if (neighProcessId >= 0 && neighProcessId != thisProcessId)
            {
              // Build a neighborhood mask to extract the interface in
              // ExtractInterface later on.
              // Same encoding as vtkHyperTreeGrid::GetChildMask
              this->SendBuffer[neighProcessId][inTreeIndex].mask |= 1
                << (8 * sizeof(int) - 1 - (ri + 1 + (rj + 1) * 3));
              // Not receiving anything from this guy since we will send him stuff
              this->RecvBuffer[neighProcessId][neighTreeId].count = 0;
              // Process not treated yet, yielding the flag
              this->Flags[neighProcessId] = NOT_TREATED;
            }
          }
        }
      }
      break;
    }
    case 3:
    {
      while (inputIterator.GetNextTree(inTreeIndex))
      {
        this->InputHTG->InitializeOrientedCursor(inOrientedCursor, inTreeIndex);
        this->InputHTG->GetLevelZeroCoordinatesFromIndex(inTreeIndex, i, j, k);
        // Avoiding over / under flowing the grid
        for (int rk = ((k > 0) ? -1 : 0); rk < (((k + 1) < cellDims[2]) ? 2 : 1); ++rk)
        {
          for (int rj = ((j > 0) ? -1 : 0); rj < (((j + 1) < cellDims[1]) ? 2 : 1); ++rj)
          {
            for (int ri = ((i > 0) ? -1 : 0); ri < (((i + 1) < cellDims[0]) ? 2 : 1); ++ri)
            {
              vtkIdType neighbor = -1;
              this->InputHTG->GetIndexFromLevelZeroCoordinates(neighbor, i + ri, j + rj, k + rk);
              int id = this->HyperTreesMapToProcesses[neighbor];
              if (id >= 0 && id != thisProcessId)
              {
                // Build a neighborhood mask to extract the interface in
                // ExtractInterface later on.
                // Same encoding as vtkHyperTreeGrid::GetChildMask
                this->SendBuffer[id][inTreeIndex].mask |= 1
                  << (8 * sizeof(int) - 1 - (ri + 1 + (rj + 1) * 3 + (rk + 1) * 9));
                // Not receiving anything from this guy since we will send him stuff
                this->RecvBuffer[id][neighbor].count = 0;
                // Process not treated yet, yielding the flag
                this->Flags[id] = NOT_TREATED;
              }
            }
          }
        }
      }
      break;
    }
  }
}

//------------------------------------------------------------------------------
int vtkHyperTreeGridGhostCellsGeneratorInternals::ExchangeSizes()
{
  int numberOfProcesses = this->Controller->GetNumberOfProcesses();
  int processId = this->Controller->GetLocalProcessId();
  for (int id = 0; id < numberOfProcesses; ++id)
  {
    if (id != processId)
    {
      auto sendIt = this->SendBuffer.find(id);
      if (sendIt != this->SendBuffer.end())
      {
        SendTreeBufferMap& sendTreeMap = sendIt->second;
        std::vector<vtkIdType> counts(sendTreeMap.size());
        int cpt = 0;
        {
          vtkNew<vtkHyperTreeGridNonOrientedCursor> inCursor;

          for (auto&& sendTreeBufferPair : sendTreeMap)
          {
            vtkIdType treeId = sendTreeBufferPair.first;
            auto&& sendTreeBuffer = sendTreeBufferPair.second;
            this->InputHTG->InitializeNonOrientedCursor(inCursor, treeId);
            // Extracting the tree interface with its neighbors
            sendTreeBuffer.count = 0;
            vtkHyperTree* tree = inCursor->GetTree();
            if (tree)
            {
              // We store the isParent profile along the interface to know when to subdivide later
              // indices store the indices in the input of the nodes on the interface
              vtkIdType nbVertices = tree->GetNumberOfVertices();
              sendTreeBuffer.indices.resize(nbVertices);
              ::ExtractInterface(inCursor, sendTreeBuffer.isParent, sendTreeBuffer.isMasked,
                sendTreeBuffer.indices, this->InputHTG, sendTreeBuffer.mask, sendTreeBuffer.count);
            }
            counts[cpt++] = sendTreeBuffer.count;
          }
        }
        vtkDebugWithObjectMacro(this->Self, "Send: data size to " << id);
        this->Controller->Send(counts.data(), cpt, id, HTGGCG_SIZE_EXCHANGE_TAG);
      }
    }
    else
    {
      // Receiving size info from my neighbors
      std::size_t iRecv = 0;
      for (auto itRecvBuffer = this->RecvBuffer.begin(); itRecvBuffer != this->RecvBuffer.end();
           ++itRecvBuffer)
      {
        auto targetRecvBuffer = itRecvBuffer;
        if (this->Controller->CanProbe())
        {
          targetRecvBuffer =
            ::ProbeFind(this->Controller, HTGGCG_SIZE_EXCHANGE_TAG, this->RecvBuffer);
          if (targetRecvBuffer == this->RecvBuffer.end())
          {
            vtkErrorWithObjectMacro(this->Self,
              "Reception probe on process " << processId << " failed on " << iRecv
                                            << "th iteration.");
            return 0;
          }
        }
        int process = targetRecvBuffer->first;
        auto&& recvTreeMap = targetRecvBuffer->second;
        std::vector<vtkIdType> counts(recvTreeMap.size());
        vtkDebugWithObjectMacro(this->Self, "Receive: data size from " << process);
        this->Controller->Receive(counts.data(), static_cast<vtkIdType>(recvTreeMap.size()),
          process, HTGGCG_SIZE_EXCHANGE_TAG);
        int cpt = 0;
        for (auto&& RecvBufferPair : recvTreeMap)
        {
          RecvBufferPair.second.count = counts[cpt++];
        }
        iRecv++;
      }
    }
  }
  return 1;
}

//------------------------------------------------------------------------------
int vtkHyperTreeGridGhostCellsGeneratorInternals::ExchangeTreeDecomposition()
{
  constexpr vtkIdType BITS_IN_UCHAR = 8;
  int numberOfProcesses = this->Controller->GetNumberOfProcesses();
  int processId = this->Controller->GetLocalProcessId();

  // Data size is doubled when we need to transfer isMasked bit array.
  // We store isParent and isMasked bit arrays in the sent buffer contiguously.
  vtkIdType maskFactor = this->InputHTG->HasMask() ? 2 : 1;
  vtkDebugWithObjectMacro(this->Self, "Mask factor: " << maskFactor);

  for (int id = 0; id < numberOfProcesses; ++id)
  {
    if (id != processId)
    {
      auto sendIt = this->SendBuffer.find(id);
      if (sendIt != this->SendBuffer.end())
      {
        SendTreeBufferMap& sendTreeMap = sendIt->second;
        std::vector<unsigned char> buf;
        // Accumulated length
        vtkIdType totalLen = 0;
        for (auto&& sendTreeBufferPair : sendTreeMap)
        {
          auto&& sendTreeBuffer = sendTreeBufferPair.second;
          if (sendTreeBuffer.count)
          {
            // We send the bits packed in unsigned char
            vtkIdType currentLen = sendTreeBuffer.count / BITS_IN_UCHAR + 1;

            buf.resize(totalLen + maskFactor * currentLen);
            memcpy(buf.data() + totalLen, sendTreeBuffer.isParent->GetPointer(0), currentLen);
            if (this->InputHTG->HasMask())
            {
              memcpy(buf.data() + totalLen + currentLen, sendTreeBuffer.isMasked->GetPointer(0),
                currentLen);
            }

            totalLen += currentLen * maskFactor;
          }
        }
        vtkDebugWithObjectMacro(this->Self, "Send mask data from " << processId << " to " << id);
        this->Controller->Send(buf.data(), totalLen, id, HTGGCG_DATA_EXCHANGE_TAG);
      }
    }
    else
    {
      // Receiving masks
      std::size_t iRecv = 0;
      for (auto itRecvBuffer = this->RecvBuffer.begin(); itRecvBuffer != this->RecvBuffer.end();
           ++itRecvBuffer)
      {
        auto targetRecvBuffer = itRecvBuffer;
        if (this->Controller->CanProbe())
        {
          targetRecvBuffer =
            ::ProbeFind(this->Controller, HTGGCG_DATA_EXCHANGE_TAG, this->RecvBuffer);
          if (targetRecvBuffer == this->RecvBuffer.end())
          {
            vtkErrorWithObjectMacro(this->Self,
              "Reception probe on process " << processId << " failed on " << iRecv
                                            << "th iteration.");
            return 0;
          }
        }
        int process = targetRecvBuffer->first;
        auto&& recvTreeMap = targetRecvBuffer->second;

        // If we have not dealt with process yet,
        // we prepare for receiving with appropriate length
        if (this->Flags[process] == NOT_TREATED)
        {
          vtkIdType bufferLength = 0;
          for (auto&& recvTreeBufferPair : recvTreeMap)
          {
            auto&& recvTreeBuffer = recvTreeBufferPair.second;
            if (recvTreeBuffer.count != 0)
            {
              // bit message is packed in unsigned char, getting the correct length of the message
              bufferLength += recvTreeBuffer.count / BITS_IN_UCHAR + 1;
            }
          }
          bufferLength *= maskFactor; // isParent + potentially isMasked data
          std::vector<unsigned char> buf(bufferLength);

          vtkDebugWithObjectMacro(this->Self, "Receive mask data from " << process);
          this->Controller->Receive(buf.data(), bufferLength, process, HTGGCG_DATA_EXCHANGE_TAG);

          // Distributing receive data among my trees, i.e. creating my ghost trees with this data
          // Remember: we only have the nodes / leaves at the inverface with our neighbor
          vtkIdType offset = 0;
          vtkNew<vtkHyperTreeGridNonOrientedCursor> outCursor;
          for (auto&& recvTreeBufferPair : recvTreeMap)
          {
            vtkIdType treeId = recvTreeBufferPair.first;
            auto&& recvTreeBuffer = recvTreeBufferPair.second;
            if (recvTreeBuffer.count != 0)
            {
              this->OutputHTG->InitializeNonOrientedCursor(outCursor, treeId, true);

              // Stealing ownership of buf in isParent/isMasked to have vtkBitArray interface
              vtkNew<vtkBitArray> isParent;
              isParent->SetArray(buf.data() + offset, recvTreeBuffer.count, 1);
              vtkSmartPointer<vtkBitArray> isMasked = nullptr;
              if (this->InputHTG->HasMask())
              {
                isMasked = vtkSmartPointer<vtkBitArray>::New();
                isMasked->SetArray(buf.data() + offset + recvTreeBuffer.count / BITS_IN_UCHAR + 1,
                  recvTreeBuffer.count, 1);
              }

              recvTreeBuffer.offset = this->NumberOfVertices;
              recvTreeBuffer.indices.resize(recvTreeBuffer.count);

              outCursor->SetGlobalIndexStart(this->NumberOfVertices);

              this->NumberOfVertices += ::CreateGhostTree(
                outCursor, isParent, isMasked, this->OutputMask, recvTreeBuffer.indices.data());

              offset += (recvTreeBuffer.count / BITS_IN_UCHAR + 1) * maskFactor;
            }
          }
          this->Flags[process] = INITIALIZE_TREE;
        }
        iRecv++;
      }
    }
  }
  return 1;
}

//------------------------------------------------------------------------------
int vtkHyperTreeGridGhostCellsGeneratorInternals::ExchangeCellData()
{
  int numberOfProcesses = this->Controller->GetNumberOfProcesses();
  int processId = this->Controller->GetLocalProcessId();

  for (int id = 0; id < numberOfProcesses; ++id)
  {
    if (id != processId)
    {
      vtkDebugWithObjectMacro(this->Self, "Begin sending cell data to process " << id);
      auto sendIt = this->SendBuffer.find(id);
      if (sendIt != this->SendBuffer.end())
      {
        SendTreeBufferMap& sendTreeMap = sendIt->second;
        std::vector<double> buf;

        vtkIdType totalLength = 0;
        vtkIdType writeOffset = 0;

        for (auto&& sendTreeBufferPair : sendTreeMap)
        {
          auto&& sendTreeBuffer = sendTreeBufferPair.second;
          if (sendTreeBuffer.count)
          {
            vtkDebugWithObjectMacro(this->Self,
              "Processing buffer with " << sendTreeBuffer.count << " elements for process " << id);
            vtkCellData* cellData = this->InputHTG->GetCellData();
            totalLength += sendTreeBuffer.count * ::GetNumberOfCellValues(cellData);
            buf.resize(totalLength);

            // Fill send buffer with array data
            for (int arrayId = 0; arrayId < cellData->GetNumberOfArrays(); ++arrayId)
            {
              vtkDataArray* inArray = cellData->GetArray(arrayId);
              for (vtkIdType tupleId = 0; tupleId < sendTreeBuffer.count; ++tupleId)
              {

                for (int compId = 0; compId < inArray->GetNumberOfComponents(); compId++)
                {
                  buf[writeOffset++] =
                    inArray->GetComponent(sendTreeBuffer.indices[tupleId], compId);
                }
              }
            }
          }
        }
        this->Controller->Send(buf.data(), totalLength, id, HTGGCG_DATA2_EXCHANGE_TAG);
        vtkDebugWithObjectMacro(this->Self, "Done sending cell data to " << id);
      }
    }
    else
    {
      vtkDebugWithObjectMacro(this->Self, "Receiving cell data from the other processes");

      std::size_t iRecv = 0;
      for (auto itRecvBuffer = this->RecvBuffer.begin(); itRecvBuffer != this->RecvBuffer.end();
           ++itRecvBuffer)
      {
        auto targetRecvBuffer = itRecvBuffer;
        if (this->Controller->CanProbe())
        {
          targetRecvBuffer =
            ::ProbeFind(this->Controller, HTGGCG_DATA2_EXCHANGE_TAG, this->RecvBuffer);
          if (targetRecvBuffer == this->RecvBuffer.end())
          {
            vtkErrorWithObjectMacro(this->Self,
              "Reception probe on process " << processId << " failed on " << iRecv
                                            << "th iteration.");
            return 0;
          }
        }
        int process = targetRecvBuffer->first;
        vtkDebugWithObjectMacro(this->Self, "Begin receiving data from process " << process);
        auto&& recvTreeMap = targetRecvBuffer->second;
        if (this->Flags[process] == INITIALIZE_TREE)
        {
          vtkCellData* cellData = this->OutputHTG->GetCellData();

          // Compute total length to be received
          unsigned long totalLength = 0;
          for (auto&& recvTreeBufferPair : recvTreeMap)
          {
            totalLength += recvTreeBufferPair.second.count * ::GetNumberOfCellValues(cellData);
          }
          std::vector<double> buf(totalLength);

          Controller->Receive(buf.data(), totalLength, process, HTGGCG_DATA2_EXCHANGE_TAG);

          // Fill ImplicitCD using data received
          vtkIdType readOffset = 0;
          for (auto&& recvTreeBufferPair : recvTreeMap)
          {
            auto&& recvTreeBuffer = recvTreeBufferPair.second;
            for (int arrayId = 0; arrayId < cellData->GetNumberOfArrays(); ++arrayId)
            {
              std::string arrName = cellData->GetArrayName(arrayId);
              vtkDataArray* outArray = this->ImplicitCD.at(arrName).GhostCDBuffer;
              assert(outArray);
              vtkIdType offset = this->ImplicitCD.at(arrName).InternalArray->GetNumberOfTuples();
              for (vtkIdType tupleId = 0; tupleId < recvTreeBuffer.count; ++tupleId)
              {
                for (int compIdx = 0; compIdx < outArray->GetNumberOfComponents(); compIdx++)
                {
                  vtkIdType implicitComponent = recvTreeBuffer.indices[tupleId] - offset;
                  assert(implicitComponent >= 0);
                  outArray->InsertComponent(implicitComponent, compIdx, buf[readOffset++]);
                }
              }
            }
          }
          this->Flags[process] = INITIALIZE_FIELD;
        }
        iRecv++;
        vtkDebugWithObjectMacro(this->Self, "Done receiving data from process " << process);
      }
    }
  }

  return 1;
}

//------------------------------------------------------------------------------
void vtkHyperTreeGridGhostCellsGeneratorInternals::FinalizeCellData()
{
  using SupportedTypes = vtkTypeList::Append<vtkArrayDispatch::AllTypes, std::string>::Result;
  using Dispatcher = vtkArrayDispatch::DispatchByValueType<SupportedTypes>;

  AddIndexedArrayWorker worker;
  vtkCellData* outputCD = this->OutputHTG->GetCellData();

  int nbArrays = outputCD->GetNumberOfArrays();
  for (int iA = 0; iA < nbArrays; iA++)
  {
    auto da = vtkDataArray::SafeDownCast(outputCD->GetAbstractArray(iA));
    if (!da)
    {
      continue;
    }

    if (!Dispatcher::Execute(da, worker, this->ImplicitCD[da->GetName()], outputCD))
    {
      worker(da, this->ImplicitCD[da->GetName()], outputCD); // fallback
    }
  }

  // Adding the ghost array
  vtkDebugWithObjectMacro(this->Self,
    "Adding ghost array: ghost from id " << this->InitialNumberOfVertices << " to "
                                         << this->NumberOfVertices);

  vtkNew<vtkUnsignedCharArray> scalars;
  scalars->SetNumberOfComponents(1);
  scalars->SetName(vtkDataSetAttributes::GhostArrayName());
  scalars->SetNumberOfTuples(this->NumberOfVertices);

  for (vtkIdType ii = 0; ii < this->InitialNumberOfVertices; ++ii)
  {
    scalars->InsertValue(ii, 0);
  }
  for (vtkIdType ii = this->InitialNumberOfVertices; ii < this->NumberOfVertices; ++ii)
  {
    scalars->InsertValue(ii, 1);
  }
  this->OutputHTG->GetCellData()->AddArray(scalars);
  this->OutputHTG->SetMask(this->OutputMask);
}

VTK_ABI_NAMESPACE_END