1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
|
/* Copyright (c) 2015-2023 The Khronos Group Inc.
* Copyright (c) 2015-2023 Valve Corporation
* Copyright (c) 2015-2023 LunarG, Inc.
* Copyright (C) 2015-2023 Google Inc.
* Modifications Copyright (C) 2020-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Cody Northrop <cnorthrop@google.com>
* Author: Michael Lentine <mlentine@google.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Chia-I Wu <olv@google.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Ian Elliott <ianelliott@google.com>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Dustin Graves <dustin@lunarg.com>
* Author: Jeremy Hayes <jeremy@lunarg.com>
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Karl Schultz <karl@lunarg.com>
* Author: Mark Young <marky@lunarg.com>
* Author: Mike Schuchardt <mikes@lunarg.com>
* Author: Mike Weiblen <mikew@lunarg.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: John Zulauf <jzulauf@lunarg.com>
* Author: Shannon McPherson <shannon@lunarg.com>
* Author: Jeremy Kniager <jeremyk@lunarg.com>
* Author: Tobias Hector <tobias.hector@amd.com>
* Author: Jeremy Gebben <jeremyg@lunarg.com>
*/
#include <assert.h>
#include "vk_enum_string_helper.h"
#include "chassis.h"
#include "core_validation.h"
// For given mem object, verify that it is not null or UNBOUND, if it is, report error. Return skip value.
bool CoreChecks::VerifyBoundMemoryIsValid(const DEVICE_MEMORY_STATE *mem_state, const LogObjectList &objlist,
const VulkanTypedHandle &typed_handle, const char *api_name,
const char *error_code) const {
return VerifyBoundMemoryIsValid<SimpleErrorLocation>(mem_state, objlist, typed_handle, {api_name, error_code});
}
template <typename LocType>
bool CoreChecks::VerifyBoundMemoryIsValid(const DEVICE_MEMORY_STATE *mem_state, const LogObjectList &objlist,
const VulkanTypedHandle &typed_handle, const LocType &location) const {
bool result = false;
auto type_name = object_string[typed_handle.type];
if (!mem_state) {
result |= LogError(objlist, location.Vuid(),
"%s: %s used with no memory bound. Memory should be bound by calling vkBind%sMemory().",
location.FuncName(), report_data->FormatHandle(typed_handle).c_str(), type_name + 2);
} else if (mem_state->Destroyed()) {
result |= LogError(objlist, location.Vuid(),
"%s: %s used with no memory bound and previously bound memory was freed. Memory must not be freed "
"prior to this operation.",
location.FuncName(), report_data->FormatHandle(typed_handle).c_str());
}
return result;
}
// Check to see if memory was ever bound to this image
template <typename HandleT, typename LocType>
bool CoreChecks::ValidateMemoryIsBoundToImage(HandleT handle, const IMAGE_STATE &image_state, const LocType &location) const {
bool result = false;
if (image_state.create_from_swapchain != VK_NULL_HANDLE) {
const LogObjectList objlist(handle, image_state.Handle(), image_state.create_from_swapchain);
if (!image_state.bind_swapchain) {
result |= LogError(
objlist, location.Vuid(),
"%s: %s is created by %s, and the image should be bound by calling vkBindImageMemory2(), and the pNext chain "
"includes VkBindImageMemorySwapchainInfoKHR.",
location.FuncName(), report_data->FormatHandle(image_state.image()).c_str(),
report_data->FormatHandle(image_state.create_from_swapchain).c_str());
} else if (image_state.create_from_swapchain != image_state.bind_swapchain->swapchain()) {
const LogObjectList objlist(handle, image_state.Handle(), image_state.create_from_swapchain,
image_state.bind_swapchain->Handle());
result |=
LogError(objlist, location.Vuid(),
"%s: %s is created by %s, but the image is bound by %s. The image should be created and bound by the same "
"swapchain",
location.FuncName(), report_data->FormatHandle(image_state.image()).c_str(),
report_data->FormatHandle(image_state.create_from_swapchain).c_str(),
report_data->FormatHandle(image_state.bind_swapchain->Handle()).c_str());
}
} else if (image_state.IsExternalAHB()) {
// TODO look into how to properly check for a valid bound memory for an external AHB
} else if (!image_state.sparse) {
const LogObjectList objlist(handle, image_state.Handle());
// No need to optimize this since the size will only be 3 at most
const auto &memory_states = image_state.GetBoundMemoryStates();
if (memory_states.empty()) {
result |= LogError(objlist, location.Vuid(),
"%s: %s used with no memory bound. Memory should be bound by calling vkBindImageMemory().",
location.FuncName(), report_data->FormatHandle(image_state.Handle()).c_str());
} else {
for (const auto &state : memory_states) {
result |= VerifyBoundMemoryIsValid(state.get(), objlist, image_state.Handle(), location);
}
}
}
return result;
}
// Instantiate the versions of the template needed by other .cpp files
template bool CoreChecks::ValidateMemoryIsBoundToImage<VkDevice, CoreChecks::SimpleErrorLocation>(
VkDevice_T *, IMAGE_STATE const &, CoreChecks::SimpleErrorLocation const &) const;
template bool CoreChecks::ValidateMemoryIsBoundToImage<VkCommandBuffer,
core_error::LocationVuidAdapter<sync_vuid_maps::GetImageBarrierVUIDFunctor>>(
VkCommandBuffer, IMAGE_STATE const &,
core_error::LocationVuidAdapter<sync_vuid_maps::GetImageBarrierVUIDFunctor> const &) const;
template bool CoreChecks::ValidateMemoryIsBoundToImage<VkCommandBuffer, CoreChecks::SimpleErrorLocation>(
VkCommandBuffer, IMAGE_STATE const &, CoreChecks::SimpleErrorLocation const &) const;
// Check to see if host-visible memory was bound to this buffer
bool CoreChecks::ValidateHostVisibleMemoryIsBoundToBuffer(const BUFFER_STATE &buffer_state, const char *api_name,
const char *error_code) const {
bool result = false;
result |= ValidateMemoryIsBoundToBuffer(device, buffer_state, api_name, error_code);
if (!result) {
const auto mem_state = buffer_state.MemState();
if (mem_state) {
if ((phys_dev_mem_props.memoryTypes[mem_state->alloc_info.memoryTypeIndex].propertyFlags &
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) {
result |= LogError(buffer_state.Handle(), error_code, "%s: %s used with memory that is not host visible.", api_name,
report_data->FormatHandle(buffer_state.Handle()).c_str());
}
}
}
return result;
}
// Valid usage checks for a call to SetMemBinding().
// For NULL mem case, output warning
// Make sure given object is in global object map
// IF a previous binding existed, output validation error
// Otherwise, add reference from objectInfo to memoryInfo
// Add reference off of objInfo
// TODO: We may need to refactor or pass in multiple valid usage statements to handle multiple valid usage conditions.
bool CoreChecks::ValidateSetMemBinding(VkDeviceMemory mem, const BINDABLE &mem_binding, const char *apiName) const {
bool skip = false;
// It's an error to bind an object to NULL memory
if (mem != VK_NULL_HANDLE) {
auto typed_handle = mem_binding.Handle();
if (mem_binding.sparse) {
const char *error_code = nullptr;
const char *handle_type = nullptr;
if (typed_handle.type == kVulkanObjectTypeBuffer) {
handle_type = "BUFFER";
if (strcmp(apiName, "vkBindBufferMemory()") == 0) {
error_code = "VUID-vkBindBufferMemory-buffer-01030";
} else {
error_code = "VUID-VkBindBufferMemoryInfo-buffer-01030";
}
} else if (typed_handle.type == kVulkanObjectTypeImage) {
handle_type = "IMAGE";
if (strcmp(apiName, "vkBindImageMemory()") == 0) {
error_code = "VUID-vkBindImageMemory-image-01045";
} else {
error_code = "VUID-VkBindImageMemoryInfo-image-01045";
}
} else {
// Unsupported object type
assert(false);
}
const LogObjectList objlist(mem, typed_handle);
skip |= LogError(objlist, error_code,
"In %s, attempting to bind %s to %s which was created with sparse memory flags "
"(VK_%s_CREATE_SPARSE_*_BIT).",
apiName, report_data->FormatHandle(mem).c_str(), report_data->FormatHandle(typed_handle).c_str(),
handle_type);
}
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem);
if (mem_info) {
const auto *prev_binding = mem_binding.MemState();
if (prev_binding) {
const char *error_code = nullptr;
if (typed_handle.type == kVulkanObjectTypeBuffer) {
if (strcmp(apiName, "vkBindBufferMemory()") == 0) {
error_code = "VUID-vkBindBufferMemory-buffer-07459";
} else {
error_code = "VUID-VkBindBufferMemoryInfo-buffer-07459";
}
} else if (typed_handle.type == kVulkanObjectTypeImage) {
if (strcmp(apiName, "vkBindImageMemory()") == 0) {
error_code = "VUID-vkBindImageMemory-image-07460";
} else {
error_code = "VUID-VkBindImageMemoryInfo-image-07460";
}
} else {
// Unsupported object type
assert(false);
}
const LogObjectList objlist(mem, typed_handle, prev_binding->mem());
skip |= LogError(objlist, error_code, "In %s, attempting to bind %s to %s which has already been bound to %s.",
apiName, report_data->FormatHandle(mem).c_str(), report_data->FormatHandle(typed_handle).c_str(),
report_data->FormatHandle(prev_binding->mem()).c_str());
}
}
}
return skip;
}
bool CoreChecks::IsZeroAllocationSizeAllowed(const VkMemoryAllocateInfo *pAllocateInfo) const {
const VkExternalMemoryHandleTypeFlags ignored_allocation = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT |
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT |
VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT;
#ifdef VK_USE_PLATFORM_WIN32_KHR
const auto import_memory_win32 = LvlFindInChain<VkImportMemoryWin32HandleInfoKHR>(pAllocateInfo->pNext);
if (import_memory_win32 && (import_memory_win32->handleType & ignored_allocation) != 0) {
return true;
}
#endif
const auto import_memory_fd = LvlFindInChain<VkImportMemoryFdInfoKHR>(pAllocateInfo->pNext);
if (import_memory_fd && (import_memory_fd->handleType & ignored_allocation) != 0) {
return true;
}
const auto import_memory_host_pointer = LvlFindInChain<VkImportMemoryHostPointerInfoEXT>(pAllocateInfo->pNext);
if (import_memory_host_pointer && (import_memory_host_pointer->handleType & ignored_allocation) != 0) {
return true;
}
// Handles 01874 cases
const auto export_info = LvlFindInChain<VkExportMemoryAllocateInfo>(pAllocateInfo->pNext);
if (export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
const auto dedicated_info = LvlFindInChain<VkMemoryDedicatedAllocateInfo>(pAllocateInfo->pNext);
if (dedicated_info && dedicated_info->image) {
return true;
}
}
#ifdef VK_USE_PLATFORM_FUCHSIA
const auto import_memory_zircon = LvlFindInChain<VkImportMemoryZirconHandleInfoFUCHSIA>(pAllocateInfo->pNext);
if (import_memory_zircon && (import_memory_zircon->handleType & ignored_allocation) != 0) {
return true;
}
#endif
return false;
}
bool CoreChecks::PreCallValidateAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) const {
bool skip = false;
if (Count<DEVICE_MEMORY_STATE>() >= phys_dev_props.limits.maxMemoryAllocationCount) {
skip |= LogError(device, "VUID-vkAllocateMemory-maxMemoryAllocationCount-04101",
"vkAllocateMemory: Number of currently valid memory objects is not less than the maximum allowed (%u).",
phys_dev_props.limits.maxMemoryAllocationCount);
}
if (IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
skip |= ValidateAllocateMemoryANDROID(pAllocateInfo);
} else {
if (!IsZeroAllocationSizeAllowed(pAllocateInfo) && 0 == pAllocateInfo->allocationSize) {
skip |= LogError(device, "VUID-VkMemoryAllocateInfo-allocationSize-00638", "vkAllocateMemory: allocationSize is 0.");
}
}
auto chained_flags_struct = LvlFindInChain<VkMemoryAllocateFlagsInfo>(pAllocateInfo->pNext);
if (chained_flags_struct && chained_flags_struct->flags == VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT) {
const LogObjectList objlist(device);
skip |= ValidateDeviceMaskToPhysicalDeviceCount(chained_flags_struct->deviceMask, objlist,
"VUID-VkMemoryAllocateFlagsInfo-deviceMask-00675");
skip |=
ValidateDeviceMaskToZero(chained_flags_struct->deviceMask, objlist, "VUID-VkMemoryAllocateFlagsInfo-deviceMask-00676");
}
if (pAllocateInfo->memoryTypeIndex >= phys_dev_mem_props.memoryTypeCount) {
skip |= LogError(device, "VUID-vkAllocateMemory-pAllocateInfo-01714",
"vkAllocateMemory: attempting to allocate memory type %u, which is not a valid index. Device only "
"advertises %u memory types.",
pAllocateInfo->memoryTypeIndex, phys_dev_mem_props.memoryTypeCount);
} else {
const VkMemoryType memory_type = phys_dev_mem_props.memoryTypes[pAllocateInfo->memoryTypeIndex];
if (pAllocateInfo->allocationSize > phys_dev_mem_props.memoryHeaps[memory_type.heapIndex].size) {
skip |= LogError(device, "VUID-vkAllocateMemory-pAllocateInfo-01713",
"vkAllocateMemory: attempting to allocate %" PRIu64
" bytes from heap %u,"
"but size of that heap is only %" PRIu64 " bytes.",
pAllocateInfo->allocationSize, memory_type.heapIndex,
phys_dev_mem_props.memoryHeaps[memory_type.heapIndex].size);
}
if (!enabled_features.device_coherent_memory_features.deviceCoherentMemory &&
((memory_type.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD) != 0)) {
skip |= LogError(device, "VUID-vkAllocateMemory-deviceCoherentMemory-02790",
"vkAllocateMemory: attempting to allocate memory type %u, which includes the "
"VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD memory property, but the deviceCoherentMemory feature "
"is not enabled.",
pAllocateInfo->memoryTypeIndex);
}
if ((enabled_features.core11.protectedMemory == VK_FALSE) &&
((memory_type.propertyFlags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0)) {
skip |= LogError(device, "VUID-VkMemoryAllocateInfo-memoryTypeIndex-01872",
"vkAllocateMemory(): attempting to allocate memory type %u, which includes the "
"VK_MEMORY_PROPERTY_PROTECTED_BIT memory property, but the protectedMemory feature "
"is not enabled.",
pAllocateInfo->memoryTypeIndex);
}
}
bool imported_ahb = false;
#ifdef AHB_VALIDATION_SUPPORT
// "memory is not an imported Android Hardware Buffer" refers to VkImportAndroidHardwareBufferInfoANDROID with a non-NULL
// buffer value. Memory imported has another VUID to check size and allocationSize match up
auto imported_ahb_info = LvlFindInChain<VkImportAndroidHardwareBufferInfoANDROID>(pAllocateInfo->pNext);
if (imported_ahb_info != nullptr) {
imported_ahb = imported_ahb_info->buffer != nullptr;
}
#endif // AHB_VALIDATION_SUPPORT
auto dedicated_allocate_info = LvlFindInChain<VkMemoryDedicatedAllocateInfo>(pAllocateInfo->pNext);
if (dedicated_allocate_info) {
if ((dedicated_allocate_info->buffer != VK_NULL_HANDLE) && (dedicated_allocate_info->image != VK_NULL_HANDLE)) {
skip |= LogError(device, "VUID-VkMemoryDedicatedAllocateInfo-image-01432",
"vkAllocateMemory: Either buffer or image has to be VK_NULL_HANDLE in VkMemoryDedicatedAllocateInfo");
} else if (dedicated_allocate_info->image != VK_NULL_HANDLE) {
// Dedicated VkImage
auto image_state = Get<IMAGE_STATE>(dedicated_allocate_info->image);
if (image_state->disjoint == true) {
skip |= LogError(
device, "VUID-VkMemoryDedicatedAllocateInfo-image-01797",
"vkAllocateMemory: VkImage %s can't be used in VkMemoryDedicatedAllocateInfo because it was created with "
"VK_IMAGE_CREATE_DISJOINT_BIT",
report_data->FormatHandle(dedicated_allocate_info->image).c_str());
} else {
if (!IsZeroAllocationSizeAllowed(pAllocateInfo) &&
(pAllocateInfo->allocationSize != image_state->requirements[0].size) && (imported_ahb == false)) {
const char *vuid = IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)
? "VUID-VkMemoryDedicatedAllocateInfo-image-02964"
: "VUID-VkMemoryDedicatedAllocateInfo-image-01433";
skip |=
LogError(device, vuid,
"vkAllocateMemory: Allocation Size (%" PRIu64
") needs to be equal to VkImage %s VkMemoryRequirements::size (%" PRIu64 ")",
pAllocateInfo->allocationSize, report_data->FormatHandle(dedicated_allocate_info->image).c_str(),
image_state->requirements[0].size);
}
if ((image_state->createInfo.flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0) {
skip |= LogError(
device, "VUID-VkMemoryDedicatedAllocateInfo-image-01434",
"vkAllocateMemory: VkImage %s can't be used in VkMemoryDedicatedAllocateInfo because it was created with "
"VK_IMAGE_CREATE_SPARSE_BINDING_BIT",
report_data->FormatHandle(dedicated_allocate_info->image).c_str());
}
}
} else if (dedicated_allocate_info->buffer != VK_NULL_HANDLE) {
// Dedicated VkBuffer
auto buffer_state = Get<BUFFER_STATE>(dedicated_allocate_info->buffer);
if (!IsZeroAllocationSizeAllowed(pAllocateInfo) && (pAllocateInfo->allocationSize != buffer_state->requirements.size) &&
(imported_ahb == false)) {
const char *vuid = IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)
? "VUID-VkMemoryDedicatedAllocateInfo-buffer-02965"
: "VUID-VkMemoryDedicatedAllocateInfo-buffer-01435";
skip |= LogError(device, vuid,
"vkAllocateMemory: Allocation Size (%" PRIu64
") needs to be equal to VkBuffer %s VkMemoryRequirements::size (%" PRIu64 ")",
pAllocateInfo->allocationSize, report_data->FormatHandle(dedicated_allocate_info->buffer).c_str(),
buffer_state->requirements.size);
}
if ((buffer_state->createInfo.flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) != 0) {
skip |= LogError(
device, "VUID-VkMemoryDedicatedAllocateInfo-buffer-01436",
"vkAllocateMemory: VkBuffer %s can't be used in VkMemoryDedicatedAllocateInfo because it was created with "
"VK_BUFFER_CREATE_SPARSE_BINDING_BIT",
report_data->FormatHandle(dedicated_allocate_info->buffer).c_str());
}
}
}
// TODO: VUIDs ending in 00643, 00644, 00646, 00647, 01742, 01743, 01745, 00645, 00648, 01744
return skip;
}
bool CoreChecks::PreCallValidateFreeMemory(VkDevice device, VkDeviceMemory mem, const VkAllocationCallbacks *pAllocator) const {
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem);
bool skip = false;
if (mem_info) {
skip |= ValidateObjectNotInUse(mem_info.get(), "vkFreeMemory", "VUID-vkFreeMemory-memory-00677");
}
return skip;
}
// Validate that given Map memory range is valid. This means that the memory should not already be mapped,
// and that the size of the map range should be:
// 1. Not zero
// 2. Within the size of the memory allocation
bool CoreChecks::ValidateMapMemRange(const DEVICE_MEMORY_STATE *mem_info, VkDeviceSize offset, VkDeviceSize size) const {
bool skip = false;
assert(mem_info);
const auto mem = mem_info->mem();
if (size == 0) {
skip = LogError(mem, "VUID-vkMapMemory-size-00680", "VkMapMemory: Attempting to map memory range of size zero");
}
// It is an application error to call VkMapMemory on an object that is already mapped
if (mem_info->mapped_range.size != 0) {
skip = LogError(mem, "VUID-vkMapMemory-memory-00678", "VkMapMemory: Attempting to map memory on an already-mapped %s.",
report_data->FormatHandle(mem).c_str());
}
// Validate offset is not over allocaiton size
if (offset >= mem_info->alloc_info.allocationSize) {
skip = LogError(mem, "VUID-vkMapMemory-offset-00679",
"VkMapMemory: Attempting to map memory with an offset of 0x%" PRIx64
" which is larger than the total array size 0x%" PRIx64,
offset, mem_info->alloc_info.allocationSize);
}
// Validate that offset + size is within object's allocationSize
if (size != VK_WHOLE_SIZE) {
if ((offset + size) > mem_info->alloc_info.allocationSize) {
skip = LogError(mem, "VUID-vkMapMemory-size-00681",
"VkMapMemory: Mapping Memory from 0x%" PRIx64 " to 0x%" PRIx64 " oversteps total array size 0x%" PRIx64
".",
offset, size + offset, mem_info->alloc_info.allocationSize);
}
}
return skip;
}
bool CoreChecks::ValidateInsertMemoryRange(const VulkanTypedHandle &typed_handle, const DEVICE_MEMORY_STATE *mem_info,
VkDeviceSize memoryOffset, const char *api_name) const {
bool skip = false;
if (memoryOffset >= mem_info->alloc_info.allocationSize) {
const char *error_code = nullptr;
if (typed_handle.type == kVulkanObjectTypeBuffer) {
if (strcmp(api_name, "vkBindBufferMemory()") == 0) {
error_code = "VUID-vkBindBufferMemory-memoryOffset-01031";
} else {
error_code = "VUID-VkBindBufferMemoryInfo-memoryOffset-01031";
}
} else if (typed_handle.type == kVulkanObjectTypeImage) {
if (strcmp(api_name, "vkBindImageMemory()") == 0) {
error_code = "VUID-vkBindImageMemory-memoryOffset-01046";
} else {
error_code = "VUID-VkBindImageMemoryInfo-memoryOffset-01046";
}
} else if (typed_handle.type == kVulkanObjectTypeAccelerationStructureNV) {
error_code = "VUID-VkBindAccelerationStructureMemoryInfoNV-memoryOffset-03621";
} else {
// Unsupported object type
assert(false);
}
LogObjectList objlist(mem_info->mem(), typed_handle);
skip = LogError(objlist, error_code,
"In %s, attempting to bind %s to %s, memoryOffset=0x%" PRIxLEAST64
" must be less than the memory allocation size 0x%" PRIxLEAST64 ".",
api_name, report_data->FormatHandle(mem_info->mem()).c_str(),
report_data->FormatHandle(typed_handle).c_str(), memoryOffset, mem_info->alloc_info.allocationSize);
}
return skip;
}
bool CoreChecks::ValidateInsertImageMemoryRange(VkImage image, const DEVICE_MEMORY_STATE *mem_info, VkDeviceSize mem_offset,
const char *api_name) const {
return ValidateInsertMemoryRange(VulkanTypedHandle(image, kVulkanObjectTypeImage), mem_info, mem_offset, api_name);
}
bool CoreChecks::ValidateInsertBufferMemoryRange(VkBuffer buffer, const DEVICE_MEMORY_STATE *mem_info, VkDeviceSize mem_offset,
const char *api_name) const {
return ValidateInsertMemoryRange(VulkanTypedHandle(buffer, kVulkanObjectTypeBuffer), mem_info, mem_offset, api_name);
}
bool CoreChecks::ValidateMemoryTypes(const DEVICE_MEMORY_STATE *mem_info, const uint32_t memory_type_bits, const char *funcName,
const char *msgCode) const {
bool skip = false;
if (((1 << mem_info->alloc_info.memoryTypeIndex) & memory_type_bits) == 0) {
skip = LogError(mem_info->mem(), msgCode,
"%s(): MemoryRequirements->memoryTypeBits (0x%X) for this object type are not compatible with the memory "
"type (0x%X) of %s.",
funcName, memory_type_bits, mem_info->alloc_info.memoryTypeIndex,
report_data->FormatHandle(mem_info->mem()).c_str());
}
return skip;
}
bool CoreChecks::ValidateBindBufferMemory(VkBuffer buffer, VkDeviceMemory mem, VkDeviceSize memoryOffset, const void *pNext,
const char *api_name) const {
auto buffer_state = Get<BUFFER_STATE>(buffer);
const bool bind_buffer_mem_2 = strcmp(api_name, "vkBindBufferMemory()") != 0;
bool skip = false;
if (buffer_state) {
// Track objects tied to memory
skip = ValidateSetMemBinding(mem, *buffer_state, api_name);
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem);
// Validate memory requirements alignment
if (SafeModulo(memoryOffset, buffer_state->requirements.alignment) != 0) {
const char *vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-memoryOffset-01036" : "VUID-vkBindBufferMemory-memoryOffset-01036";
skip |= LogError(buffer, vuid,
"%s: memoryOffset is 0x%" PRIxLEAST64
" but must be an integer multiple of the VkMemoryRequirements::alignment value 0x%" PRIxLEAST64
", returned from a call to vkGetBufferMemoryRequirements with buffer.",
api_name, memoryOffset, buffer_state->requirements.alignment);
}
if (mem_info) {
// Validate bound memory range information
skip |= ValidateInsertBufferMemoryRange(buffer, mem_info.get(), memoryOffset, api_name);
const char *mem_type_vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-memory-01035" : "VUID-vkBindBufferMemory-memory-01035";
skip |= ValidateMemoryTypes(mem_info.get(), buffer_state->requirements.memoryTypeBits, api_name, mem_type_vuid);
// Validate memory requirements size
if (buffer_state->requirements.size > (mem_info->alloc_info.allocationSize - memoryOffset)) {
const char *vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-size-01037" : "VUID-vkBindBufferMemory-size-01037";
skip |= LogError(buffer, vuid,
"%s: memory size minus memoryOffset is 0x%" PRIxLEAST64
" but must be at least as large as VkMemoryRequirements::size value 0x%" PRIxLEAST64
", returned from a call to vkGetBufferMemoryRequirements with buffer.",
api_name, mem_info->alloc_info.allocationSize - memoryOffset, buffer_state->requirements.size);
}
// Validate dedicated allocation
if (mem_info->IsDedicatedBuffer() &&
((mem_info->dedicated->handle.Cast<VkBuffer>() != buffer) || (memoryOffset != 0))) {
const char *vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-memory-01508" : "VUID-vkBindBufferMemory-memory-01508";
const LogObjectList objlist(buffer, mem, mem_info->dedicated->handle);
skip |= LogError(objlist, vuid,
"%s: for dedicated %s, VkMemoryDedicatedAllocateInfo::buffer %s must be equal "
"to %s and memoryOffset 0x%" PRIxLEAST64 " must be zero.",
api_name, report_data->FormatHandle(mem).c_str(),
report_data->FormatHandle(mem_info->dedicated->handle).c_str(),
report_data->FormatHandle(buffer).c_str(), memoryOffset);
}
auto chained_flags_struct = LvlFindInChain<VkMemoryAllocateFlagsInfo>(mem_info->alloc_info.pNext);
if (enabled_features.core12.bufferDeviceAddress &&
(buffer_state->createInfo.usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT) &&
(!chained_flags_struct || !(chained_flags_struct->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT))) {
skip |= LogError(buffer, "VUID-vkBindBufferMemory-bufferDeviceAddress-03339",
"%s: If buffer was created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit set, "
"memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set.",
api_name);
}
if (enabled_features.descriptor_buffer_features.descriptorBufferCaptureReplay &&
(buffer_state->createInfo.flags & VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT) &&
(!chained_flags_struct || !(chained_flags_struct->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT))) {
const char *vuid = bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-descriptorBufferCaptureReplay-08112"
: "VUID-vkBindBufferMemory-descriptorBufferCaptureReplay-08112";
skip |= LogError(
buffer, vuid,
"%s: If buffer was created with the VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, "
"memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set.",
api_name);
}
// Validate export memory handles
if ((mem_info->export_handle_type_flags != 0) &&
((mem_info->export_handle_type_flags & buffer_state->external_memory_handle) == 0)) {
const char *vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-memory-02726" : "VUID-vkBindBufferMemory-memory-02726";
const LogObjectList objlist(buffer, mem);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) has an external handleType of %s which does not include at least one "
"handle from VkBuffer (%s) handleType %s.",
api_name, report_data->FormatHandle(mem).c_str(),
string_VkExternalMemoryHandleTypeFlags(mem_info->export_handle_type_flags).c_str(),
report_data->FormatHandle(buffer).c_str(),
string_VkExternalMemoryHandleTypeFlags(buffer_state->external_memory_handle).c_str());
}
// Validate import memory handles
if (mem_info->IsImportAHB() == true) {
skip |= ValidateBufferImportedHandleANDROID(api_name, buffer_state->external_memory_handle, mem, buffer);
} else if (mem_info->IsImport() == true) {
if ((mem_info->import_handle_type_flags & buffer_state->external_memory_handle) == 0) {
const char *vuid = nullptr;
if ((bind_buffer_mem_2) && IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-VkBindBufferMemoryInfo-memory-02985";
} else if ((!bind_buffer_mem_2) &&
IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-vkBindBufferMemory-memory-02985";
} else if ((bind_buffer_mem_2) &&
!IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-VkBindBufferMemoryInfo-memory-02727";
} else if ((!bind_buffer_mem_2) &&
!IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-vkBindBufferMemory-memory-02727";
}
const LogObjectList objlist(buffer, mem);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) was created with an import operation with handleType of %s which "
"is not set in the VkBuffer (%s) VkExternalMemoryBufferCreateInfo::handleType (%s)",
api_name, report_data->FormatHandle(mem).c_str(),
string_VkExternalMemoryHandleTypeFlags(mem_info->import_handle_type_flags).c_str(),
report_data->FormatHandle(buffer).c_str(),
string_VkExternalMemoryHandleTypeFlags(buffer_state->external_memory_handle).c_str());
}
}
// Validate mix of protected buffer and memory
if ((buffer_state->unprotected == false) && (mem_info->unprotected == true)) {
const char *vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-None-01898" : "VUID-vkBindBufferMemory-None-01898";
const LogObjectList objlist(buffer, mem);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) was not created with protected memory but the VkBuffer (%s) was set "
"to use protected memory.",
api_name, report_data->FormatHandle(mem).c_str(), report_data->FormatHandle(buffer).c_str());
} else if ((buffer_state->unprotected == true) && (mem_info->unprotected == false)) {
const char *vuid =
bind_buffer_mem_2 ? "VUID-VkBindBufferMemoryInfo-None-01899" : "VUID-vkBindBufferMemory-None-01899";
const LogObjectList objlist(buffer, mem);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) was created with protected memory but the VkBuffer (%s) was not set "
"to use protected memory.",
api_name, report_data->FormatHandle(mem).c_str(), report_data->FormatHandle(buffer).c_str());
}
}
const auto *bind_buffer_memory_device_group_info = LvlFindInChain<VkBindBufferMemoryDeviceGroupInfo>(pNext);
if (bind_buffer_memory_device_group_info) {
if (bind_buffer_memory_device_group_info->deviceIndexCount != 0 &&
bind_buffer_memory_device_group_info->deviceIndexCount != device_group_create_info.physicalDeviceCount &&
device_group_create_info.physicalDeviceCount > 0) {
skip |= LogError(buffer, "VUID-VkBindBufferMemoryDeviceGroupInfo-deviceIndexCount-01606",
"%s: The number of physical devices in the logical device is %" PRIu32
", but VkBindBufferMemoryDeviceGroupInfo::deviceIndexCount is %" PRIu32 ".",
api_name, device_group_create_info.physicalDeviceCount,
bind_buffer_memory_device_group_info->deviceIndexCount);
} else {
for (uint32_t i = 0; i < bind_buffer_memory_device_group_info->deviceIndexCount; ++i) {
if (bind_buffer_memory_device_group_info->pDeviceIndices[i] >= device_group_create_info.physicalDeviceCount) {
skip |= LogError(buffer, "VUID-VkBindBufferMemoryDeviceGroupInfo-pDeviceIndices-01607",
"%s: The number of physical devices in the logical device is %" PRIu32
", but VkBindBufferMemoryDeviceGroupInfo::pDeviceIndices[%" PRIu32 "] is %" PRIu32 ".",
api_name, device_group_create_info.physicalDeviceCount, i,
bind_buffer_memory_device_group_info->pDeviceIndices[i]);
}
}
}
}
}
return skip;
}
bool CoreChecks::PreCallValidateBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory mem,
VkDeviceSize memoryOffset) const {
const char *api_name = "vkBindBufferMemory()";
return ValidateBindBufferMemory(buffer, mem, memoryOffset, nullptr, api_name);
}
bool CoreChecks::PreCallValidateBindBufferMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo *pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
snprintf(api_name, sizeof(api_name), "vkBindBufferMemory2() pBindInfos[%u]", i);
skip |= ValidateBindBufferMemory(pBindInfos[i].buffer, pBindInfos[i].memory, pBindInfos[i].memoryOffset,
pBindInfos[i].pNext, api_name);
}
return skip;
}
bool CoreChecks::PreCallValidateBindBufferMemory2KHR(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo *pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
snprintf(api_name, sizeof(api_name), "vkBindBufferMemory2KHR() pBindInfos[%u]", i);
skip |= ValidateBindBufferMemory(pBindInfos[i].buffer, pBindInfos[i].memory, pBindInfos[i].memoryOffset,
pBindInfos[i].pNext, api_name);
}
return skip;
}
bool CoreChecks::PreCallValidateGetImageMemoryRequirements(VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) const {
bool skip = false;
if (IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
skip |= ValidateGetImageMemoryRequirementsANDROID(image, "vkGetImageMemoryRequirements()");
}
auto image_state = Get<IMAGE_STATE>(image);
if (image_state) {
// Checks for no disjoint bit
if (image_state->disjoint == true) {
skip |= LogError(image, "VUID-vkGetImageMemoryRequirements-image-01588",
"vkGetImageMemoryRequirements(): %s must not have been created with the VK_IMAGE_CREATE_DISJOINT_BIT "
"(need to use vkGetImageMemoryRequirements2).",
report_data->FormatHandle(image).c_str());
}
}
return skip;
}
bool CoreChecks::ValidateGetImageMemoryRequirements2(const VkImageMemoryRequirementsInfo2 *pInfo, const char *func_name) const {
bool skip = false;
if (IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
skip |= ValidateGetImageMemoryRequirementsANDROID(pInfo->image, func_name);
}
auto image_state = Get<IMAGE_STATE>(pInfo->image);
const VkFormat image_format = image_state->createInfo.format;
const VkImageTiling image_tiling = image_state->createInfo.tiling;
const VkImagePlaneMemoryRequirementsInfo *image_plane_info = LvlFindInChain<VkImagePlaneMemoryRequirementsInfo>(pInfo->pNext);
if ((FormatIsMultiplane(image_format)) && (image_state->disjoint == true) && (image_plane_info == nullptr)) {
skip |= LogError(pInfo->image, "VUID-VkImageMemoryRequirementsInfo2-image-01589",
"%s: %s image was created with a multi-planar format (%s) and "
"VK_IMAGE_CREATE_DISJOINT_BIT, but the current pNext doesn't include a "
"VkImagePlaneMemoryRequirementsInfo struct",
func_name, report_data->FormatHandle(pInfo->image).c_str(), string_VkFormat(image_format));
}
if ((image_state->disjoint == false) && (image_plane_info != nullptr)) {
skip |= LogError(pInfo->image, "VUID-VkImageMemoryRequirementsInfo2-image-01590",
"%s: %s image was not created with VK_IMAGE_CREATE_DISJOINT_BIT,"
"but the current pNext includes a VkImagePlaneMemoryRequirementsInfo struct",
func_name, report_data->FormatHandle(pInfo->image).c_str());
}
if ((FormatIsMultiplane(image_format) == false) && (image_tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) &&
(image_plane_info != nullptr)) {
const char *vuid = IsExtEnabled(device_extensions.vk_ext_image_drm_format_modifier)
? "VUID-VkImageMemoryRequirementsInfo2-image-02280"
: "VUID-VkImageMemoryRequirementsInfo2-image-01591";
skip |= LogError(pInfo->image, vuid,
"%s: %s image is a single-plane format (%s) and does not have tiling of "
"VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,"
"but the current pNext includes a VkImagePlaneMemoryRequirementsInfo struct",
func_name, report_data->FormatHandle(pInfo->image).c_str(), string_VkFormat(image_format));
}
if (image_state->disjoint && (image_state->createInfo.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) && !image_plane_info) {
skip |= LogError(
pInfo->image, "VUID-VkImageMemoryRequirementsInfo2-image-02279",
"%s: %s image was created with VK_IMAGE_CREATE_DISJOINT_BIT and has tiling of VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, "
"but the current pNext does not include a VkImagePlaneMemoryRequirementsInfo struct",
func_name, report_data->FormatHandle(pInfo->image).c_str());
}
if (image_plane_info != nullptr) {
if ((image_tiling == VK_IMAGE_TILING_LINEAR) || (image_tiling == VK_IMAGE_TILING_OPTIMAL)) {
// Make sure planeAspect is only a single, valid plane
uint32_t planes = FormatPlaneCount(image_format);
VkImageAspectFlags aspect = image_plane_info->planeAspect;
if ((2 == planes) && (aspect != VK_IMAGE_ASPECT_PLANE_0_BIT) && (aspect != VK_IMAGE_ASPECT_PLANE_1_BIT)) {
skip |= LogError(
pInfo->image, "VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-02281",
"%s: Image %s VkImagePlaneMemoryRequirementsInfo::planeAspect is %s but can only be VK_IMAGE_ASPECT_PLANE_0_BIT"
"or VK_IMAGE_ASPECT_PLANE_1_BIT.",
func_name, report_data->FormatHandle(image_state->image()).c_str(), string_VkImageAspectFlags(aspect).c_str());
}
if ((3 == planes) && (aspect != VK_IMAGE_ASPECT_PLANE_0_BIT) && (aspect != VK_IMAGE_ASPECT_PLANE_1_BIT) &&
(aspect != VK_IMAGE_ASPECT_PLANE_2_BIT)) {
skip |= LogError(
pInfo->image, "VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-02281",
"%s: Image %s VkImagePlaneMemoryRequirementsInfo::planeAspect is %s but can only be VK_IMAGE_ASPECT_PLANE_0_BIT"
"or VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT.",
func_name, report_data->FormatHandle(image_state->image()).c_str(), string_VkImageAspectFlags(aspect).c_str());
}
}
}
return skip;
}
bool CoreChecks::PreCallValidateGetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements) const {
return ValidateGetImageMemoryRequirements2(pInfo, "vkGetImageMemoryRequirements2()");
}
bool CoreChecks::PreCallValidateGetImageMemoryRequirements2KHR(VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements) const {
return ValidateGetImageMemoryRequirements2(pInfo, "vkGetImageMemoryRequirements2KHR()");
}
bool CoreChecks::PreCallValidateMapMemory(VkDevice device, VkDeviceMemory mem, VkDeviceSize offset, VkDeviceSize size,
VkFlags flags, void **ppData) const {
bool skip = false;
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem);
if (mem_info) {
if ((phys_dev_mem_props.memoryTypes[mem_info->alloc_info.memoryTypeIndex].propertyFlags &
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) {
skip = LogError(mem, "VUID-vkMapMemory-memory-00682",
"Mapping Memory without VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set: %s.",
report_data->FormatHandle(mem).c_str());
}
if (mem_info->multi_instance) {
skip = LogError(mem, "VUID-vkMapMemory-memory-00683",
"Memory (%s) must not have been allocated with multiple instances -- either by supplying a deviceMask "
"with more than one bit set, or by allocation from a heap with the MULTI_INSTANCE heap flag set.",
report_data->FormatHandle(mem).c_str());
}
skip |= ValidateMapMemRange(mem_info.get(), offset, size);
}
return skip;
}
bool CoreChecks::PreCallValidateUnmapMemory(VkDevice device, VkDeviceMemory mem) const {
bool skip = false;
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem);
if (mem_info && !mem_info->mapped_range.size) {
// Valid Usage: memory must currently be mapped
skip |= LogError(mem, "VUID-vkUnmapMemory-memory-00689", "Unmapping Memory without memory being mapped: %s.",
report_data->FormatHandle(mem).c_str());
}
return skip;
}
bool CoreChecks::ValidateMemoryIsMapped(const char *funcName, uint32_t memRangeCount, const VkMappedMemoryRange *pMemRanges) const {
bool skip = false;
for (uint32_t i = 0; i < memRangeCount; ++i) {
auto mem_info = Get<DEVICE_MEMORY_STATE>(pMemRanges[i].memory);
if (mem_info) {
// Makes sure the memory is already mapped
if (mem_info->mapped_range.size == 0) {
skip = LogError(pMemRanges[i].memory, "VUID-VkMappedMemoryRange-memory-00684",
"%s: Attempting to use memory (%s) that is not currently host mapped.", funcName,
report_data->FormatHandle(pMemRanges[i].memory).c_str());
}
if (pMemRanges[i].size == VK_WHOLE_SIZE) {
if (mem_info->mapped_range.offset > pMemRanges[i].offset) {
skip |= LogError(pMemRanges[i].memory, "VUID-VkMappedMemoryRange-size-00686",
"%s: Flush/Invalidate offset (%zu) is less than Memory Object's offset (%zu).", funcName,
static_cast<size_t>(pMemRanges[i].offset), static_cast<size_t>(mem_info->mapped_range.offset));
}
} else {
const uint64_t data_end = (mem_info->mapped_range.size == VK_WHOLE_SIZE)
? mem_info->alloc_info.allocationSize
: (mem_info->mapped_range.offset + mem_info->mapped_range.size);
if ((mem_info->mapped_range.offset > pMemRanges[i].offset) ||
(data_end < (pMemRanges[i].offset + pMemRanges[i].size))) {
skip |= LogError(pMemRanges[i].memory, "VUID-VkMappedMemoryRange-size-00685",
"%s: Flush/Invalidate size or offset (%zu, %zu) "
"exceed the Memory Object's upper-bound (%zu).",
funcName, static_cast<size_t>(pMemRanges[i].offset + pMemRanges[i].size),
static_cast<size_t>(pMemRanges[i].offset), static_cast<size_t>(data_end));
}
}
}
}
return skip;
}
bool CoreChecks::ValidateMappedMemoryRangeDeviceLimits(const char *func_name, uint32_t mem_range_count,
const VkMappedMemoryRange *mem_ranges) const {
bool skip = false;
for (uint32_t i = 0; i < mem_range_count; ++i) {
const uint64_t atom_size = phys_dev_props.limits.nonCoherentAtomSize;
const VkDeviceSize offset = mem_ranges[i].offset;
const VkDeviceSize size = mem_ranges[i].size;
if (SafeModulo(offset, atom_size) != 0) {
skip |= LogError(mem_ranges->memory, "VUID-VkMappedMemoryRange-offset-00687",
"%s: Offset in pMemRanges[%d] is 0x%" PRIxLEAST64
", which is not a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize (0x%" PRIxLEAST64 ").",
func_name, i, offset, atom_size);
}
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem_ranges[i].memory);
if (mem_info) {
const auto allocation_size = mem_info->alloc_info.allocationSize;
if (size == VK_WHOLE_SIZE) {
const auto mapping_offset = mem_info->mapped_range.offset;
const auto mapping_size = mem_info->mapped_range.size;
const auto mapping_end = ((mapping_size == VK_WHOLE_SIZE) ? allocation_size : mapping_offset + mapping_size);
if (SafeModulo(mapping_end, atom_size) != 0 && mapping_end != allocation_size) {
skip |= LogError(mem_ranges->memory, "VUID-VkMappedMemoryRange-size-01389",
"%s: Size in pMemRanges[%d] is VK_WHOLE_SIZE and the mapping end (0x%" PRIxLEAST64
" = 0x%" PRIxLEAST64 " + 0x%" PRIxLEAST64
") not a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize (0x%" PRIxLEAST64
") and not equal to the end of the memory object (0x%" PRIxLEAST64 ").",
func_name, i, mapping_end, mapping_offset, mapping_size, atom_size, allocation_size);
}
} else {
const auto range_end = size + offset;
if (range_end != allocation_size && SafeModulo(size, atom_size) != 0) {
skip |= LogError(mem_ranges->memory, "VUID-VkMappedMemoryRange-size-01390",
"%s: Size in pMemRanges[%d] is 0x%" PRIxLEAST64
", which is not a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize (0x%" PRIxLEAST64
") and offset + size (0x%" PRIxLEAST64 " + 0x%" PRIxLEAST64 " = 0x%" PRIxLEAST64
") not equal to the memory size (0x%" PRIxLEAST64 ").",
func_name, i, size, atom_size, offset, size, range_end, allocation_size);
}
}
}
}
return skip;
}
bool CoreChecks::PreCallValidateFlushMappedMemoryRanges(VkDevice device, uint32_t memRangeCount,
const VkMappedMemoryRange *pMemRanges) const {
bool skip = false;
skip |= ValidateMappedMemoryRangeDeviceLimits("vkFlushMappedMemoryRanges", memRangeCount, pMemRanges);
skip |= ValidateMemoryIsMapped("vkFlushMappedMemoryRanges", memRangeCount, pMemRanges);
return skip;
}
bool CoreChecks::PreCallValidateInvalidateMappedMemoryRanges(VkDevice device, uint32_t memRangeCount,
const VkMappedMemoryRange *pMemRanges) const {
bool skip = false;
skip |= ValidateMappedMemoryRangeDeviceLimits("vkInvalidateMappedMemoryRanges", memRangeCount, pMemRanges);
skip |= ValidateMemoryIsMapped("vkInvalidateMappedMemoryRanges", memRangeCount, pMemRanges);
return skip;
}
bool CoreChecks::PreCallValidateGetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory mem, VkDeviceSize *pCommittedMem) const {
bool skip = false;
auto mem_info = Get<DEVICE_MEMORY_STATE>(mem);
if (mem_info) {
if ((phys_dev_mem_props.memoryTypes[mem_info->alloc_info.memoryTypeIndex].propertyFlags &
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) == 0) {
skip = LogError(mem, "VUID-vkGetDeviceMemoryCommitment-memory-00690",
"vkGetDeviceMemoryCommitment(): Querying commitment for memory without "
"VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT set: %s.",
report_data->FormatHandle(mem).c_str());
}
}
return skip;
}
bool CoreChecks::ValidateBindImageMemory(uint32_t bindInfoCount, const VkBindImageMemoryInfo *pBindInfos,
const char *api_name) const {
bool skip = false;
const bool bind_image_mem_2 = strcmp(api_name, "vkBindImageMemory()") != 0;
char error_prefix[128];
strcpy(error_prefix, api_name);
// Track all image sub resources if they are bound for bind_image_mem_2
// uint32_t[3] is which index in pBindInfos for max 3 planes
// Non disjoint images act as a single plane
layer_data::unordered_map<VkImage, std::array<uint32_t, 3>> resources_bound;
for (uint32_t i = 0; i < bindInfoCount; i++) {
if (bind_image_mem_2 == true) {
snprintf(error_prefix, sizeof(error_prefix), "%s pBindInfos[%u]", api_name, i);
}
const VkBindImageMemoryInfo &bind_info = pBindInfos[i];
auto image_state = Get<IMAGE_STATE>(bind_info.image);
if (image_state) {
// Track objects tied to memory
skip |= ValidateSetMemBinding(bind_info.memory, *image_state, error_prefix);
const auto plane_info = LvlFindInChain<VkBindImagePlaneMemoryInfo>(bind_info.pNext);
auto mem_info = Get<DEVICE_MEMORY_STATE>(bind_info.memory);
if (image_state->disjoint && plane_info == nullptr) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryInfo-image-07736",
"%s: In order to bind planes of a disjoint image, add a VkBindImagePlaneMemoryInfo structure to "
"the pNext chain of VkBindImageMemoryInfo.",
error_prefix);
}
// Need extra check for disjoint flag incase called without bindImage2 and don't want false positive errors
// no 'else' case as if that happens another VUID is already being triggered for it being invalid
if ((plane_info == nullptr) && (image_state->disjoint == false)) {
// Check non-disjoint images VkMemoryRequirements
// All validation using the image_state->requirements for external AHB is check in android only section
if (image_state->IsExternalAHB() == false) {
const VkMemoryRequirements &mem_req = image_state->requirements[0];
// Validate memory requirements alignment
if (SafeModulo(bind_info.memoryOffset, mem_req.alignment) != 0) {
const char *validation_error;
if (bind_image_mem_2 == false) {
validation_error = "VUID-vkBindImageMemory-memoryOffset-01048";
} else if (IsExtEnabled(device_extensions.vk_khr_sampler_ycbcr_conversion)) {
validation_error = "VUID-VkBindImageMemoryInfo-pNext-01616";
} else {
validation_error = "VUID-VkBindImageMemoryInfo-memoryOffset-01613";
}
skip |=
LogError(bind_info.image, validation_error,
"%s: memoryOffset is 0x%" PRIxLEAST64
" but must be an integer multiple of the VkMemoryRequirements::alignment value 0x%" PRIxLEAST64
", returned from a call to vkGetImageMemoryRequirements with image.",
error_prefix, bind_info.memoryOffset, mem_req.alignment);
}
if (mem_info) {
safe_VkMemoryAllocateInfo alloc_info = mem_info->alloc_info;
// Validate memory requirements size
if (mem_req.size > alloc_info.allocationSize - bind_info.memoryOffset) {
const char *validation_error;
if (bind_image_mem_2 == false) {
validation_error = "VUID-vkBindImageMemory-size-01049";
} else if (IsExtEnabled(device_extensions.vk_khr_sampler_ycbcr_conversion)) {
validation_error = "VUID-VkBindImageMemoryInfo-pNext-01617";
} else {
validation_error = "VUID-VkBindImageMemoryInfo-memory-01614";
}
skip |= LogError(bind_info.image, validation_error,
"%s: memory size minus memoryOffset is 0x%" PRIxLEAST64
" but must be at least as large as VkMemoryRequirements::size value 0x%" PRIxLEAST64
", returned from a call to vkGetImageMemoryRequirements with image.",
error_prefix, alloc_info.allocationSize - bind_info.memoryOffset, mem_req.size);
}
// Validate memory type used
{
const char *validation_error;
if (bind_image_mem_2 == false) {
validation_error = "VUID-vkBindImageMemory-memory-01047";
} else if (IsExtEnabled(device_extensions.vk_khr_sampler_ycbcr_conversion)) {
validation_error = "VUID-VkBindImageMemoryInfo-pNext-01615";
} else {
validation_error = "VUID-VkBindImageMemoryInfo-memory-01612";
}
skip |= ValidateMemoryTypes(mem_info.get(), mem_req.memoryTypeBits, error_prefix, validation_error);
}
}
}
if (bind_image_mem_2 == true) {
// since its a non-disjoint image, finding VkImage in map is a duplicate
auto it = resources_bound.find(image_state->image());
if (it == resources_bound.end()) {
std::array<uint32_t, 3> bound_index = {i, UINT32_MAX, UINT32_MAX};
resources_bound.emplace(image_state->image(), bound_index);
} else {
skip |= LogError(
bind_info.image, "VUID-vkBindImageMemory2-pBindInfos-04006",
"%s: The same non-disjoint image resource is being bound twice at pBindInfos[%d] and pBindInfos[%d]",
error_prefix, it->second[0], i);
}
}
} else if ((plane_info != nullptr) && (image_state->disjoint == true)) {
// Check disjoint images VkMemoryRequirements for given plane
int plane = 0;
// All validation using the image_state->plane*_requirements for external AHB is check in android only section
if (image_state->IsExternalAHB() == false) {
const VkImageAspectFlagBits aspect = plane_info->planeAspect;
switch (aspect) {
case VK_IMAGE_ASPECT_PLANE_0_BIT:
plane = 0;
break;
case VK_IMAGE_ASPECT_PLANE_1_BIT:
plane = 1;
break;
case VK_IMAGE_ASPECT_PLANE_2_BIT:
plane = 2;
break;
default:
assert(false); // parameter validation should have caught this
break;
}
const VkMemoryRequirements &disjoint_mem_req = image_state->requirements[plane];
// Validate memory requirements alignment
if (SafeModulo(bind_info.memoryOffset, disjoint_mem_req.alignment) != 0) {
skip |= LogError(
bind_info.image, "VUID-VkBindImageMemoryInfo-pNext-01620",
"%s: memoryOffset is 0x%" PRIxLEAST64
" but must be an integer multiple of the VkMemoryRequirements::alignment value 0x%" PRIxLEAST64
", returned from a call to vkGetImageMemoryRequirements2 with disjoint image for aspect plane %s.",
error_prefix, bind_info.memoryOffset, disjoint_mem_req.alignment, string_VkImageAspectFlagBits(aspect));
}
if (mem_info) {
safe_VkMemoryAllocateInfo alloc_info = mem_info->alloc_info;
// Validate memory requirements size
if (disjoint_mem_req.size > alloc_info.allocationSize - bind_info.memoryOffset) {
skip |= LogError(
bind_info.image, "VUID-VkBindImageMemoryInfo-pNext-01621",
"%s: memory size minus memoryOffset is 0x%" PRIxLEAST64
" but must be at least as large as VkMemoryRequirements::size value 0x%" PRIxLEAST64
", returned from a call to vkGetImageMemoryRequirements with disjoint image for aspect plane %s.",
error_prefix, alloc_info.allocationSize - bind_info.memoryOffset, disjoint_mem_req.size,
string_VkImageAspectFlagBits(aspect));
}
// Validate memory type used
{
skip |= ValidateMemoryTypes(mem_info.get(), disjoint_mem_req.memoryTypeBits, error_prefix,
"VUID-VkBindImageMemoryInfo-pNext-01619");
}
}
}
auto it = resources_bound.find(image_state->image());
if (it == resources_bound.end()) {
std::array<uint32_t, 3> bound_index = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
bound_index[plane] = i;
resources_bound.emplace(image_state->image(), bound_index);
} else {
if (it->second[plane] == UINT32_MAX) {
it->second[plane] = i;
} else {
skip |= LogError(bind_info.image, "VUID-vkBindImageMemory2-pBindInfos-04006",
"%s: The same disjoint image sub-resource for plane %d is being bound twice at "
"pBindInfos[%d] and pBindInfos[%d]",
error_prefix, plane, it->second[plane], i);
}
}
}
if (mem_info) {
// Validate bound memory range information
// if memory is exported to an AHB then the mem_info->allocationSize must be zero and this check is not needed
if ((mem_info->IsExport() == false) ||
((mem_info->export_handle_type_flags & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) ==
0)) {
skip |= ValidateInsertImageMemoryRange(bind_info.image, mem_info.get(), bind_info.memoryOffset, error_prefix);
}
// Validate dedicated allocation
if (mem_info->IsDedicatedImage()) {
if (enabled_features.dedicated_allocation_image_aliasing_features.dedicatedAllocationImageAliasing) {
auto current_image_state = Get<IMAGE_STATE>(bind_info.image);
if ((bind_info.memoryOffset != 0) || !current_image_state ||
!current_image_state->IsCreateInfoDedicatedAllocationImageAliasingCompatible(
mem_info->dedicated->create_info.image)) {
const char *validation_error;
if (bind_image_mem_2 == false) {
validation_error = "VUID-vkBindImageMemory-memory-02629";
} else {
validation_error = "VUID-VkBindImageMemoryInfo-memory-02629";
}
const LogObjectList objlist(bind_info.image, bind_info.memory, mem_info->dedicated->handle);
skip |= LogError(
objlist, validation_error,
"%s: for dedicated memory allocation %s, VkMemoryDedicatedAllocateInfo:: %s must compatible "
"with %s and memoryOffset 0x%" PRIxLEAST64 " must be zero.",
error_prefix, report_data->FormatHandle(bind_info.memory).c_str(),
report_data->FormatHandle(mem_info->dedicated->handle).c_str(),
report_data->FormatHandle(bind_info.image).c_str(), bind_info.memoryOffset);
}
} else {
if ((bind_info.memoryOffset != 0) || (mem_info->dedicated->handle.Cast<VkImage>() != bind_info.image)) {
const char *validation_error;
if (bind_image_mem_2 == false) {
validation_error = "VUID-vkBindImageMemory-memory-01509";
} else {
validation_error = "VUID-VkBindImageMemoryInfo-memory-01509";
}
const LogObjectList objlist(bind_info.image, bind_info.memory, mem_info->dedicated->handle);
skip |=
LogError(objlist, validation_error,
"%s: for dedicated memory allocation %s, VkMemoryDedicatedAllocateInfo:: %s must be equal "
"to %s and memoryOffset 0x%" PRIxLEAST64 " must be zero.",
error_prefix, report_data->FormatHandle(bind_info.memory).c_str(),
report_data->FormatHandle(mem_info->dedicated->handle).c_str(),
report_data->FormatHandle(bind_info.image).c_str(), bind_info.memoryOffset);
}
}
}
auto chained_flags_struct = LvlFindInChain<VkMemoryAllocateFlagsInfo>(mem_info->alloc_info.pNext);
if (enabled_features.descriptor_buffer_features.descriptorBufferCaptureReplay &&
(image_state->createInfo.flags & VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT) &&
(!chained_flags_struct || !(chained_flags_struct->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT))) {
const char *vuid = bind_image_mem_2 ? "VUID-VkBindImageMemoryInfo-descriptorBufferCaptureReplay-08113"
: "VUID-vkBindImageMemory-descriptorBufferCaptureReplay-08113";
skip |= LogError(
bind_info.image, vuid,
"%s: If image was created with the VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT bit set, "
"memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit set.",
api_name);
}
// Validate export memory handles
if ((mem_info->export_handle_type_flags != 0) &&
((mem_info->export_handle_type_flags & image_state->external_memory_handle) == 0)) {
const char *vuid =
bind_image_mem_2 ? "VUID-VkBindImageMemoryInfo-memory-02728" : "VUID-vkBindImageMemory-memory-02728";
const LogObjectList objlist(bind_info.image, bind_info.memory);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) has an external handleType of %s which does not include at least "
"one handle from VkImage (%s) handleType %s.",
error_prefix, report_data->FormatHandle(bind_info.memory).c_str(),
string_VkExternalMemoryHandleTypeFlags(mem_info->export_handle_type_flags).c_str(),
report_data->FormatHandle(bind_info.image).c_str(),
string_VkExternalMemoryHandleTypeFlags(image_state->external_memory_handle).c_str());
}
// Validate import memory handles
if (mem_info->IsImportAHB() == true) {
skip |= ValidateImageImportedHandleANDROID(api_name, image_state->external_memory_handle, bind_info.memory,
bind_info.image);
} else if (mem_info->IsImport() == true) {
if ((mem_info->import_handle_type_flags & image_state->external_memory_handle) == 0) {
const char *vuid = nullptr;
if ((bind_image_mem_2) &&
IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-VkBindImageMemoryInfo-memory-02989";
} else if ((!bind_image_mem_2) &&
IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-vkBindImageMemory-memory-02989";
} else if ((bind_image_mem_2) &&
!IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-VkBindImageMemoryInfo-memory-02729";
} else if ((!bind_image_mem_2) &&
!IsExtEnabled(device_extensions.vk_android_external_memory_android_hardware_buffer)) {
vuid = "VUID-vkBindImageMemory-memory-02729";
}
const LogObjectList objlist(bind_info.image, bind_info.memory);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) was created with an import operation with handleType of %s "
"which is not set in the VkImage (%s) VkExternalMemoryImageCreateInfo::handleType (%s)",
api_name, report_data->FormatHandle(bind_info.memory).c_str(),
string_VkExternalMemoryHandleTypeFlags(mem_info->import_handle_type_flags).c_str(),
report_data->FormatHandle(bind_info.image).c_str(),
string_VkExternalMemoryHandleTypeFlags(image_state->external_memory_handle).c_str());
}
}
// Validate mix of protected buffer and memory
if ((image_state->unprotected == false) && (mem_info->unprotected == true)) {
const char *vuid =
bind_image_mem_2 ? "VUID-VkBindImageMemoryInfo-None-01901" : "VUID-vkBindImageMemory-None-01901";
const LogObjectList objlist(bind_info.image, bind_info.memory);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) was not created with protected memory but the VkImage (%s) was "
"set to use protected memory.",
api_name, report_data->FormatHandle(bind_info.memory).c_str(),
report_data->FormatHandle(bind_info.image).c_str());
} else if ((image_state->unprotected == true) && (mem_info->unprotected == false)) {
const char *vuid =
bind_image_mem_2 ? "VUID-VkBindImageMemoryInfo-None-01902" : "VUID-vkBindImageMemory-None-01902";
const LogObjectList objlist(bind_info.image, bind_info.memory);
skip |= LogError(objlist, vuid,
"%s: The VkDeviceMemory (%s) was created with protected memory but the VkImage (%s) was not "
"set to use protected memory.",
api_name, report_data->FormatHandle(bind_info.memory).c_str(),
report_data->FormatHandle(bind_info.image).c_str());
}
}
const auto swapchain_info = LvlFindInChain<VkBindImageMemorySwapchainInfoKHR>(bind_info.pNext);
if (swapchain_info) {
if (bind_info.memory != VK_NULL_HANDLE) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryInfo-pNext-01631", "%s: %s is not VK_NULL_HANDLE.",
error_prefix, report_data->FormatHandle(bind_info.memory).c_str());
}
if (image_state->create_from_swapchain != swapchain_info->swapchain) {
const LogObjectList objlist(image_state->image(), image_state->create_from_swapchain,
swapchain_info->swapchain);
skip |= LogError(
objlist, kVUID_Core_BindImageMemory_Swapchain,
"%s: %s is created by %s, but the image is bound by %s. The image should be created and bound by the same "
"swapchain",
error_prefix, report_data->FormatHandle(image_state->image()).c_str(),
report_data->FormatHandle(image_state->create_from_swapchain).c_str(),
report_data->FormatHandle(swapchain_info->swapchain).c_str());
}
auto swapchain_state = Get<SWAPCHAIN_NODE>(swapchain_info->swapchain);
if (swapchain_state) {
if (swapchain_state->images.size() <= swapchain_info->imageIndex) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemorySwapchainInfoKHR-imageIndex-01644",
"%s: imageIndex (%" PRIu32 ") is out of bounds of %s images (size: %zu)", error_prefix,
swapchain_info->imageIndex, report_data->FormatHandle(swapchain_info->swapchain).c_str(),
swapchain_state->images.size());
}
if (IsExtEnabled(device_extensions.vk_ext_swapchain_maintenance1) &&
(swapchain_state->createInfo.flags & VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT)) {
if (swapchain_state->images[swapchain_info->imageIndex].acquired == false) {
skip |= LogError(
bind_info.image, "VUID-VkBindImageMemorySwapchainInfoKHR-swapchain-07756",
"%s: The swapchain was created with VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT but "
"imageIndex (%" PRIu32 ") has not been acquired",
error_prefix, swapchain_info->imageIndex);
}
}
}
} else {
if (image_state->create_from_swapchain) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryInfo-image-01630",
"%s: pNext of VkBindImageMemoryInfo doesn't include VkBindImageMemorySwapchainInfoKHR.",
error_prefix);
}
if (!mem_info) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryInfo-pNext-01632", "%s: %s is invalid.", error_prefix,
report_data->FormatHandle(bind_info.memory).c_str());
}
}
const auto bind_image_memory_device_group_info = LvlFindInChain<VkBindImageMemoryDeviceGroupInfo>(bind_info.pNext);
if (bind_image_memory_device_group_info && bind_image_memory_device_group_info->splitInstanceBindRegionCount != 0) {
if (!(image_state->createInfo.flags & VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT)) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryInfo-pNext-01627",
"%s: pNext of VkBindImageMemoryInfo contains VkBindImageMemoryDeviceGroupInfo with "
"splitInstanceBindRegionCount (%" PRIi32
") not equal to 0 and %s is not created with "
"VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT.",
error_prefix, bind_image_memory_device_group_info->splitInstanceBindRegionCount,
report_data->FormatHandle(image_state->image()).c_str());
}
uint32_t phy_dev_square = 1;
if (device_group_create_info.physicalDeviceCount > 0) {
phy_dev_square = device_group_create_info.physicalDeviceCount * device_group_create_info.physicalDeviceCount;
}
if (bind_image_memory_device_group_info->splitInstanceBindRegionCount != phy_dev_square) {
skip |= LogError(
bind_info.image, "VUID-VkBindImageMemoryDeviceGroupInfo-splitInstanceBindRegionCount-01636",
"%s: pNext of VkBindImageMemoryInfo contains VkBindImageMemoryDeviceGroupInfo with "
"splitInstanceBindRegionCount (%" PRIi32
") which is not 0 and different from the number of physical devices in the logical device squared (%" PRIu32
").",
error_prefix, bind_image_memory_device_group_info->splitInstanceBindRegionCount, phy_dev_square);
}
}
if (plane_info) {
// Checks for disjoint bit in image
if (image_state->disjoint == false) {
skip |= LogError(
bind_info.image, "VUID-VkBindImageMemoryInfo-pNext-01618",
"%s: pNext of VkBindImageMemoryInfo contains VkBindImagePlaneMemoryInfo and %s is not created with "
"VK_IMAGE_CREATE_DISJOINT_BIT.",
error_prefix, report_data->FormatHandle(image_state->image()).c_str());
}
// Make sure planeAspect is only a single, valid plane
uint32_t planes = FormatPlaneCount(image_state->createInfo.format);
VkImageAspectFlags aspect = plane_info->planeAspect;
if ((2 == planes) && (aspect != VK_IMAGE_ASPECT_PLANE_0_BIT) && (aspect != VK_IMAGE_ASPECT_PLANE_1_BIT)) {
skip |= LogError(
bind_info.image, "VUID-VkBindImagePlaneMemoryInfo-planeAspect-02283",
"%s: Image %s VkBindImagePlaneMemoryInfo::planeAspect is %s but can only be VK_IMAGE_ASPECT_PLANE_0_BIT"
"or VK_IMAGE_ASPECT_PLANE_1_BIT.",
error_prefix, report_data->FormatHandle(image_state->image()).c_str(),
string_VkImageAspectFlags(aspect).c_str());
}
if ((3 == planes) && (aspect != VK_IMAGE_ASPECT_PLANE_0_BIT) && (aspect != VK_IMAGE_ASPECT_PLANE_1_BIT) &&
(aspect != VK_IMAGE_ASPECT_PLANE_2_BIT)) {
skip |= LogError(
bind_info.image, "VUID-VkBindImagePlaneMemoryInfo-planeAspect-02283",
"%s: Image %s VkBindImagePlaneMemoryInfo::planeAspect is %s but can only be VK_IMAGE_ASPECT_PLANE_0_BIT"
"or VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT.",
error_prefix, report_data->FormatHandle(image_state->image()).c_str(),
string_VkImageAspectFlags(aspect).c_str());
}
}
}
const auto bind_image_memory_device_group = LvlFindInChain<VkBindImageMemoryDeviceGroupInfo>(bind_info.pNext);
if (bind_image_memory_device_group) {
if (bind_image_memory_device_group->deviceIndexCount > 0 &&
bind_image_memory_device_group->splitInstanceBindRegionCount > 0) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryDeviceGroupInfo-deviceIndexCount-01633",
"%s: VkBindImageMemoryDeviceGroupInfo in pNext of pBindInfos[%" PRIu32
"] has both deviceIndexCount and splitInstanceBindRegionCount greater than 0.",
error_prefix, i);
}
if (bind_image_memory_device_group->deviceIndexCount != 0 &&
bind_image_memory_device_group->deviceIndexCount != device_group_create_info.physicalDeviceCount &&
device_group_create_info.physicalDeviceCount > 0) {
skip |= LogError(bind_info.image, "VUID-VkBindImageMemoryDeviceGroupInfo-deviceIndexCount-01634",
"%s: The number of physical devices in the logical device is %" PRIu32
", but VkBindImageMemoryDeviceGroupInfo::deviceIndexCount is %" PRIu32 ".",
api_name, device_group_create_info.physicalDeviceCount,
bind_image_memory_device_group->deviceIndexCount);
}
}
}
// Check to make sure all disjoint planes were bound
for (auto &resource : resources_bound) {
auto image_state = Get<IMAGE_STATE>(resource.first);
if (image_state->disjoint == true) {
uint32_t total_planes = FormatPlaneCount(image_state->createInfo.format);
for (uint32_t i = 0; i < total_planes; i++) {
if (resource.second[i] == UINT32_MAX) {
skip |= LogError(resource.first, "VUID-vkBindImageMemory2-pBindInfos-02858",
"%s: Plane %u of the disjoint image was not bound. All %d planes need to bound individually "
"in separate pBindInfos in a single call.",
api_name, i, total_planes);
}
}
}
}
return skip;
}
bool CoreChecks::PreCallValidateBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory mem,
VkDeviceSize memoryOffset) const {
bool skip = false;
auto image_state = Get<IMAGE_STATE>(image);
if (image_state) {
// Checks for no disjoint bit
if (image_state->disjoint == true) {
skip |=
LogError(image, "VUID-vkBindImageMemory-image-01608",
"%s must not have been created with the VK_IMAGE_CREATE_DISJOINT_BIT (need to use vkBindImageMemory2).",
report_data->FormatHandle(image).c_str());
}
}
auto bind_info = LvlInitStruct<VkBindImageMemoryInfo>();
bind_info.image = image;
bind_info.memory = mem;
bind_info.memoryOffset = memoryOffset;
skip |= ValidateBindImageMemory(1, &bind_info, "vkBindImageMemory()");
return skip;
}
void CoreChecks::PostCallRecordBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory mem, VkDeviceSize memoryOffset,
VkResult result) {
if (VK_SUCCESS != result) return;
StateTracker::PostCallRecordBindImageMemory(device, image, mem, memoryOffset, result);
auto image_state = Get<IMAGE_STATE>(image);
if (image_state) {
image_state->SetInitialLayoutMap();
}
}
bool CoreChecks::PreCallValidateBindImageMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo *pBindInfos) const {
return ValidateBindImageMemory(bindInfoCount, pBindInfos, "vkBindImageMemory2()");
}
void CoreChecks::PostCallRecordBindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo *pBindInfos,
VkResult result) {
if (VK_SUCCESS != result) return;
StateTracker::PostCallRecordBindImageMemory2(device, bindInfoCount, pBindInfos, result);
for (uint32_t i = 0; i < bindInfoCount; i++) {
auto image_state = Get<IMAGE_STATE>(pBindInfos[i].image);
if (image_state) {
image_state->SetInitialLayoutMap();
}
}
}
bool CoreChecks::PreCallValidateBindImageMemory2KHR(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo *pBindInfos) const {
return ValidateBindImageMemory(bindInfoCount, pBindInfos, "vkBindImageMemory2KHR()");
}
void CoreChecks::PostCallRecordBindImageMemory2KHR(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo *pBindInfos,
VkResult result) {
if (VK_SUCCESS != result) return;
StateTracker::PostCallRecordBindImageMemory2KHR(device, bindInfoCount, pBindInfos, result);
for (uint32_t i = 0; i < bindInfoCount; i++) {
auto image_state = Get<IMAGE_STATE>(pBindInfos[i].image);
if (image_state) {
image_state->SetInitialLayoutMap();
}
}
}
bool CoreChecks::ValidateSparseMemoryBind(const VkSparseMemoryBind &bind, VkDeviceSize resource_size, const char *func_name,
const char *parameter_name) const {
bool skip = false;
auto mem_info = Get<DEVICE_MEMORY_STATE>(bind.memory);
if (mem_info) {
if (phys_dev_mem_props.memoryTypes[mem_info->alloc_info.memoryTypeIndex].propertyFlags &
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-memory-01097",
"%s: %s memory type has VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set.", func_name, parameter_name);
}
if (bind.memoryOffset >= mem_info->alloc_info.allocationSize) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-memoryOffset-01101",
"%s: %s memoryOffset (%" PRIu64 ") must be less than the size of memory (%" PRIu64 ")", func_name,
parameter_name, bind.memoryOffset, mem_info->alloc_info.allocationSize);
}
if ((mem_info->alloc_info.allocationSize - bind.memoryOffset) < bind.size) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-size-01102",
"%s: %s size (%" PRIu64 ") must be less than or equal to the size of memory (%" PRIu64
") minus memoryOffset (%" PRIu64 ").",
func_name, parameter_name, bind.size, mem_info->alloc_info.allocationSize, bind.memoryOffset);
}
}
if (bind.size <= 0) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-size-01098", "%s: %s size (%" PRIu64 ") must be greater than 0.",
func_name, parameter_name, bind.size);
}
if (resource_size <= bind.resourceOffset) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-resourceOffset-01099",
"%s: %s resourceOffset (%" PRIu64 ") must be less than the size of the resource (%" PRIu64 ").", func_name,
parameter_name, bind.resourceOffset, resource_size);
}
if ((resource_size - bind.resourceOffset) < bind.size) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-size-01100",
"%s: %s size (%" PRIu64 ") must be less than or equal to the size of the resource (%" PRIu64
") minus resourceOffset (%" PRIu64 ").",
func_name, parameter_name, bind.size, resource_size, bind.resourceOffset);
}
return skip;
}
bool CoreChecks::ValidateImageSubresourceSparseImageMemoryBind(IMAGE_STATE const &image_state,
VkImageSubresource const &subresource, uint32_t image_idx,
uint32_t bind_idx) const {
bool skip =
ValidateImageAspectMask(image_state.image(), image_state.createInfo.format, subresource.aspectMask, image_state.disjoint,
"vkQueueSparseBind()", "VUID-VkSparseImageMemoryBind-subresource-01106");
if (subresource.mipLevel >= image_state.createInfo.mipLevels) {
skip |=
LogError(image_state.Handle(), "VUID-VkSparseImageMemoryBind-subresource-01106",
"vkQueueBindSparse(): pBindInfo[%" PRIu32 "].pImageBinds[%" PRIu32 "].subresource.mipLevel (%" PRIu32
") is not less than mipLevels (%" PRIu32 ") of image pBindInfo[%" PRIu32 "].pImageBinds[%" PRIu32 "].image.",
bind_idx, image_idx, subresource.mipLevel, image_state.createInfo.mipLevels, bind_idx, image_idx);
}
if (subresource.arrayLayer >= image_state.createInfo.arrayLayers) {
skip |=
LogError(image_state.Handle(), "VUID-VkSparseImageMemoryBind-subresource-01106",
"vkQueueBindSparse(): pBindInfo[%" PRIu32 "].pImageBinds[%" PRIu32 "].subresource.arrayLayer (%" PRIu32
") is not less than arrayLayers (%" PRIu32 ") of image pBindInfo[%" PRIu32 "].pImageBinds[%" PRIu32 "].image.",
bind_idx, image_idx, subresource.arrayLayer, image_state.createInfo.arrayLayers, bind_idx, image_idx);
}
return skip;
}
// This will only be called after we are sure the image was created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
bool CoreChecks::ValidateSparseImageMemoryBind(IMAGE_STATE const *image_state, VkSparseImageMemoryBind const &bind,
uint32_t image_idx, uint32_t bind_idx) const {
bool skip = false;
auto const mem_info = Get<DEVICE_MEMORY_STATE>(bind.memory);
if (mem_info) {
// TODO: The closest one should be VUID-VkSparseImageMemoryBind-memory-01105 instead of the mentioned
// one. We also need to check memory_bind.memory
if (bind.memoryOffset >= mem_info->alloc_info.allocationSize) {
skip |= LogError(bind.memory, "VUID-VkSparseMemoryBind-memoryOffset-01101",
"vkQueueBindSparse(): pBindInfo[%" PRIu32 "].pImageBinds[%" PRIu32 "]: memoryOffset (%" PRIu64
") is not less than the size (%" PRIu64 ") of memory",
bind_idx, image_idx, bind.memoryOffset, mem_info->alloc_info.allocationSize);
}
}
if (image_state) {
skip |= ValidateImageSubresourceSparseImageMemoryBind(*image_state, bind.subresource, image_idx, bind_idx);
for (auto const &requirements : image_state->sparse_requirements) {
VkExtent3D const &granularity = requirements.formatProperties.imageGranularity;
if (SafeModulo(bind.offset.x, granularity.width) != 0) {
skip |= LogError(image_state->Handle(), "VUID-VkSparseImageMemoryBind-offset-01107",
"vkQueueBindSparse(): pImageBinds[%" PRIu32 "].pBindInfo[%" PRIu32 "]: offset.x (%" PRIi32
") must be a multiple of the sparse image block width "
"(VkSparseImageFormatProperties::imageGranularity.width (%" PRIu32 ")) of the image",
bind_idx, image_idx, bind.offset.x, granularity.width);
}
if (SafeModulo(bind.offset.y, granularity.height) != 0) {
skip |= LogError(image_state->Handle(), "VUID-VkSparseImageMemoryBind-offset-01109",
"vkQueueBindSparse(): pImageBinds[%" PRIu32 "].pBindInfo[%" PRIu32 "]: offset.x (%" PRIi32
") must be a multiple of the sparse image block height "
"(VkSparseImageFormatProperties::imageGranularity.height (%" PRIu32 ")) of the image",
bind_idx, image_idx, bind.offset.y, granularity.height);
}
if (SafeModulo(bind.offset.z, granularity.depth) != 0) {
skip |= LogError(image_state->Handle(), "VUID-VkSparseImageMemoryBind-offset-01111",
"vkQueueBindSparse(): pImageBinds[%" PRIu32 "].pBindInfo[%" PRIu32 "]: offset.z (%" PRIi32
") must be a multiple of the sparse image block depth "
"(VkSparseImageFormatProperties::imageGranularity.depth (%" PRIu32 ")) of the image",
bind_idx, image_idx, bind.offset.z, granularity.depth);
}
VkExtent3D const subresource_extent =
image_state->GetSubresourceExtent(bind.subresource.aspectMask, bind.subresource.mipLevel);
if ((SafeModulo(bind.extent.width, granularity.width) != 0) &&
((bind.extent.width + bind.offset.x) != subresource_extent.width)) {
skip |= LogError(image_state->Handle(), "VUID-VkSparseImageMemoryBind-extent-01108",
"vkQueueBindSparse(): pImageBinds[%" PRIu32 "].pBindInfo[%" PRIu32 "]: extent.width (%" PRIu32
") must either be a multiple of the sparse image block width "
"(VkSparseImageFormatProperties::imageGranularity.width (%" PRIu32
")) of the image, or else (extent.width + offset.x) (%" PRIu32
") must equal the width of the image subresource (%" PRIu32 ")",
bind_idx, image_idx, bind.extent.width, granularity.width, bind.extent.width + bind.offset.x,
subresource_extent.width);
}
if ((SafeModulo(bind.extent.height, granularity.height) != 0) &&
((bind.extent.height + bind.offset.y) != subresource_extent.height)) {
skip |= LogError(image_state->Handle(), "VUID-VkSparseImageMemoryBind-extent-01110",
"vkQueueBindSparse(): pImageBinds[%" PRIu32 "].pBindInfo[%" PRIu32 "]: extent.height (%" PRIu32
") must either be a multiple of the sparse image block height "
"(VkSparseImageFormatProperties::imageGranularity.height (%" PRIu32
")) of the image, or else (extent.height + offset.y) (%" PRIu32
") must equal the height of the image subresource (%" PRIu32 ")",
bind_idx, image_idx, bind.extent.height, granularity.height, bind.extent.height + bind.offset.y,
subresource_extent.height);
}
if ((SafeModulo(bind.extent.depth, granularity.depth) != 0) &&
((bind.extent.depth + bind.offset.z) != subresource_extent.depth)) {
skip |= LogError(image_state->Handle(), "VUID-VkSparseImageMemoryBind-extent-01112",
"vkQueueBindSparse(): pImageBinds[%" PRIu32 "].pBindInfo[%" PRIu32 "]: extent.depth (%" PRIu32
") must either be a multiple of the sparse image block depth "
"(VkSparseImageFormatProperties::imageGranularity.depth (%" PRIu32
")) of the image, or else (extent.depth + offset.z) (%" PRIu32
") must equal the depth of the image subresource (%" PRIu32 ")",
bind_idx, image_idx, bind.extent.depth, granularity.depth, bind.extent.depth + bind.offset.z,
subresource_extent.depth);
}
}
}
return skip;
}
bool CoreChecks::ValidateGetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo,
const char *apiName) const {
bool skip = false;
if (!enabled_features.core12.bufferDeviceAddress && !enabled_features.buffer_device_address_ext_features.bufferDeviceAddress) {
skip |= LogError(pInfo->buffer, "VUID-vkGetBufferDeviceAddress-bufferDeviceAddress-03324",
"%s: The bufferDeviceAddress feature must: be enabled.", apiName);
}
if (physical_device_count > 1 && !enabled_features.core12.bufferDeviceAddressMultiDevice &&
!enabled_features.buffer_device_address_ext_features.bufferDeviceAddressMultiDevice) {
skip |= LogError(pInfo->buffer, "VUID-vkGetBufferDeviceAddress-device-03325",
"%s: If device was created with multiple physical devices, then the "
"bufferDeviceAddressMultiDevice feature must: be enabled.",
apiName);
}
auto buffer_state = Get<BUFFER_STATE>(pInfo->buffer);
if (buffer_state) {
if (!(buffer_state->createInfo.flags & VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)) {
skip |= ValidateMemoryIsBoundToBuffer(device, *buffer_state, apiName, "VUID-VkBufferDeviceAddressInfo-buffer-02600");
}
skip |= ValidateBufferUsageFlags(device, *buffer_state, VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, true,
"VUID-VkBufferDeviceAddressInfo-buffer-02601", apiName,
"VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT");
}
return skip;
}
bool CoreChecks::PreCallValidateGetBufferDeviceAddressEXT(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) const {
return ValidateGetBufferDeviceAddress(device, static_cast<const VkBufferDeviceAddressInfo *>(pInfo),
"vkGetBufferDeviceAddressEXT");
}
bool CoreChecks::PreCallValidateGetBufferDeviceAddressKHR(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) const {
return ValidateGetBufferDeviceAddress(device, static_cast<const VkBufferDeviceAddressInfo *>(pInfo),
"vkGetBufferDeviceAddressKHR");
}
bool CoreChecks::PreCallValidateGetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) const {
return ValidateGetBufferDeviceAddress(device, static_cast<const VkBufferDeviceAddressInfo *>(pInfo),
"vkGetBufferDeviceAddress");
}
bool CoreChecks::ValidateGetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo,
const char *apiName) const {
bool skip = false;
if (!enabled_features.core12.bufferDeviceAddress) {
skip |= LogError(pInfo->buffer, "VUID-vkGetBufferOpaqueCaptureAddress-None-03326",
"%s(): The bufferDeviceAddress feature must: be enabled.", apiName);
}
if (physical_device_count > 1 && !enabled_features.core12.bufferDeviceAddressMultiDevice) {
skip |= LogError(pInfo->buffer, "VUID-vkGetBufferOpaqueCaptureAddress-device-03327",
"%s(): If device was created with multiple physical devices, then the "
"bufferDeviceAddressMultiDevice feature must: be enabled.",
apiName);
}
return skip;
}
bool CoreChecks::PreCallValidateGetBufferOpaqueCaptureAddressKHR(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) const {
return ValidateGetBufferOpaqueCaptureAddress(device, static_cast<const VkBufferDeviceAddressInfo *>(pInfo),
"vkGetBufferOpaqueCaptureAddressKHR");
}
bool CoreChecks::PreCallValidateGetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) const {
return ValidateGetBufferOpaqueCaptureAddress(device, static_cast<const VkBufferDeviceAddressInfo *>(pInfo),
"vkGetBufferOpaqueCaptureAddress");
}
bool CoreChecks::ValidateGetDeviceMemoryOpaqueCaptureAddress(VkDevice device, const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo,
const char *apiName) const {
bool skip = false;
if (!enabled_features.core12.bufferDeviceAddress) {
skip |= LogError(pInfo->memory, "VUID-vkGetDeviceMemoryOpaqueCaptureAddress-None-03334",
"%s(): The bufferDeviceAddress feature must: be enabled.", apiName);
}
if (physical_device_count > 1 && !enabled_features.core12.bufferDeviceAddressMultiDevice) {
skip |= LogError(pInfo->memory, "VUID-vkGetDeviceMemoryOpaqueCaptureAddress-device-03335",
"%s(): If device was created with multiple physical devices, then the "
"bufferDeviceAddressMultiDevice feature must: be enabled.",
apiName);
}
auto mem_info = Get<DEVICE_MEMORY_STATE>(pInfo->memory);
if (mem_info) {
auto chained_flags_struct = LvlFindInChain<VkMemoryAllocateFlagsInfo>(mem_info->alloc_info.pNext);
if (!chained_flags_struct || !(chained_flags_struct->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT)) {
skip |= LogError(pInfo->memory, "VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-memory-03336",
"%s(): memory must have been allocated with VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT.", apiName);
}
}
return skip;
}
bool CoreChecks::PreCallValidateGetDeviceMemoryOpaqueCaptureAddressKHR(VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo) const {
return ValidateGetDeviceMemoryOpaqueCaptureAddress(device, static_cast<const VkDeviceMemoryOpaqueCaptureAddressInfo *>(pInfo),
"vkGetDeviceMemoryOpaqueCaptureAddressKHR");
}
bool CoreChecks::PreCallValidateGetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo) const {
return ValidateGetDeviceMemoryOpaqueCaptureAddress(device, static_cast<const VkDeviceMemoryOpaqueCaptureAddressInfo *>(pInfo),
"vkGetDeviceMemoryOpaqueCaptureAddress");
}
|