1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
|
/* Copyright (c) 2020-2022 The Khronos Group Inc.
* Copyright (c) 2020-2022 Valve Corporation
* Copyright (c) 2020-2022 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tony Barbour <tony@lunarg.com>
*/
#include "debug_printf.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <iostream>
#include "layer_chassis_dispatch.h"
#include "cmd_buffer_state.h"
// Perform initializations that can be done at Create Device time.
void DebugPrintf::CreateDevice(const VkDeviceCreateInfo *pCreateInfo) {
if (enabled[gpu_validation]) {
ReportSetupProblem(device,
"Debug Printf cannot be enabled when gpu assisted validation is enabled. "
"Debug Printf disabled.");
aborted = true;
return;
}
const char *size_string = getLayerOption("khronos_validation.printf_buffer_size");
output_buffer_size = *size_string ? atoi(size_string) : 1024;
std::string verbose_string = getLayerOption("khronos_validation.printf_verbose");
transform(verbose_string.begin(), verbose_string.end(), verbose_string.begin(), ::tolower);
verbose = verbose_string.length() ? !verbose_string.compare("true") : false;
std::string stdout_string = getLayerOption("khronos_validation.printf_to_stdout");
transform(stdout_string.begin(), stdout_string.end(), stdout_string.begin(), ::tolower);
use_stdout = stdout_string.length() ? !stdout_string.compare("true") : false;
if (getenv("DEBUG_PRINTF_TO_STDOUT")) use_stdout = true;
// GpuAssistedBase::CreateDevice will set up bindings
VkDescriptorSetLayoutBinding binding = {3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_MESH_BIT_NV |
VK_SHADER_STAGE_TASK_BIT_NV | VK_SHADER_STAGE_COMPUTE_BIT |
kShaderStageAllRayTracing,
NULL};
bindings_.push_back(binding);
GpuAssistedBase::CreateDevice(pCreateInfo);
if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(device, "Debug Printf requires Vulkan 1.1 or later. Debug Printf disabled.");
aborted = true;
return;
}
DispatchGetPhysicalDeviceFeatures(physical_device, &supported_features);
if (!supported_features.fragmentStoresAndAtomics || !supported_features.vertexPipelineStoresAndAtomics) {
ReportSetupProblem(device,
"Debug Printf requires fragmentStoresAndAtomics and vertexPipelineStoresAndAtomics. "
"Debug Printf disabled.");
aborted = true;
return;
}
}
// Free the device memory and descriptor set associated with a command buffer.
void DebugPrintf::DestroyBuffer(DPFBufferInfo &buffer_info) {
vmaDestroyBuffer(vmaAllocator, buffer_info.output_mem_block.buffer, buffer_info.output_mem_block.allocation);
if (buffer_info.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool DebugPrintf::InstrumentShader(const layer_data::span<const uint32_t> &input, std::vector<uint32_t> &new_pgm,
uint32_t *unique_shader_id) {
if (aborted) return false;
if (input[0] != spv::MagicNumber) return false;
// Load original shader SPIR-V
new_pgm.clear();
new_pgm.reserve(input.size());
new_pgm.insert(new_pgm.end(), &input.front(), &input.back() + 1);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
using namespace spvtools;
spv_target_env target_env = PickSpirvEnv(api_version, IsExtEnabled(device_extensions.vk_khr_spirv_1_4));
spvtools::ValidatorOptions val_options;
AdjustValidatorOptions(device_extensions, enabled_features, val_options);
spvtools::OptimizerOptions opt_options;
opt_options.set_run_validator(true);
opt_options.set_validator_options(val_options);
Optimizer optimizer(target_env);
const spvtools::MessageConsumer debug_printf_console_message_consumer =
[this](spv_message_level_t level, const char *, const spv_position_t &position, const char *message) -> void {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
this->LogError(this->device, "UNASSIGNED-Debug-Printf", "Error during shader instrumentation: line %zu: %s",
position.index, message);
break;
default:
break;
}
};
optimizer.SetMessageConsumer(debug_printf_console_message_consumer);
optimizer.RegisterPass(CreateInstDebugPrintfPass(desc_set_bind_index, unique_shader_module_id));
const bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm, opt_options);
if (!pass) {
ReportSetupProblem(device, "Failure to instrument shader. Proceeding with non-instrumented shader.");
}
*unique_shader_id = unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
void DebugPrintf::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
void *csm_state_data) {
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
const bool pass = InstrumentShader(layer_data::make_span(pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)),
csm_state->instrumented_pgm, &csm_state->unique_shader_id);
if (pass) {
csm_state->instrumented_create_info.pCode = csm_state->instrumented_pgm.data();
csm_state->instrumented_create_info.codeSize = csm_state->instrumented_pgm.size() * sizeof(uint32_t);
}
}
vartype vartype_lookup(char intype) {
switch (intype) {
case 'd':
case 'i':
return varsigned;
break;
case 'f':
case 'F':
case 'a':
case 'A':
case 'e':
case 'E':
case 'g':
case 'G':
return varfloat;
break;
case 'u':
case 'x':
case 'o':
default:
return varunsigned;
break;
}
}
std::vector<DPFSubstring> DebugPrintf::ParseFormatString(const std::string &format_string) {
const char types[] = {'d', 'i', 'o', 'u', 'x', 'X', 'a', 'A', 'e', 'E', 'f', 'F', 'g', 'G', 'v', '\0'};
std::vector<DPFSubstring> parsed_strings;
size_t pos = 0;
size_t begin = 0;
size_t percent = 0;
while (begin < format_string.length()) {
DPFSubstring substring;
// Find a percent sign
pos = percent = format_string.find_first_of('%', pos);
if (pos == std::string::npos) {
// End of the format string Push the rest of the characters
substring.string = format_string.substr(begin, format_string.length());
substring.needs_value = false;
parsed_strings.push_back(substring);
break;
}
pos++;
if (format_string[pos] == '%') {
pos++;
continue; // %% - skip it
}
// Find the type of the value
pos = format_string.find_first_of(types, pos);
if (pos == format_string.npos) {
// This really shouldn't happen with a legal value string
pos = format_string.length();
} else {
char tempstring[32];
int count = 0;
std::string specifier = {};
if (format_string[pos] == 'v') {
// Vector must be of size 2, 3, or 4
// and format %v<size><type>
specifier = format_string.substr(percent, pos - percent);
count = atoi(&format_string[pos + 1]);
pos += 2;
// skip v<count>, handle long
specifier.push_back(format_string[pos]);
if (format_string[pos + 1] == 'l') {
specifier.push_back('l');
pos++;
}
// Take the preceding characters, and the percent through the type
substring.string = format_string.substr(begin, percent - begin);
substring.string += specifier;
substring.needs_value = true;
substring.type = vartype_lookup(specifier.back());
parsed_strings.push_back(substring);
// Continue with a comma separated list
snprintf(tempstring, sizeof(tempstring), ", %s", specifier.c_str());
substring.string = tempstring;
for (int i = 0; i < (count - 1); i++) {
parsed_strings.push_back(substring);
}
} else {
// Single non-vector value
if (format_string[pos + 1] == 'l') pos++; // Save long size
substring.string = format_string.substr(begin, pos - begin + 1);
substring.needs_value = true;
substring.type = vartype_lookup(format_string[pos]);
parsed_strings.push_back(substring);
}
begin = pos + 1;
}
}
return parsed_strings;
}
std::string DebugPrintf::FindFormatString(std::vector<uint32_t> pgm, uint32_t string_id) {
std::string format_string;
SHADER_MODULE_STATE module_state(pgm);
if (module_state.words_.empty()) {
return {};
}
for (const Instruction &insn : module_state.GetInstructions()) {
if (insn.Opcode() == spv::OpFunction) {
break; // Debug Info is always before first function
}
if (insn.Opcode() == spv::OpString) {
if (insn.Word(1) == string_id) {
format_string = insn.GetAsString(2);
break;
}
}
}
return format_string;
}
// GCC and clang don't like using variables as format strings in sprintf.
// #pragma GCC is recognized by both compilers
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat-security"
#endif
void snprintf_with_malloc(std::stringstream &shader_message, const DPFSubstring &substring, size_t needed, void *values) {
char *buffer = static_cast<char *>(malloc((needed + 1) * sizeof(char))); // Add 1 for terminator
if (substring.longval) {
snprintf(buffer, needed, substring.string.c_str(), substring.longval);
} else if (!substring.needs_value) {
snprintf(buffer, needed, substring.string.c_str());
} else {
switch (substring.type) {
case varunsigned:
needed = snprintf(buffer, needed, substring.string.c_str(), *static_cast<uint32_t *>(values) - 1);
break;
case varsigned:
needed = snprintf(buffer, needed, substring.string.c_str(), *static_cast<int32_t *>(values) - 1);
break;
case varfloat:
needed = snprintf(buffer, needed, substring.string.c_str(), *static_cast<float *>(values) - 1);
break;
}
}
shader_message << buffer;
free(buffer);
}
void DebugPrintf::AnalyzeAndGenerateMessages(VkCommandBuffer command_buffer, VkQueue queue, DPFBufferInfo &buffer_info,
uint32_t operation_index, uint32_t *const debug_output_buffer) {
// Word Content
// 0 Must be zero
// 1 Size of output record, including this word
// 2 Shader ID
// 3 Instruction Position
// 4 Stage Ordinal
// 5 Stage - specific Info Word 0
// 6 Stage - specific Info Word 1
// 7 Stage - specific Info Word 2
// 8 Printf Format String Id
// 9 Printf Values Word 0 (optional)
// 10 Printf Values Word 1 (optional)
uint32_t expect = debug_output_buffer[1];
if (!expect) return;
uint32_t index = spvtools::kDebugOutputDataOffset;
while (debug_output_buffer[index]) {
std::stringstream shader_message;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<uint32_t> pgm;
DPFOutputRecord *debug_record = reinterpret_cast<DPFOutputRecord *>(&debug_output_buffer[index]);
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = shader_map.find(debug_record->shader_id);
if (it != shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
// Search through the shader source for the printf format string for this invocation
auto format_string = FindFormatString(pgm, debug_record->format_string_id);
// Break the format string into strings with 1 or 0 value
auto format_substrings = ParseFormatString(format_string);
void *values = static_cast<void *>(&debug_record->values);
const uint32_t static_size = 1024;
// Sprintf each format substring into a temporary string then add that to the message
for (auto &substring : format_substrings) {
char temp_string[static_size];
size_t needed = 0;
std::vector<std::string> format_strings = { "%ul", "%lu", "%lx" };
size_t ul_pos = 0;
bool print_hex = true;
for (const auto &ul_string : format_strings) {
ul_pos = substring.string.find(ul_string);
if (ul_pos != std::string::npos) {
if (ul_string == "%lu") print_hex = false;
break;
}
}
if (ul_pos != std::string::npos) {
// Unsigned 64 bit value
substring.longval = *static_cast<uint64_t *>(values);
values = static_cast<uint64_t *>(values) + 1;
if (print_hex) {
substring.string.replace(ul_pos + 1, 2, PRIx64);
} else {
substring.string.replace(ul_pos + 1, 2, PRIu64);
}
needed = snprintf(temp_string, static_size, substring.string.c_str(), substring.longval);
} else {
if (substring.needs_value) {
switch (substring.type) {
case varunsigned:
needed = snprintf(temp_string, static_size, substring.string.c_str(), *static_cast<uint32_t *>(values));
break;
case varsigned:
needed = snprintf(temp_string, static_size, substring.string.c_str(), *static_cast<int32_t *>(values));
break;
case varfloat:
needed = snprintf(temp_string, static_size, substring.string.c_str(), *static_cast<float *>(values));
break;
}
values = static_cast<uint32_t *>(values) + 1;
} else {
needed = snprintf(temp_string, static_size, substring.string.c_str());
}
}
if (needed < static_size) {
shader_message << temp_string;
} else {
// Static buffer not big enough for message, use malloc to get enough
snprintf_with_malloc(shader_message, substring, needed, values);
}
}
if (verbose) {
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
UtilGenerateStageMessage(&debug_output_buffer[index], stage_message);
UtilGenerateCommonMessage(report_data, command_buffer, &debug_output_buffer[index], shader_module_handle,
pipeline_handle, buffer_info.pipeline_bind_point, operation_index, common_message);
UtilGenerateSourceMessages(pgm, &debug_output_buffer[index], true, filename_message, source_message);
if (use_stdout) {
std::cout << "UNASSIGNED-DEBUG-PRINTF " << common_message.c_str() << " " << stage_message.c_str() << " "
<< shader_message.str().c_str() << " " << filename_message.c_str() << " " << source_message.c_str();
} else {
LogInfo(queue, "UNASSIGNED-DEBUG-PRINTF", "%s %s %s %s%s", common_message.c_str(), stage_message.c_str(),
shader_message.str().c_str(), filename_message.c_str(), source_message.c_str());
}
} else {
if (use_stdout) {
std::cout << shader_message.str();
} else {
// Don't let LogInfo process any '%'s in the string
LogInfo(device, "UNASSIGNED-DEBUG-PRINTF", "%s", shader_message.str().c_str());
}
}
index += debug_record->size;
}
if ((index - spvtools::kDebugOutputDataOffset) != expect) {
LogWarning(device, "UNASSIGNED-DEBUG-PRINTF",
"WARNING - Debug Printf message was truncated, likely due to a buffer size that was too small for the message");
}
memset(debug_output_buffer, 0, 4 * (debug_output_buffer[spvtools::kDebugOutputSizeOffset] + spvtools::kDebugOutputDataOffset));
}
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void debug_printf_state::CommandBuffer::Process(VkQueue queue) {
auto *device_state = static_cast<DebugPrintf *>(dev_data);
if (has_draw_cmd || has_trace_rays_cmd || has_dispatch_cmd) {
auto &gpu_buffer_list = buffer_infos;
uint32_t draw_index = 0;
uint32_t compute_index = 0;
uint32_t ray_trace_index = 0;
for (auto &buffer_info : gpu_buffer_list) {
char *data;
uint32_t operation_index = 0;
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
operation_index = draw_index;
draw_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
operation_index = compute_index;
compute_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
operation_index = ray_trace_index;
ray_trace_index++;
} else {
assert(false);
}
VkResult result = vmaMapMemory(device_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&data);
if (result == VK_SUCCESS) {
device_state->AnalyzeAndGenerateMessages(commandBuffer(), queue, buffer_info, operation_index, (uint32_t *)data);
vmaUnmapMemory(device_state->vmaAllocator, buffer_info.output_mem_block.allocation);
}
}
}
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
void DebugPrintf::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawInfoEXT *pVertexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride) {
for(uint32_t i = 0; i < drawCount; i++) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
}
void DebugPrintf::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride, const int32_t *pVertexOffset) {
for (uint32_t i = 0; i < drawCount; i++) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
}
void DebugPrintf::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count,
uint32_t stride) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDispatchBaseKHR(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectByteCountEXT(commandBuffer, instanceCount, firstInstance, counterBuffer,
counterBufferOffset, counterOffset, vertexStride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksNV(commandBuffer, taskCount, firstTask);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectNV(commandBuffer, buffer, offset, drawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectCountNV(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
}
void DebugPrintf::PreCallRecordCmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
uint32_t height, uint32_t depth) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
void DebugPrintf::PreCallRecordCmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
void DebugPrintf::PreCallRecordCmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
void DebugPrintf::AllocateDebugPrintfResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
VkResult result;
if (aborted) return;
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = desc_set_manager->GetDescriptorSets(1, &desc_pool, debug_desc_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor sets. Device could become unstable.");
aborted = true;
return;
}
VkDescriptorBufferInfo output_desc_buffer_info = {};
output_desc_buffer_info.range = output_buffer_size;
auto cb_node = GetWrite<debug_printf_state::CommandBuffer>(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(device, "Unrecognized command buffer");
aborted = true;
return;
}
const auto lv_bind_point = ConvertToLvlBindPoint(bind_point);
const auto &last_bound = cb_node->lastBound[lv_bind_point];
const auto *pipeline_state = last_bound.pipeline_state;
// Allocate memory for the output block that the gpu will use to return values for printf
DPFDeviceMemoryBlock output_block = {};
VkBufferCreateInfo buffer_info = LvlInitStruct<VkBufferCreateInfo>();
buffer_info.size = output_buffer_size;
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_info = {};
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &output_block.buffer, &output_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
// Clear the output block to zeros so that only printf values from the gpu will be present
uint32_t *data;
result = vmaMapMemory(vmaAllocator, output_block.allocation, reinterpret_cast<void **>(&data));
if (result == VK_SUCCESS) {
memset(data, 0, output_buffer_size);
vmaUnmapMemory(vmaAllocator, output_block.allocation);
}
auto desc_writes = LvlInitStruct<VkWriteDescriptorSet>();
const uint32_t desc_count = 1;
// Write the descriptor
output_desc_buffer_info.buffer = output_block.buffer;
output_desc_buffer_info.offset = 0;
desc_writes.descriptorCount = 1;
desc_writes.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes.pBufferInfo = &output_desc_buffer_info;
desc_writes.dstSet = desc_sets[0];
desc_writes.dstBinding = 3;
DispatchUpdateDescriptorSets(device, desc_count, &desc_writes, 0, NULL);
if (pipeline_state) {
const auto pipeline_layout = pipeline_state->PipelineLayoutState();
// If GPL is used, it's possible the pipeline layout used at pipeline creation time is null. If CmdBindDescriptorSets has
// not been called yet (i.e., state.pipeline_null), then fall back to the layout associated with pre-raster state.
// PipelineLayoutState should be used for the purposes of determining the number of sets in the layout, but this layout
// may be a "pseudo layout" used to represent the union of pre-raster and fragment shader layouts, and therefore have a
// null handle.
const auto pipeline_layout_handle =
(last_bound.pipeline_layout) ? last_bound.pipeline_layout : pipeline_state->PreRasterPipelineLayoutState()->layout();
if (pipeline_layout->set_layouts.size() <= desc_set_bind_index) {
DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_layout_handle, desc_set_bind_index, 1, desc_sets.data(),
0, nullptr);
}
// Record buffer and memory info in CB state tracking
cb_node->buffer_infos.emplace_back(output_block, desc_sets[0], desc_pool, bind_point);
} else {
ReportSetupProblem(device, "Unable to find pipeline state");
vmaDestroyBuffer(vmaAllocator, output_block.buffer, output_block.allocation);
aborted = true;
return;
}
}
std::shared_ptr<CMD_BUFFER_STATE> DebugPrintf::CreateCmdBufferState(VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *pool) {
return std::static_pointer_cast<CMD_BUFFER_STATE>(
std::make_shared<debug_printf_state::CommandBuffer>(this, cb, pCreateInfo, pool));
}
debug_printf_state::CommandBuffer::CommandBuffer(DebugPrintf *dp, VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo, const COMMAND_POOL_STATE *pool)
: gpu_utils_state::CommandBuffer(dp, cb, pCreateInfo, pool) {}
debug_printf_state::CommandBuffer::~CommandBuffer() { Destroy(); }
void debug_printf_state::CommandBuffer::Destroy() {
ResetCBState();
CMD_BUFFER_STATE::Destroy();
}
void debug_printf_state::CommandBuffer::Reset() {
CMD_BUFFER_STATE::Reset();
ResetCBState();
}
void debug_printf_state::CommandBuffer::ResetCBState() {
auto debug_printf = static_cast<DebugPrintf *>(dev_data);
// Free the device memory and descriptor set(s) associated with a command buffer.
if (debug_printf->aborted) {
return;
}
for (auto &buffer_info : buffer_infos) {
debug_printf->DestroyBuffer(buffer_info);
}
buffer_infos.clear();
}
|