Configuring Vulkan Layers

A consistent approach to configure layers

(Vu liKan.

Layers

Christophe Riccio, LunarG
December 2026

https://www.lunarg.com/

Configuring Vulkan Layers approaches
Three approaches
Generate layer settings files
Backward Compatibility Guideline
Deprecation Notice
Configuring Layers using the Vulkan API
Enabling and ordering the layer using vkCreatelnstance()
Configuring the layer settings using VK_EXT _layer_settings

N NN OO~

Configuring Layers using Vulkan system files 10
The Vulkan Configurator interface 11
Vulkan Configurator usages 11
Vulkan Configurator tabs description 12
Enabling and ordering layers (vk_loader_settings.json) 14
The override layer file on Linux and macOS 14
The override layer file on Windows 14
Configuring the layers (vk_layer_settings.txt) 14
Layer Settings File location on Linux and macOS 15
Layer Settings File location on Windows 15
Configuring Layers using Environment Variables 16
Finding Vulkan Layers 16
Activating Specific SDK Layers 16
Usages on each desktop platform 17
Enabling and ordering Vulkan Layers 17
Vulkan 1.3.234 Loader and Newer (VK_LOADER_LAYERS_ENABLE) 17
Usages on each desktop platform 18
Older Vulkan Loaders (VK_INSTANCE_LAYERS) 19
Layer Settings Environment Variables 19
Examples 20
Generating Vulkan layers settings files 21
Generating the layer settings documentation 21
Context menu to generate the Validation layers configuration files 22
Generating layer settings code for each layer settings approach 22
Using VK_EXT_layer_settings to configure layers programmatically 22
Generated C++ helper library example subset 23
Generated C++ helper library usage example 24
Using environment variables to configure layers 24
Generated Environment Variables script example subset 24
December 2026 Configuring Vulkan Layers

Using command line to generate the layer settings files 25
Vulkan Configurator command line to generate layer settings files 27

Vulkan SDK generated layer settings files 27
vk_layer_settings.txt 27
vk_layer_settings.sh 27
vk_layer_settings.bat 27
vulkan_layer_settings.hpp 28

Revision History 29

December 2026

Configuring Vulkan Layers

Configuring Vulkan Layers approaches

Vulkan supports intercepting or hooking API entry points via a layer framework. A layer
can intercept all or any subset of Vulkan API entry points. Multiple layers can be
chained together to cascade their functionality in the appearance of a single, larger
layer.

Vulkan layers allow application developers to add functionality to Vulkan applications
without modifying the application itself, e.g., validating API usages, dumping API entry
points or generating screenshots of specified frames.

Vulkan Application Vulkan
Configurator

Vulkan Driver

Vulkan Physical
Device
e Vulkan Loader e Vulkan Driver
% Vulkan Driver Vulkan Physical
Vulkan Application %

Vulkan Validation Vulkan Profiles Vulkan Profiles File
Layer —| Layer <

Example of system configured with enabled and ordered layers on the Vulkan developer system

—

Vulkan Application

Three approaches

A layers configuration consists in two operations:

e Selecting and ordering layers.
e Configuring each layer themselves using layer settings.

Vulkan layers can be configured using Vulkan layer settings through three different
methods to match specific Vulkan developers' workflows:

December 2026 Configuring Vulkan Layers

e Using Environment variables: Loader environment variables and per-layer
settings environment variables.
e Using dedicated Vulkan system files: vk_loader_settings.json and

vk layer settings.txt.
e Using the Vulkan API, programmably in the Vulkan application: vkCreateInstance
and VK EXT layer settings extension.

Since a setting can be set via multiple methods simultaneously here is the priority order:

1. Environment variables.
2. Using dedicated Vulkan system files.
3. Using the Vulkan API, programmably in the Vulkan application.

These three methods are implemented by the Vulkan Layer Settings library part of the
Vulkan-Utility-Libraries repository. Any layer project that uses this library will provide
these three methods to control layer settings, bringing consistency and ease of use of
layers to the Vulkan community.

The Vulkan Layer Settings library is currently used by the Vulkan Validation layer, the
Vulkan Profiles layer, the Vulkan Extension layers and the LunarG Utility layers.

All the settings are described in the JSON layer manifest file that ships with the layer
binary. When the settings are implemented in a layer using the Vulkan Layer Settings
library, all the settings can be configured with all three methods.

Generate layer settings files

Using Vulkan Configurator to generate layer settings files

Backward Compatibility Guideline

Settings which are unknown by the layer will be ignored independently of the method.
It's the responsibility of the layer developer to ensure backward compatibility with
previous versions of the layer. This is to ensure the list of layer settings remain relatively
stable across versions and that the responsibility of handling layer backward
compatibility doesn't fall on Vulkan application developers as this could quickly become
untrackable.

December 2026 Configuring Vulkan Layers

https://github.com/KhronosGroup/Vulkan-Loader/blob/main/docs/LoaderInterfaceArchitecture.md
https://github.com/KhronosGroup/Vulkan-Utility-Libraries/blob/main/docs/layer_configuration.md#layer-settings-environment-variables
https://github.com/KhronosGroup/Vulkan-Utility-Libraries/blob/main/docs/layer_configuration.md#layer-settings-environment-variables
https://github.com/KhronosGroup/Vulkan-Loader/blob/main/docs/LoaderSettingsFile.md
https://github.com/KhronosGroup/Vulkan-Utility-Libraries/blob/main/docs/layer_configuration.md#configuring-the-layers-using-the-settings-file-vk_layer_settingstxt
https://docs.vulkan.org/refpages/latest/refpages/source/vkCreateInstance.html
https://github.com/KhronosGroup/Vulkan-Utility-Libraries/blob/main/docs/layer_configuration.md#configuring-the-layer-settings-using-vk_ext_layer_settings
https://github.com/KhronosGroup/Vulkan-Utility-Libraries
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://github.com/KhronosGroup/Vulkan-Profiles
https://github.com/KhronosGroup/Vulkan-ExtensionLayer/
https://github.com/LunarG/VulkanTools

Deprecation Notice

This document is describing the Vulkan Layers configuration method implemented in
Vulkan Loader 1.3.304 relying on the vk_loader_settings.json file implemented by
Vulkan Configurator 3. The previous approach relying on vkLayer_override.json is

deprecated.

December 2026 Configuring Vulkan Layers

Configuring Layers using the Vulkan API

Enabling and ordering the layer using vkCreateInstance()

Applications may programmatically activate layers via the vkCreateInstance() entry
point. This is done by setting enabledLayerCount and ppEnabledLayerNames in the
VkInstanceCreateInfo structure.

The layer names order in ppeEnabledLayerNames specifies the layers execution ordering
from closer to the Vulkan application to closer to the Vulkan driver.

Code example to enable and order the validation and the profiles layers
programmatically:

C/C++
const VkApplicationInfo app_info = initAppInfo();

const char* layers[] = {
"VK_LAYER_KHRONOS_ validation",
"VK_LAYER_KHRONOS profiles"};

const VkInstanceCreateInfo inst_create_info = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, nullptr, 0,
&app_info,
static_cast<uint32 t>(std::size(layers)), layers,
0, nullptr};

VkInstance instance = VK_NULL_HANDLE;
VkResult result = vkCreateInstance(&inst create_info, nullptr, &instance);

In this example, the Khronos validation layer will be called before the Khronos profiles
layer, it's called closer to the Vulkan application than the Vulkan driver.

Configuring the layer settings using VK_EXT _layer_settings

December 2026 Configuring Vulkan Layers

Layer settings may be configured using the VK_EXT_layer_settings extension by
initializing the vkLayerSettingsCreateInfoEXT structure and chaining it to the pNext of
VkInstanceCreateInfo when creating a Vulkan instance.

Code example to configure the validation layer programmatically:

C/C++
const char* name = "VK_LAYER_KHRONOS_validation";

const VkBool32 setting_validate_core = VK_TRUE;
const VkBoo0l32 setting_validate_sync = VK_TRUE;
const VkBoo0l32 setting_thread_safety = VK_TRUE;

const char* setting_debug_action]] "VK_DBG_LAYER_ACTION_LOG_MSG"};

const char* setting_report_flags]|]
"info", "warn", "perf", "error", "debug"};

const VkBool32 setting_enable_message_limit = VK_TRUE;

const int32_t setting_duplicate_message_limit = 3;

]
A~]l

const VkLayerSettingEXT settings[] = {

{name, "validate_core", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_validate_core},

{name, "validate_sync", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_validate_sync},

{name, "thread_safety", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_thread_safety},

{name, "debug_action", VK_LAYER_SETTING_TYPE_STRING_EXT,
1, setting_debug_action},

{name, "report_flags", VK_LAYER_SETTING_TYPE_STRING_EXT,
static_cast<uint32_t>(std::size(setting_report_flags)),
setting_report_flags}

{name, "enable_message_limit", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_enable_message_limit},

{name, "duplicate_message_limit", VK_LAYER_SETTING_TYPE_INT32_EXT,
1, &setting_duplicate_message_limit}};

const VkLayerSettingsCreateInfoEXT layer_settings_create_info = {
VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT, nullptr,
static_cast<uint32_t>(std::size(settings)), settings};

const VkApplicationInfo app_info = initAppInfo();

const char* layers[] = {name};
const char* extensions[] = {VK_EXT_LAYER_SETTINGS_EXTENSION_NAME};

December 2026 Configuring Vulkan Layers

const VkInstanceCreateInfo inst_create_info = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, &layer_settings_create_info,
e,
&app_info,
static_cast<uint32_t>(std::size(layers)), layers,
static_cast<uint32_t>(std::size(extensions)), extensions

s
VkInstance instance = VK_NULL_HANDLE;

VkResult result = vkCreateInstance(
&inst_create_info, nullptr, &instance);

December 2026 Configuring Vulkan Layers

Configuring Layers using Vulkan system files

Layers can be configured by writing Vulkan system files, vk_loader_settings.json and
vk_layer_settings.txt that are read respectively by the Vulkan Loader to select and
order Vulkan layers and the Vulkan layers to select layer settings. It is the method used
by Vulkan Configurator, a graphical user interface, to configure layers with an intuitive
aspect for Vulkan developers.

Vulkan Configurator allows full user control of Vulkan layers, including enabling or
disabling specific layers, controlling layer order, changing layer settings, etc. It supports
additional functionality to select or order Vulkan physical devices, load additional Vulkan
drivers and generates logs to help identifying issues.

Vulkan Configurator can be used using the command line to configure the system
environment. Use the command vkconfig --help for more information.

Vulkan Configurator 3.4.1-20251117
Vulkan Layers Vulkan Layers Paths Vulkan Drivers Application Launcher Diagnostics Documentation Preferences About

Vulkan Layers Configuration Scope: v VK_LAYER_KHRONOS_validation:
Any Running Vulkan Executable ~ S{VULKAN_BIN}\kcube exe Latest - E:WulkanSDK\1.4 328 0\Bin\WkLayer_khronos_validation json

Default Preset
Apply a Vulkan Layers Configuration:

O APl dump
O Crash Diagnostic
O Disable All Vulkan Layers

= ~ Validation Areas
¥ Fine Grained Locking
~ ¥ Core
¥ Image Layout
O Frame Capture ¥ Command Buffer State
{©) Portability ¥ Objectin Use
@ Validation v Query
~ W Shader

Vulkan Layers Selection and Execution Order: ¥ Caching

Execute Closer to the Vulkan Application ¥ Handle Wrapping
VK_LAYER_AMD_switc! ics - 1.4.315 Auto ¥ Object Lifetime

VK_LAYER_RENDERDOC_ - Auto ¥ Stateless Parameter

VK_LAYER VALVE steam fossilize - 1.3.207 Auto ¥ Thread Safety
VK_LAYER_VALVE steam_overlay - 1.3.207 Auto Synchronization
Vulkan Layers Located by the Vulkan Application Auto
VK_LAYER_KHRONOS_validation - 1.4.328 Enable
VK_LAYER_LUNARG_ api dump - 1.4 328 Auto
VK_LAYER_LUNARG_crash_diagnostic - 1.4.328 Auto
VK_LAYER_LUNARG gfxreconstruct - 1.4.328 Auto
VK_LAYER_LUNARG_monitor - 1.4.328 Auto

sefla<|l <l <ll><|]><ll2 <]|> <]l2 <)) > <]|»

Execute Closer to the Vulkan Driver

We recommend using the Vulkan Configurator GUI approach for Vulkan application
developers. It's the most effective approach to switch between multiple layer
configurations and quickly iterate during development. Additionally, Vulkan Configurator

December 2026 Configuring Vulkan Layers
10

presents to the Vulkan application developers the layers found on the system and the
settings of each layer, allowing Vulkan application developers to discover new
functionality from the GUI without having to dig into each layer's documentation.

The Vulkan Configurator interface

Before Vulkan Configurator, a Vulkan developer would have to configure the layers
either programmatically or by using environment variables specified by the layers
documentation, which required a significant and continuous learning curve as the
Vulkan layers capabilities evolved.

Vulkan Configurator usages

Vulkan Configurator was created to present the Vulkan layers with an intuitive interface
enabling developers to use layer features with existing Vulkan applications, instantly
and dramatically reducing development iteration time as no compilation, no learning of
the new settings, and no tracking of the new features is required. The features are
directly available in the GUI.

Vulkan Configurator usage was then extended to enable additional Vulkan drivers,
configure physical devices (either force one or sort them all) and provide Vulkan system
diagnostics.

December 2026 Configuring Vulkan Layers
1"

Vulkan Configurator tabs description

Vulkan Configurator 3.4.1-20251117

Vulkan Layers Vulkan Layers Paths Vulkan Drivers Application Launcher Diagnostics Documentation Preferences About

Vulkan Layers Configuration Sco v VK_LAYER_KHRONOS_validation:
Any Running Vulkan Executable ~ Latest - E:\WulkanSDK\1.4.328.0\Bin\VkLayer_khronos_validation json

Default Preset
Apply a Vulkan Layers Configuration:

O API dump
C] Crash Diagnostic

~ Validation Areas
¥ Fine Grained Locking

~ W Core
O Disable All Vulkan Layers ¥ Image Layout

{3 Frame Capture ¥ Command Buffer State

{©) Portability ¥ Objectin Use

{¥} Validation ¥ Query

~ M Shader
Vulkan Layers Selection and Execution Order: ¥ Caching
Execute Closer to the Vulkan Application ¥ Handle Wrapping

VK_LAYER_AMD_switc| aphics - 1.4.315 Auto ¥ Object Lifetime
VK_LAYER_RENDERDOC > - 3 Auto ¥ Stateless Parameter
VK_LAYER_VALVE_steam_fossilize - 1.3.207 Auto ¥ Thread Safety
VK_LAYER VALVE steam_overlay - 1.3.207 Auto Synchronization
Vulkan Layers Located by the Vulkan Application Auto
VK_LAYER_KHRONOS_validation - 1.4.328 Enable
VK_LAYER_LUNARG api_dump - 1.4.328 Auto
VK_LAYER_LUNARG_ crash_diagnostic - 1.4.328 Auto
VK_LAYER_LUNARG_gfxreconstruct - 1.4.328 Auto
VK_LAYER_LUNARG_ monitor - 1.4.328 Auto

se|la<ll<ll><ll> <l <]|><]|= <]l > <]| > <]| >

Execute Closer to the Vulkan Driver

The Vulkan Configurator Vulkan Layers Ul comprises 4 areas:

1) Vulkan Layers Configuration Scope: This area controls which Vulkan
application will be affected by Vulkan Configurator whether the Vulkan Layers
configuration is applied or not.

Vulkan Layers configuration can be applied to any Vulkan application running on
the system or a list of selected Vulkan executables.

2) Apply a Vulkan Layers Configurations: The list of pre-configured layers
configurations. Vulkan Configurator is installed with a selection of built-in layers
configurations. Each built-in configuration is designed to handle a specific Vulkan
application developer use case.

Using the context menu, we can create additional user-defined layer
configurations for our specific use cases. We can also export the selected
configuration to generate an environment variables script (to set the layers
configuration settings using environment variables) and to generate a layer
settings C++ helper library for vk_EXT_layer_settings. This library includes the

December 2026 Configuring Vulkan Layers
12

definition of all the layer settings in a .hpp file that can be directly included in
Vulkan application code.

3) Vulkan Layers Selection and Execution Order: The list of layers found on the

system and execution order.
4) Vulkan Layer Settings: The tree of settings for each layer. If the layers have
setting presets, they are displayed just below the layer name.

December 2026 Configuring Vulkan Layers
13

Enabling and ordering layers (vk_loader_settings.json)

Introduced with Vulkan Configurator 3 and Vulkan Loader 1.4.304, to control the
enabled layers and the layer order, Vulkan Configurator generates the
vk_loader_settings.json file, which is consumed by the Vulkan loader to enable Vulkan
layers and control the order of the layers. This file also stores the user-defined paths
specified in Vulkan Configurator to find additional layers.

The override layer file on Linux and macOS

Unix systems store override layer file in the following paths:

® $HOME/.local/share/vulkan/loader_settings.d/vk_loader_settings.json

The override layer file on Windows

Windows systems store the override layer file in the following path:

® %HOME%\AppData\Local\LunarG\vulkan\vk_loader_settings.json

Configuring the layers (vk_layer_settings.txt)

To control the layer settings, Vulkan Configurator generates the vk_layer_settings.txt
file which is consumed by the Vulkan layers and sets the setting values defined by the
Vulkan developers using the Ul.

By default, the Vulkan Layer Settings library requires the settings file to be named
vk_layer_settings.txt and it will search it in the working directory of the targeted
application. Hence, if a file is found in the working directory of the targeted application,
the Vulkan Layer Settings library will bypass the layer settings created by Vulkan
Configurator. If VK_LAYER_SETTINGS_PATH is set and is a directory, then the settings file
must be a file called vk_layer_settings.txt in the directory given by
VK_LAYER_SETTINGS_PATH. If VK_LAYER_SETTINGS_PATH is set and is not a directory, then it
must point to a file (with any name) which is the layer settings file.

The settings file can be created, modified or generated by the Vulkan application
developers or third party tools. The settings file consists of comment lines and settings
lines. Comment lines begin with the # character. Settings lines have the following
format:

<LayerName>.<setting_name> = <setting value>

December 2026 Configuring Vulkan Layers
14

The list of available settings is available in the layer manifest.

Example of vk_layer settings.txt file:

None

The main, heavy-duty validation checks. This may be valuable early in the
development cycle to reduce validation output while correcting

parameter/object usage errors.

khronos_validation.validate_core = true

Enable synchronization validation during command buffers recording. This
feature reports resource access conflicts due to missing or incorrect

synchronization operations between actions (Draw, Copy, Dispatch, Blit)
reading or writing the same regions of memory.
khronos_validation.validate_sync = true

Thread checks. In order to not degrade performance, it might be best to run
your program with thread-checking disabled most of the time, enabling it

occasionally for a quick sanity check or when debugging difficult

application behaviors.

khronos_validation.thread_safety = true

Specifies what action is to be taken when a layer reports information
khronos_validation.debug_action = VK_DBG_LAYER_ACTION_LOG_MSG

Comma-delineated list of options specifying the types of messages to be
reported
khronos_validation.report_flags = debug,error,perf,info,warn

Enable limiting of duplicate messages.
khronos_validation.enable_message_limit = true

Maximum number of times any single validation message should be reported.
khronos_validation.duplicate message_limit = 3

Layer Settings File location on Linux and macOS

Unix systems store the layer setting file in the following path:

® $HOME/.local/share/vulkan/settings.d/vk layer_ settings.txt

Layer Settings File location on Windows

Windows systems store the layer setting file in the following path:

December 2026 Configuring Vulkan Layers
15

® JHOME%\AppData\Local\LunarG\vkconfig\override\vk_layer_settings.txt

Windows system has registry entries in the following locations:

HKEY_CURRENT_USER\Software\Khronos\Vulkan\Settings

Configuring Layers using Environment Variables

Finding Vulkan Layers

In order to enable a Vulkan layer from the command-line, you must first make sure:

1.

The layer's Manifest JSON file is found by the Vulkan Desktop Loader because it
is in:
o One of the standard operating system install paths
o It was added using one of the layer path environment variables
(VK_LAYER_PATH Or VK_ADD_LAYER_PATH).
o See the Layer Discovery section of the Vulkan Loader's Layer Interface
doc.
The layer's library file is able to be loaded by the Vulkan Desktop Loader
because it is in:
o A standard library path for the operating system
o The library path has been updated using an operating system-specific
mechanism such as:
m Linux: adding the path to the layer's library .so with LD_LIBRARY_PATH

m MacOS: adding the path to the layer's library .dylib with
DYLD_LIBRARY_PATH
The layer's library file is compiled for the same target and bitdepth (32 vs 64) as

the application

Activating Specific SDK Layers

To activate layers located in a particular SDK installation, or layers built locally from
source, specify the layer JSON manifest file directory using either vk_LAYER_PATH or
VK_ADD_LAYER_PATH. The difference between vk_LAYER_PATH and VK_ADD_LAYER_PATH is that
VK_LAYER_PATH overrides the system layer paths so that no system layers are loaded by
default unless their path is added to the environment variable. vk_AbD_LAYER_PATH on the
other hand, causes the loader to search the additional layer paths listed in the
environment variable first, and then the standard system paths will be searched.

December 2026 Configuring Vulkan Layers

16

https://github.com/KhronosGroup/Vulkan-Loader/blob/vulkan-sdk-1.3.280/docs/LoaderInterfaceArchitecture.md
https://github.com/KhronosGroup/Vulkan-Loader/blob/vulkan-sdk-1.3.280/docs/LoaderInterfaceArchitecture.md

Usages on each desktop platform

For example, if a Vulkan SDK is installed in c:\vulkansDk\1.3.261.0, execute the
following in a Command Window:

None
C:\> set VK _LAYER_PATH=C:\VulkanSDK\1.3.261.0\Bin

For Linux, if Vulkan SDK 1.3.261.0 was locally installed in /sdk and
VULKAN_SDK=/sdk/1.3.261.0/x86_64:

None

$ export VK_LAYER_PATH=$VULKAN_SDK/lib/vulkan/layers
$ export LD_LIBRARY_PATH=$VULKAN_SDK/lib:$VULKAN_SDK/lib/vulkan/layers

For macOS, if Vulkan SDK 1.3.261.0 was locally installed in /sdk and
VULKAN_SDK=/sdk/1.3.261/macO0S:

None

$ export VK_LAYER_PATH=$VULKAN_SDK/share/vulkan/explicit_layers.d
$ export DYLD_LIBRARY_PATH=$VULKAN_SDK/1lib

Enabling and ordering Vulkan Layers

Originally, the Vulkan Desktop Loader provided vk_INSTANCE_LAYERS to enable layers from
the command-line. However, starting with the Vulkan Loader built against the 1.3.234
Vulkan headers, the vK_LOADER_LAYERS_ENABLE environment variable was added to allow
for more easily enabling Vulkan layers. The newer Loaders will continue to accept the
original VK_INSTANCE_LAYERS environment variable for some time, but it is considered
deprecated.

Vulkan 1.3.234 Loader and Newer (VK_LOADER_LAYERS_ENABLE)

The easiest way to enable a layer with a more recent drop of the Vulkan Loader is using
the VK_LOADER_LAYERS_ENABLE environment variable. This environment variable accepts a

December 2026 Configuring Vulkan Layers
17

case-insensitive, comma-delimited list of globs which can be used to define the layers to
load.

For example, previously if you wanted to enable the Profiles layer and the Validation
layer, you would have to set vk_INSTANCE_LAYERS equal to the full name of each layer:

None
VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS validation;VK_LAYER_KHRONOS profiles

Now, with VK_LOADER_LAYERS_ENABLE, you simply can use stars where you don't want to fill
in the full name:

None
VK_LOADER_LAYERS_ENABLE=*validation, *profiles

Note that order is relevant, with the initial layer being the closest to the application, and
the final layer being closest to the driver. In this example, the Khronos validation layer
will be called before the Khronos profiles layer.

Usages on each desktop platform

Example Usage On Windows:

None
C:\> set VK_LOADER_LAYERS_ENABLE=*validation, *profiles

Example Usage On Linux/macOS:

None
$ export VK_LOADER_LAYERS_ENABLE=*validation, *profiles

More info about the new layer filtering environment variables can be found in the Layer
Filtering section of the Loader Layer Documentation.

December 2026 Configuring Vulkan Layers
18

https://github.com/KhronosGroup/Vulkan-Loader/blob/vulkan-sdk-1.3.280/docs/LoaderInterfaceArchitecture.md

Older Vulkan Loaders (VK_INSTANCE_LAYERS)

Vulkan Desktop loaders version 1.3.233 and below will not accept the filtering
environment variable, and so must continue using the original VK_INSTANCE_LAYERS
environment variable.

Example Usage On Windows:

The variable should include a semicolon-separated list of layer names to activate. Note
that order is relevant, with the initial layer being the closest to the application, and the
final layer being closest to the driver.

None

C:\> set
VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS validation;VK_LAYER_KHRONOS profiles

In this example, the Khronos validation layer will be called before the Khronos profiles
layer. VK_INSTANCE_LAYERS may also be set in the system environment variables.

Example Usage On Linux/macOS:

The variable should include a colon-separated list of layer names to activate. Note that
order is relevant, with the initial layer being the closest to the application, and the final
layer being closest to the driver.

None

$ export
VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_ validation:VK_LAYER_KHRONOS profiles

In this example, the Khronos validation layer will be called before the Khronos profiles
layer.

Layer Settings Environment Variables

The settings can also be set using environment variables. The settings that can be set
using environment variables are listed in the documentation for each supported layer. If
an environment variable is set, its value takes precedence over the value in the settings
file.

December 2026 Configuring Vulkan Layers
19

The environment variable names for the layer settings have multiple variants that
follows the format:

e VK <LayerVendor>_<*LayerName*><*sefting name*> which take
precedence over:
VK_<*LayerName*><*setting_name*> which take precedence over:
VK_<*setting_name*>"

This approach allows sharing the same setting name for potentially multiple layers but
still use different values for the same setting name if this is what is required for the
Vulkan developer use case.

Examples

Examples of environment variable variants for a single setting:

® VK_KHRONOS_VALIDATION DEBUG_ACTION
® VK_VALIDATION DEBUG_ACTION
® VK_DEBUG_ACTION

Examples Usage on Windows:

None

C:\> set VK_VALIDATION_VALIDATE_CORE=true

C:\> set VK_VALIDATION_VALIDATE_SYNC=true

C:\> set VK_VALIDATION_THREAD_SAFETY=true

C:\> set VK_VALIDATION_DEBUG_ACTION=VK_DBG_LAYER_ACTION_LOG_MSG
C:\> set VK VALIDATION_REPORT_FLAGS=debug;error;perf;info;warn
C:\> set VK_VALIDATION_ENABLE_MESSAGE_LIMIT=true

C:\> set VK_VALIDATION_DUPLICATE_MESSAGE_LIMIT=3

Examples Usage on Linux/macOS:

None

export VK_VALIDATION_VALIDATE_CORE=true

export VK_VALIDATION_VALIDATE_SYNC=true

export VK_VALIDATION_THREAD_SAFETY=true

export VK_VALIDATION_DEBUG_ACTION=VK_DBG_LAYER_ACTION_LOG_MSG
export VK_VALIDATION_REPORT_FLAGS=debug:error:perf:info:warn

BT S o

December 2026 Configuring Vulkan Layers
20

$ export VK_VALIDATION_ENABLE_MESSAGE_LIMIT=true
$ export VK_VALIDATION_DUPLICATE_MESSAGE_LIMIT=3

Generating Vulkan layers settings files

Generating the layer settings documentation

The layer settings documentation is generated. It includes information about the
dependencies, the sub-settings, platform support of each setting, links to the features
documentation, etc.

We also added code samples to show how to set each setting with all three layer
settings approach.

December 2026 Configuring Vulkan Layers
21

Vulkan Configurator 3.4.1-20251117

Vulkan Layers Vulkan Layers Paths Vulkan Drivers Application Launcher Diagnostics Documentation Preferences About

Vulkan Layers Configuration Scope: v VK_LAYER_KHRONOS_validation:

Any Running Vulkan Executable ~ S{VUL Latest - E:\VulkanSDK\1.4.328.0\Bin\VkLayer_khronos_validation.json

Default Preset
Apply a Vulkan Layers Configuration:

O APl dump
O Crash Diagnostic
O Disable All Vulkan Layers

~ Validation Areas
¥ Fine Grained Locking
~ ¥ Core
¥ Image Layout
O Frame Capture
{©) Portability

G—:} Validatior _ o) ¥ Query
Create a new Configuration
¥ Shader

¥ Command Buffer State
¥ Objectin Use

Import a Confi

Vulkan Layers

VK_LAYE
VK_LAYE

Export the Co
Rename the Configuration

Duplicate the Configuration

¥ Caching
1andle Wrapping
Jbject Lifetime

stateless Parameter

VK_LAYE - R ° Thread Safety

VK_LAYE > - - i S synchronization
Vulkan Le ¢

VK_LAYE

Reset All Default Configurations
VICLAYE - Error messages
VK_LAYH Generate "Validation' configuration HTML documentation...

VK_LAYE Generate "Validation’ configuration Markdown documentation... Jebug Printf

VK_LAYE

se|l <l <l <ll2<ll><|l2 <Nl=<]|> <]l <]|»

configura

configuration Enviro mmand prompt script...

Generate ‘Validation' configuration VK_EXT_layer_settings C++ code...

Context menu to generate the Validation layers configuration files

Generating layer settings code for each layer settings approach

Reading the documentation to set our Vulkan layer settings can be pretty tedious
considering the number of settings some layers may have and considering that each
new layer version may introduce new layer settings.

To resolve this issue, this project introduces the capability to generate layer settings
code and scripts for each of the three layer settings methods. With Vulkan Configurator
we can create a Vulkan layers configuration and then use this configuration to produce
the generated code and scripts.

Using VK_EXT _layer_settings to configure layers programmatically

The generated layer settings code is a C++ helper library that can be directly included in
the Vulkan application code. It includes all the layer settings set to values that match the
layer settings configuration used to generate this library. The library allows the Vulkan
application developer to update the settings from the Vulkan application code.

December 2026 Configuring Vulkan Layers

22

Generated C++ helper library example subset

//Khronos Validation Layer (WINDOWS_ X86, WINDOWS_ARM, LINUX, MACOS, ANDROID)
// “VK_LAYER_KHRONOS_validation™ settings for version 1.4.321

/*

The main, comprehensive Khronos validation layer.

Vulkan is an Explicit API, enabling direct control over how GPUs actually work. By design,
minimal error checking is done inside a Vulkan driver. Applications have full control and
responsibility for correct operation. Any errors in how Vulkan is used can result in a
crash.

The Khronos Validation Layer can be enabled to assist development by enabling developers to
verify their applications correctly use the Vulkan API.

*/

// For more information about the layer:
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

struct ValidationSettingData {
static const uint32_t VERSION = VK_MAKE_API_VERSION(1, 4, 321, 0);

// Core (WINDOWS_X86, WINDOWS_ARM, LINUX, MACOS, ANDROID)
// Layer setting documentation:

Kdn narsg om/do dK dale NINAOW

// For more information about the feature:
https: ithub.com/KhronosGroup/Vulkan-ValidationlLayers/blob/main/docs/core checks.md
VkBool32 validate_core = VK_TRUE;

// Image Layout (WINDOWS_X86, WINDOWS_ARM, LINUX, MACOS, ANDROID)

// Layer setting documentation:
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos validation layer.html#check image 1
ayout

// This setting requires ALL of the following values:

// - VkBool32 validate_core = VK_TRUE;

VkBool32 check_image_layout = VK_TRUE;

// ~LayerSettings® allows initializing layer settings from Vulkan application code.
struct LayerSettings {

ApidumpSettingData api_dump;

CrashdiagnosticSettingData crash_diagnostic;

GfxreconstructSettingData gfxreconstruct;

ScreenshotSettingData screenshot;

ValidationSettingData validation;

ProfilesSettingData profiles;

December 2026 Configuring Vulkan Layers
23

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html#validate_core
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/core_checks.md
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html#check_image_layout
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html#check_image_layout

ShaderobjectSettingData shader_object;
Synchronization2SettingData synchronization2;

// Can be used directly with VkLayerSettingsCreateInfoEXT
const std::vector<VkLayerSettingEXT>& info();

1

Generated C++ helper library usage example

#include “vulkan_layer_ settings.hpp”

LayerSettings layer settings;
layer_settings.validate_core = VK_FALSE;

std: :vector<VkLayerSettingEXT> data = layer_settings.info();

VkLayerSettingsCreateInfoEXT layer_settings_create_info {
VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT, nullptr,
static_cast<int>(data.size()), &data[o0]

%

Using environment variables to configure layers

The generated layer settings script can follow either the Bash or Command Prompt
conventions and set all the layer settings environment variables using the value set in
the selected layers configuration.

Generated Environment Variables script example subset

#! This code was generated by Vulkan Configurator 3.4.1

#! Khronos Validation Layer

#1 == e == e

#! VK_LAYER_KHRONOS validation - 1.4.328 (WINDOWS_X86, WINDOWS_ ARM, LINUX, MACOS, ANDROID)
#! The main, comprehensive Khronos validation layer.

#! Vulkan is an Explicit API, enabling direct control over how GPUs actually

#! work. By design, minimal error checking is done inside a Vulkan driver.

#! Applications have full control and responsibility for correct operation. Any
#! errors in how Vulkan is used can result in a crash.

#! For more information about the layer:
https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

#! Core
I e
#! validate_core (WINDOWS_X86, WINDOWS_ARM, LINUX, MACOS, ANDROID)

December 2026 Configuring Vulkan Layers
24

#! The main, heavy-duty validation checks. This may be valuable early in the

#! development cycle to reduce validation output while correcting

#! parameter/object usage errors.

#! For more information about the feature:
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/main/docs/core_checks.md

#! This setting has sub-settings:

#! - export VK_KHRONOS_VALIDATION_CHECK_IMAGE_LAYOUT=true
#! - export VK_KHRONOS_VALIDATION_CHECK_COMMAND_BUFFER=true
#! - export VK_KHRONOS_VALIDATION_CHECK_OBJECT IN_USE=true
#! - export VK_KHRONOS_VALIDATION_CHECK_QUERY=true

#! - export VK_KHRONOS_VALIDATION_CHECK_ SHADERS=true

export VK_KHRONOS_VALIDATION_VALIDATE_CORE=true

#! Shader

I e e e T

#! check_shaders (WINDOWS_X86, WINDOWS_ARM, LINUX, MACOS, ANDROID)

#! This will validate the contents of the SPIR-V which can be CPU intensive
#! during application start up. This does internal checks as well as calling
#! spirv-val. (Same effect using VK_VALIDATION_FEATURE_DISABLE_SHADERS_EXT)
#! This setting has sub-settings:

#! - export VK_KHRONOS_VALIDATION_CHECK_SHADERS_CACHING=true

#! - export VK_KHRONOS_VALIDATION_DEBUG_DISABLE_SPIRV_VAL=false

#! This setting requires ALL of the following values:

#! - export VK_KHRONOS_VALIDATION_VALIDATE_CORE=true

export VK_KHRONOS_VALIDATION_CHECK_SHADERS=true

Using command line to generate the layer settings files

We can generate the layer settings using the Vulkan Configurator command line.

$ vkconfig help settings

Name
'settings' - Command to generate layer settings files
Synopsis
vkconfig settings
[(--generate | -g) (html | markdown | txt | bash | bat | hpp)]
[(--configuration | -c) [<configuration_index> | <configuration_name> | default]]
[(--1layer | -1) [<layer_name> | default]]
[(--output-dir | -d) <output dir>]
[(--output | -0) <output_file>]
[--dry-run]
Description
Generate layer settings files either for system configuration or documentation of a layers
configuration.
Arguments
“[--generate (html | markdown | txt | bash | bat | hpp)]
December 2026 Configuring Vulkan Layers

25

Specify the layer settings generation mode, the default value is "txt':
"html' to generate the HTML layer settings documentation, the default filename is
'vk_layer_settings.html'

- 'markdown' to generate the Markdown layer settings documentation, the default filename
is 'vk_layer_settings.md'

- "txt' to generate the “vk_layer settings.txt® layer settings file, the default
filename is 'vk_layer_settings.txt'

- 'bash' to generate the environment variables layer settings script for 'Bash', the
default filename is 'vk_layer_settings.sh'

- 'bat' to generate the environment variables layer settings script for
‘command prompt', the default filename is 'vk_layer_settings.bat'’

- 'hpp' to generate the C++ layer settings helper code, the default filename is
'vk_layer_settings.hpp'

(Run 'vkconfig layers --list' to enumerate the available layers.)

*[--configuration [<configuration_index> | <configuration_name> | default]]’
Specify the configuration name or index in the configuration list. If the argument is
not set or set to 'default', the default layer settings will be used.

(Run 'vkconfig loader --list' to enumerate the available configurations.)
“[--layer <layer_name>]"

Specify the layer name, if the argument is not set or set to 'default', all the found
layers will be used.

(Run 'vkconfig layers --list' to enumerate the available layers.)
*[--output-dir | -d] <output_dir>’

Specify the output directory path. The filename used will be the default filename if
<output_file> is not set

- If the 'generate' is set to 'html', the default filename is 'vk_layer_settings.html’

- If the 'generate' is set to 'markdown', the default filename is 'vk_layer_settings.md’
- If the 'generate' is set to 'txt', the default filename is 'vk_layer_settings.txt'

- If the 'generate' is set to 'bash', the default filename is 'vk_layer_ settings.sh'

- If the 'generate' is set to 'bat', the default filename is 'vk_layer_settings.bat'

- If the 'generate' is set to 'hpp', the default filename is 'vk_layer_settings.hpp'

“[(--output | -o0) <output_file>]"

Specify the output file path. If <output_dir> is set, then <output_file> must be the
filename only.

- If the 'generate' is set to 'html', the default filename is 'vk_layer_settings.html’

- If the 'generate' is set to 'markdown', the default filename is 'vk_layer_settings.md'
- If the 'generate' is set to 'txt', the default filename is 'vk_layer_ settings.txt'

- If the 'generate' is set to 'bash', the default filename is 'vk_layer_settings.sh'

- If the 'generate' is set to 'bat', the default filename is 'vk_layer_settings.bat'

- If the 'generate' is set to 'hpp', the default filename is 'vk_layer_settings.hpp'

“[--dry-run]”

December 2026 Configuring Vulkan Layers
26

Run without affecting the system and Vulkan Configurator files.

Vulkan Configurator command line to generate layer settings files

Vulkan SDK generated layer settings files

The Vulkan SDK has historically shipped with a vk_layer_settings.txt file with all
the layer settings listed with their default values. This file can easily be copied by the
Vulkan developer and edited manually.

An improvement is to add more documentation for each setting in the document so that
the Vulkan developer doesn’t have to look at the HTML documentation to figure out the
dependencies, sub-settings, etc. The file is self-documented.

With Vulkan SDK 1.4.333, the Vulkan SDK includes generated code for each layer
settings approaches:

e vulkan_layer_ settings.hpp sitting next to vulkan.h in the SDK which is an
helper C++ library with all the layer settings initialized to the layer settings default
values.

e vk layer settings.sh and vk _layer settings.bat sitting next to
vk_layer settings.txt in the SDK which are scripts, for Bash and Command
Prompt respectively, which initialize all the layer settings with the default values.

These files are generated using the following commands:

vk_layer_settings.txt

$ VK_LAYER_PATH=$VULKAN_SDK_BUILD/build/Bin
$ vkconfig settings --txt default -o ./vk_layer_settings.txt --dry-run

vk layer_settings.sh

$ VK_LAYER_PATH=$VULKAN_SDK_BUILD/build/Bin
$ vkconfig settings --bash default -o ./vk_layer_settings.sh --dry-run

vk_layer_settings.bat

$ VK_LAYER_PATH=$VULKAN_SDK_BUILD/build/Bin
$ vkconfig settings --bat default -o ./vk_layer_settings.bat --dry-run

December 2026 Configuring Vulkan Layers
27

vulkan_layer_settings.hpp

$ VK_LAYER_PATH=$VULKAN_SDK_BUILD/build/Bin
$ vkconfig settings --hpp default -o ./vulkan_layer_settings.hpp --dry-run

December 2026 Configuring Vulkan Layers
28

Revision History

Revision Date SDK Release Comments
December 2026 SDK 1.4.333.0 - Update for Vulkan Configurator 3 and Vulkan
Loader vk _loader_settings.json
- Add Vulkan layer settings file generation
April 2024 SDK 1.3.280.0 - Fix VK_EXT _layer_settings usage example.
January 2024 SDK 1.3.275.0 - Initial release.

Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc.

December 2026

Configuring Vulkan Layers
29

	Configuring Vulkan Layers
	Configuring Vulkan Layers approaches
	Three approaches
	Generate layer settings files
	Backward Compatibility Guideline
	Deprecation Notice

	
	Configuring Layers using the Vulkan API
	Enabling and ordering the layer using vkCreateInstance()
	Configuring the layer settings using VK_EXT_layer_settings

	
	Configuring Layers using Vulkan system files
	The Vulkan Configurator interface
	Vulkan Configurator usages
	Vulkan Configurator tabs description

	
	Enabling and ordering layers (vk_loader_settings.json)
	The override layer file on Linux and macOS
	The override layer file on Windows

	Configuring the layers (vk_layer_settings.txt)
	Layer Settings File location on Linux and macOS
	Layer Settings File location on Windows

	Configuring Layers using Environment Variables
	Finding Vulkan Layers
	Activating Specific SDK Layers
	Usages on each desktop platform

	Enabling and ordering Vulkan Layers
	Vulkan 1.3.234 Loader and Newer (VK_LOADER_LAYERS_ENABLE)
	Usages on each desktop platform
	Older Vulkan Loaders (VK_INSTANCE_LAYERS)

	Layer Settings Environment Variables
	Examples

	Generating Vulkan layers settings files
	Generating the layer settings documentation
	​Context menu to generate the Validation layers configuration files

	Generating layer settings code for each layer settings approach
	Using VK_EXT_layer_settings to configure layers programmatically
	Generated C++ helper library example subset
	Generated C++ helper library usage example

	Using environment variables to configure layers
	Generated Environment Variables script example subset

	Using command line to generate the layer settings files
	Vulkan Configurator command line to generate layer settings files

	Vulkan SDK generated layer settings files
	vk_layer_settings.txt
	vk_layer_settings.sh
	vk_layer_settings.bat
	vulkan_layer_settings.hpp

	Revision History

