1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
|
/* Copyright (c) 2018-2023 The Khronos Group Inc.
* Copyright (c) 2018-2023 Valve Corporation
* Copyright (c) 2018-2023 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Karl Schultz <karl@lunarg.com>
* Author: Tony Barbour <tony@lunarg.com>
*/
#include <climits>
#include <cmath>
#include "gpu_validation.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include "layer_chassis_dispatch.h"
#include "gpu_vuids.h"
#include "buffer_state.h"
#include "cmd_buffer_state.h"
#include "render_pass_state.h"
#include "vk_layer_config.h"
// Generated shaders
#include "gpu_shaders/gpu_shaders_constants.h"
#include "gpu_pre_draw_vert.h"
#include "gpu_pre_dispatch_comp.h"
#include "gpu_as_inspection_comp.h"
// Keep in sync with the GLSL shader below.
struct GpuAccelerationStructureBuildValidationBuffer {
uint32_t instances_to_validate;
uint32_t replacement_handle_bits_0;
uint32_t replacement_handle_bits_1;
uint32_t invalid_handle_found;
uint32_t invalid_handle_bits_0;
uint32_t invalid_handle_bits_1;
uint32_t valid_handles_count;
};
bool GpuAssisted::CheckForDescriptorIndexing(DeviceFeatures enabled_features) const {
bool result =
(IsExtEnabled(device_extensions.vk_ext_descriptor_indexing) &&
(enabled_features.core12.descriptorIndexing || enabled_features.core12.shaderInputAttachmentArrayDynamicIndexing ||
enabled_features.core12.shaderUniformTexelBufferArrayDynamicIndexing ||
enabled_features.core12.shaderStorageTexelBufferArrayDynamicIndexing ||
enabled_features.core12.shaderUniformBufferArrayNonUniformIndexing ||
enabled_features.core12.shaderSampledImageArrayNonUniformIndexing ||
enabled_features.core12.shaderStorageBufferArrayNonUniformIndexing ||
enabled_features.core12.shaderStorageImageArrayNonUniformIndexing ||
enabled_features.core12.shaderInputAttachmentArrayNonUniformIndexing ||
enabled_features.core12.shaderUniformTexelBufferArrayNonUniformIndexing ||
enabled_features.core12.shaderStorageTexelBufferArrayNonUniformIndexing ||
enabled_features.core12.descriptorBindingUniformBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingSampledImageUpdateAfterBind ||
enabled_features.core12.descriptorBindingStorageImageUpdateAfterBind ||
enabled_features.core12.descriptorBindingStorageBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingUniformTexelBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingStorageTexelBufferUpdateAfterBind ||
enabled_features.core12.descriptorBindingUpdateUnusedWhilePending ||
enabled_features.core12.descriptorBindingPartiallyBound ||
enabled_features.core12.descriptorBindingVariableDescriptorCount || enabled_features.core12.runtimeDescriptorArray));
return result;
}
void GpuAssisted::PreCallRecordCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer, void *cb_state_data) {
create_buffer_api_state *cb_state = reinterpret_cast<create_buffer_api_state *>(cb_state_data);
if (cb_state) {
// Ray tracing acceleration structure instance buffers also need the storage buffer usage as
// acceleration structure build validation will find and replace invalid acceleration structure
// handles inside of a compute shader.
if (cb_state->modified_create_info.usage & VK_BUFFER_USAGE_RAY_TRACING_BIT_NV) {
cb_state->modified_create_info.usage |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
}
// Indirect buffers will require validation shader to bind the indirect buffers as a storage buffer.
if ((validate_draw_indirect || validate_dispatch_indirect) &&
cb_state->modified_create_info.usage & VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT) {
cb_state->modified_create_info.usage |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
}
}
ValidationStateTracker::PreCallRecordCreateBuffer(device, pCreateInfo, pAllocator, pBuffer, cb_state_data);
}
// Perform initializations that can be done at Create Device time.
void GpuAssisted::CreateDevice(const VkDeviceCreateInfo *pCreateInfo) {
// GpuAssistedBase::CreateDevice will set up bindings
VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT |
VK_SHADER_STAGE_MESH_BIT_NV | VK_SHADER_STAGE_TASK_BIT_NV |
kShaderStageAllRayTracing,
NULL};
bindings_.push_back(binding);
for (auto i = 1; i < 3; i++) {
binding.binding = i;
bindings_.push_back(binding);
}
GpuAssistedBase::CreateDevice(pCreateInfo);
buffer_oob_enabled = GpuGetOption("khronos_validation.gpuav_buffer_oob", true);
const bool validate_descriptor_indexing = GpuGetOption("khronos_validation.gpuav_descriptor_indexing", true);
validate_draw_indirect = GpuGetOption("khronos_validation.validate_draw_indirect", true);
validate_dispatch_indirect = GpuGetOption("khronos_validation.validate_dispatch_indirect", true);
warn_on_robust_oob = GpuGetOption("khronos_validation.warn_on_robust_oob", true);
validate_instrumented_shaders = (GetEnvironment("VK_LAYER_GPUAV_VALIDATE_INSTRUMENTED_SHADERS").size() > 0);
if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(device, "GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
aborted = true;
return;
}
DispatchGetPhysicalDeviceFeatures(physical_device, &supported_features);
if (!supported_features.fragmentStoresAndAtomics || !supported_features.vertexPipelineStoresAndAtomics) {
ReportSetupProblem(device,
"GPU-Assisted validation requires fragmentStoresAndAtomics and vertexPipelineStoresAndAtomics. "
"GPU-Assisted Validation disabled.");
aborted = true;
return;
}
shaderInt64 = supported_features.shaderInt64;
if ((IsExtEnabled(device_extensions.vk_ext_buffer_device_address) ||
IsExtEnabled(device_extensions.vk_khr_buffer_device_address)) &&
!shaderInt64) {
LogWarning(device, "UNASSIGNED-GPU-Assisted Validation Warning",
"shaderInt64 feature is not available. No buffer device address checking will be attempted");
}
buffer_device_address = ((IsExtEnabled(device_extensions.vk_ext_buffer_device_address) ||
IsExtEnabled(device_extensions.vk_khr_buffer_device_address)) &&
shaderInt64 && enabled_features.core12.bufferDeviceAddress);
output_buffer_size = sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + spvtools::kDebugOutputDataOffset);
if (validate_descriptor_indexing) {
descriptor_indexing = CheckForDescriptorIndexing(enabled_features);
}
const bool use_linear_output_pool = GpuGetOption("khronos_validation.vma_linear_output", true);
if (use_linear_output_pool) {
auto output_buffer_create_info = LvlInitStruct<VkBufferCreateInfo>();
output_buffer_create_info.size = output_buffer_size;
output_buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
uint32_t mem_type_index;
vmaFindMemoryTypeIndexForBufferInfo(vmaAllocator, &output_buffer_create_info, &alloc_create_info, &mem_type_index);
VmaPoolCreateInfo pool_create_info = {};
pool_create_info.memoryTypeIndex = mem_type_index;
pool_create_info.blockSize = 0;
pool_create_info.maxBlockCount = 0;
pool_create_info.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
VkResult result = vmaCreatePool(vmaAllocator, &pool_create_info, &output_buffer_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create VMA memory pool");
}
}
CreateAccelerationStructureBuildValidationState();
}
void GpuAssistedPreDrawValidationState::Destroy(VkDevice device) {
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device, shader_module, nullptr);
shader_module = VK_NULL_HANDLE;
}
if (ds_layout != VK_NULL_HANDLE) {
DispatchDestroyDescriptorSetLayout(device, ds_layout, nullptr);
ds_layout = VK_NULL_HANDLE;
}
if (pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, pipeline_layout, nullptr);
pipeline_layout = VK_NULL_HANDLE;
}
auto to_destroy = renderpass_to_pipeline.snapshot();
for (auto &entry : to_destroy) {
DispatchDestroyPipeline(device, entry.second, nullptr);
renderpass_to_pipeline.erase(entry.first);
}
initialized = false;
}
void GpuAssistedPreDispatchValidationState::Destroy(VkDevice device) {
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device, shader_module, nullptr);
shader_module = VK_NULL_HANDLE;
}
if (ds_layout != VK_NULL_HANDLE) {
DispatchDestroyDescriptorSetLayout(device, ds_layout, nullptr);
ds_layout = VK_NULL_HANDLE;
}
if (pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, pipeline_layout, nullptr);
pipeline_layout = VK_NULL_HANDLE;
}
if (pipeline != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, pipeline, nullptr);
pipeline = VK_NULL_HANDLE;
}
initialized = false;
}
// Clean up device-related resources
void GpuAssisted::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
acceleration_structure_validation_state.Destroy(device, vmaAllocator);
pre_draw_validation_state.Destroy(device);
pre_dispatch_validation_state.Destroy(device);
GpuAssistedBase::PreCallRecordDestroyDevice(device, pAllocator);
}
void GpuAssisted::CreateAccelerationStructureBuildValidationState() {
if (aborted) {
return;
}
auto &as_validation_state = acceleration_structure_validation_state;
if (as_validation_state.initialized) {
return;
}
if (!IsExtEnabled(device_extensions.vk_nv_ray_tracing)) {
return;
}
// Outline:
// - Create valid bottom level acceleration structure which acts as replacement
// - Create and load vertex buffer
// - Create and load index buffer
// - Create, allocate memory for, and bind memory for acceleration structure
// - Query acceleration structure handle
// - Create command pool and command buffer
// - Record build acceleration structure command
// - Submit command buffer and wait for completion
// - Cleanup
// - Create compute pipeline for validating instance buffers
// - Create descriptor set layout
// - Create pipeline layout
// - Create pipeline
// - Cleanup
VkResult result = VK_SUCCESS;
VkBuffer vbo = VK_NULL_HANDLE;
VmaAllocation vbo_allocation = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto vbo_ci = LvlInitStruct<VkBufferCreateInfo>();
vbo_ci.size = sizeof(float) * 9;
vbo_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo vbo_ai = {};
vbo_ai.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
vbo_ai.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(vmaAllocator, &vbo_ci, &vbo_ai, &vbo, &vbo_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create vertex buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
uint8_t *mapped_vbo_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, vbo_allocation, reinterpret_cast<void **>(&mapped_vbo_buffer));
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to map vertex buffer for acceleration structure build validation.");
} else {
const std::vector<float> vertices = {1.0f, 0.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f};
std::memcpy(mapped_vbo_buffer, (uint8_t *)vertices.data(), sizeof(float) * vertices.size());
vmaUnmapMemory(vmaAllocator, vbo_allocation);
}
}
VkBuffer ibo = VK_NULL_HANDLE;
VmaAllocation ibo_allocation = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto ibo_ci = LvlInitStruct<VkBufferCreateInfo>();
ibo_ci.size = sizeof(uint32_t) * 3;
ibo_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo ibo_ai = {};
ibo_ai.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
ibo_ai.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
result = vmaCreateBuffer(vmaAllocator, &ibo_ci, &ibo_ai, &ibo, &ibo_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create index buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
uint8_t *mapped_ibo_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, ibo_allocation, reinterpret_cast<void **>(&mapped_ibo_buffer));
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to map index buffer for acceleration structure build validation.");
} else {
const std::vector<uint32_t> indicies = {0, 1, 2};
std::memcpy(mapped_ibo_buffer, (uint8_t *)indicies.data(), sizeof(uint32_t) * indicies.size());
vmaUnmapMemory(vmaAllocator, ibo_allocation);
}
}
auto geometry = LvlInitStruct<VkGeometryNV>();
geometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_NV;
geometry.geometry.triangles = LvlInitStruct<VkGeometryTrianglesNV>();
geometry.geometry.triangles.vertexData = vbo;
geometry.geometry.triangles.vertexOffset = 0;
geometry.geometry.triangles.vertexCount = 3;
geometry.geometry.triangles.vertexStride = 12;
geometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
geometry.geometry.triangles.indexData = ibo;
geometry.geometry.triangles.indexOffset = 0;
geometry.geometry.triangles.indexCount = 3;
geometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
geometry.geometry.triangles.transformData = VK_NULL_HANDLE;
geometry.geometry.triangles.transformOffset = 0;
geometry.geometry.aabbs = LvlInitStruct<VkGeometryAABBNV>();
auto as_ci = LvlInitStruct<VkAccelerationStructureCreateInfoNV>();
as_ci.info = LvlInitStruct<VkAccelerationStructureInfoNV>();
as_ci.info.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV;
as_ci.info.instanceCount = 0;
as_ci.info.geometryCount = 1;
as_ci.info.pGeometries = &geometry;
if (result == VK_SUCCESS) {
result = DispatchCreateAccelerationStructureNV(device, &as_ci, nullptr, &as_validation_state.replacement_as);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create acceleration structure for acceleration structure build validation.");
}
}
VkMemoryRequirements2 as_mem_requirements = {};
if (result == VK_SUCCESS) {
auto as_mem_requirements_info = LvlInitStruct<VkAccelerationStructureMemoryRequirementsInfoNV>();
as_mem_requirements_info.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_NV;
as_mem_requirements_info.accelerationStructure = as_validation_state.replacement_as;
DispatchGetAccelerationStructureMemoryRequirementsNV(device, &as_mem_requirements_info, &as_mem_requirements);
}
VmaAllocationInfo as_memory_ai = {};
if (result == VK_SUCCESS) {
VmaAllocationCreateInfo as_memory_aci = {};
as_memory_aci.usage = VMA_MEMORY_USAGE_GPU_ONLY;
result = vmaAllocateMemory(vmaAllocator, &as_mem_requirements.memoryRequirements, &as_memory_aci,
&as_validation_state.replacement_as_allocation, &as_memory_ai);
if (result != VK_SUCCESS) {
ReportSetupProblem(device,
"Failed to alloc acceleration structure memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
auto as_bind_info = LvlInitStruct<VkBindAccelerationStructureMemoryInfoNV>();
as_bind_info.accelerationStructure = as_validation_state.replacement_as;
as_bind_info.memory = as_memory_ai.deviceMemory;
as_bind_info.memoryOffset = as_memory_ai.offset;
result = DispatchBindAccelerationStructureMemoryNV(device, 1, &as_bind_info);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to bind acceleration structure memory for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchGetAccelerationStructureHandleNV(device, as_validation_state.replacement_as, sizeof(uint64_t),
&as_validation_state.replacement_as_handle);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to get acceleration structure handle for acceleration structure build validation.");
}
}
VkMemoryRequirements2 scratch_mem_requirements = {};
if (result == VK_SUCCESS) {
auto scratch_mem_requirements_info = LvlInitStruct<VkAccelerationStructureMemoryRequirementsInfoNV>();
scratch_mem_requirements_info.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_NV;
scratch_mem_requirements_info.accelerationStructure = as_validation_state.replacement_as;
DispatchGetAccelerationStructureMemoryRequirementsNV(device, &scratch_mem_requirements_info, &scratch_mem_requirements);
}
VkBuffer scratch = VK_NULL_HANDLE;
VmaAllocation scratch_allocation = {};
if (result == VK_SUCCESS) {
auto scratch_ci = LvlInitStruct<VkBufferCreateInfo>();
scratch_ci.size = scratch_mem_requirements.memoryRequirements.size;
scratch_ci.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_NV;
VmaAllocationCreateInfo scratch_aci = {};
scratch_aci.usage = VMA_MEMORY_USAGE_GPU_ONLY;
result = vmaCreateBuffer(vmaAllocator, &scratch_ci, &scratch_aci, &scratch, &scratch_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create scratch buffer for acceleration structure build validation.");
}
}
VkCommandPool command_pool = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto command_pool_ci = LvlInitStruct<VkCommandPoolCreateInfo>();
command_pool_ci.queueFamilyIndex = 0;
result = DispatchCreateCommandPool(device, &command_pool_ci, nullptr, &command_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create command pool for acceleration structure build validation.");
}
}
VkCommandBuffer command_buffer = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto command_buffer_ai = LvlInitStruct<VkCommandBufferAllocateInfo>();
command_buffer_ai.commandPool = command_pool;
command_buffer_ai.commandBufferCount = 1;
command_buffer_ai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(device, &command_buffer_ai, &command_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create command buffer for acceleration structure build validation.");
}
// Hook up command buffer dispatch
vkSetDeviceLoaderData(device, command_buffer);
}
if (result == VK_SUCCESS) {
auto command_buffer_bi = LvlInitStruct<VkCommandBufferBeginInfo>();
result = DispatchBeginCommandBuffer(command_buffer, &command_buffer_bi);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to begin command buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
DispatchCmdBuildAccelerationStructureNV(command_buffer, &as_ci.info, VK_NULL_HANDLE, 0, VK_FALSE,
as_validation_state.replacement_as, VK_NULL_HANDLE, scratch, 0);
DispatchEndCommandBuffer(command_buffer);
}
VkQueue queue = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
DispatchGetDeviceQueue(device, 0, 0, &queue);
// Hook up queue dispatch
vkSetDeviceLoaderData(device, queue);
auto submit_info = LvlInitStruct<VkSubmitInfo>();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffer;
result = DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to submit command buffer for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
result = DispatchQueueWaitIdle(queue);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to wait for queue idle for acceleration structure build validation.");
}
}
if (vbo != VK_NULL_HANDLE) {
vmaDestroyBuffer(vmaAllocator, vbo, vbo_allocation);
}
if (ibo != VK_NULL_HANDLE) {
vmaDestroyBuffer(vmaAllocator, ibo, ibo_allocation);
}
if (scratch != VK_NULL_HANDLE) {
vmaDestroyBuffer(vmaAllocator, scratch, scratch_allocation);
}
if (command_pool != VK_NULL_HANDLE) {
DispatchDestroyCommandPool(device, command_pool, nullptr);
}
if (debug_desc_layout == VK_NULL_HANDLE) {
ReportSetupProblem(device, "Failed to find descriptor set layout for acceleration structure build validation.");
result = VK_INCOMPLETE;
}
if (result == VK_SUCCESS) {
auto pipeline_layout_ci = LvlInitStruct<VkPipelineLayoutCreateInfo>();
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &debug_desc_layout;
result = DispatchCreatePipelineLayout(device, &pipeline_layout_ci, 0, &as_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create pipeline layout for acceleration structure build validation.");
}
}
VkShaderModule shader_module = VK_NULL_HANDLE;
if (result == VK_SUCCESS) {
auto shader_module_ci = LvlInitStruct<VkShaderModuleCreateInfo>();
shader_module_ci.codeSize = sizeof(gpu_as_inspection_comp);
shader_module_ci.pCode = gpu_as_inspection_comp;
result = DispatchCreateShaderModule(device, &shader_module_ci, nullptr, &shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create compute shader module for acceleration structure build validation.");
}
}
if (result == VK_SUCCESS) {
auto pipeline_stage_ci = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
pipeline_stage_ci.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline_stage_ci.module = shader_module;
pipeline_stage_ci.pName = "main";
auto pipeline_ci = LvlInitStruct<VkComputePipelineCreateInfo>();
pipeline_ci.stage = pipeline_stage_ci;
pipeline_ci.layout = as_validation_state.pipeline_layout;
result = DispatchCreateComputePipelines(device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr, &as_validation_state.pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create compute pipeline for acceleration structure build validation.");
}
}
if (shader_module != VK_NULL_HANDLE) {
DispatchDestroyShaderModule(device, shader_module, nullptr);
}
if (result == VK_SUCCESS) {
as_validation_state.initialized = true;
LogInfo(device, "UNASSIGNED-GPU-Assisted Validation.", "Acceleration Structure Building GPU Validation Enabled.");
} else {
aborted = true;
}
}
void GpuAssistedAccelerationStructureBuildValidationState::Destroy(VkDevice device, VmaAllocator &vmaAllocator) {
if (pipeline != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, pipeline, nullptr);
pipeline = VK_NULL_HANDLE;
}
if (pipeline_layout != VK_NULL_HANDLE) {
DispatchDestroyPipelineLayout(device, pipeline_layout, nullptr);
pipeline_layout = VK_NULL_HANDLE;
}
if (replacement_as != VK_NULL_HANDLE) {
DispatchDestroyAccelerationStructureNV(device, replacement_as, nullptr);
replacement_as = VK_NULL_HANDLE;
}
if (replacement_as_allocation != VK_NULL_HANDLE) {
vmaFreeMemory(vmaAllocator, replacement_as_allocation);
replacement_as_allocation = VK_NULL_HANDLE;
}
initialized = false;
}
struct GPUAV_RESTORABLE_PIPELINE_STATE {
VkPipelineBindPoint pipeline_bind_point = VK_PIPELINE_BIND_POINT_MAX_ENUM;
VkPipeline pipeline = VK_NULL_HANDLE;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
std::vector<std::pair<VkDescriptorSet, uint32_t>> descriptor_sets;
std::vector<std::vector<uint32_t>> dynamic_offsets;
uint32_t push_descriptor_set_index = 0;
std::vector<safe_VkWriteDescriptorSet> push_descriptor_set_writes;
std::vector<uint8_t> push_constants_data;
PushConstantRangesId push_constants_ranges;
void Create(CMD_BUFFER_STATE *cb_state, VkPipelineBindPoint bind_point) {
pipeline_bind_point = bind_point;
const auto lv_bind_point = ConvertToLvlBindPoint(bind_point);
LAST_BOUND_STATE &last_bound = cb_state->lastBound[lv_bind_point];
if (last_bound.pipeline_state) {
pipeline = last_bound.pipeline_state->pipeline();
pipeline_layout = last_bound.pipeline_layout;
descriptor_sets.reserve(last_bound.per_set.size());
for (std::size_t i = 0; i < last_bound.per_set.size(); i++) {
const auto &bound_descriptor_set = last_bound.per_set[i].bound_descriptor_set;
if (bound_descriptor_set) {
descriptor_sets.push_back(std::make_pair(bound_descriptor_set->GetSet(), static_cast<uint32_t>(i)));
if (bound_descriptor_set->IsPushDescriptor()) {
push_descriptor_set_index = static_cast<uint32_t>(i);
}
dynamic_offsets.push_back(last_bound.per_set[i].dynamicOffsets);
}
}
if (last_bound.push_descriptor_set) {
push_descriptor_set_writes = last_bound.push_descriptor_set->GetWrites();
}
const auto &pipeline_layout = last_bound.pipeline_state->PipelineLayoutState();
if (pipeline_layout->push_constant_ranges == cb_state->push_constant_data_ranges) {
push_constants_data = cb_state->push_constant_data;
push_constants_ranges = pipeline_layout->push_constant_ranges;
}
}
}
void Restore(VkCommandBuffer command_buffer) const {
if (pipeline != VK_NULL_HANDLE) {
DispatchCmdBindPipeline(command_buffer, pipeline_bind_point, pipeline);
if (!descriptor_sets.empty()) {
for (std::size_t i = 0; i < descriptor_sets.size(); i++) {
VkDescriptorSet descriptor_set = descriptor_sets[i].first;
if (descriptor_set != VK_NULL_HANDLE) {
DispatchCmdBindDescriptorSets(command_buffer, pipeline_bind_point, pipeline_layout,
descriptor_sets[i].second, 1, &descriptor_set,
static_cast<uint32_t>(dynamic_offsets[i].size()), dynamic_offsets[i].data());
}
}
}
if (!push_descriptor_set_writes.empty()) {
DispatchCmdPushDescriptorSetKHR(command_buffer, pipeline_bind_point, pipeline_layout, push_descriptor_set_index,
static_cast<uint32_t>(push_descriptor_set_writes.size()),
reinterpret_cast<const VkWriteDescriptorSet *>(push_descriptor_set_writes.data()));
}
if (!push_constants_data.empty()) {
for (const auto &push_constant_range : *push_constants_ranges) {
if (push_constant_range.size == 0) continue;
DispatchCmdPushConstants(command_buffer, pipeline_layout, push_constant_range.stageFlags,
push_constant_range.offset, push_constant_range.size, push_constants_data.data());
}
}
}
}
};
void GpuAssisted::PreCallRecordCmdBuildAccelerationStructureNV(VkCommandBuffer commandBuffer,
const VkAccelerationStructureInfoNV *pInfo, VkBuffer instanceData,
VkDeviceSize instanceOffset, VkBool32 update,
VkAccelerationStructureNV dst, VkAccelerationStructureNV src,
VkBuffer scratch, VkDeviceSize scratchOffset) {
ValidationStateTracker::PreCallRecordCmdBuildAccelerationStructureNV(commandBuffer, pInfo, instanceData, instanceOffset, update,
dst, src, scratch, scratchOffset);
if (pInfo == nullptr || pInfo->type != VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_NV) {
return;
}
auto &as_validation_state = acceleration_structure_validation_state;
if (!as_validation_state.initialized) {
return;
}
// Empty acceleration structure is valid according to the spec.
if (pInfo->instanceCount == 0 || instanceData == VK_NULL_HANDLE) {
return;
}
auto cb_state = GetWrite<gpuav_state::CommandBuffer>(commandBuffer);
assert(cb_state != nullptr);
std::vector<uint64_t> current_valid_handles;
ForEach<ACCELERATION_STRUCTURE_STATE>([¤t_valid_handles](const ACCELERATION_STRUCTURE_STATE &as_state) {
if (as_state.built && as_state.create_infoNV.info.type == VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_NV) {
current_valid_handles.push_back(as_state.opaque_handle);
}
});
GpuAssistedAccelerationStructureBuildValidationBufferInfo as_validation_buffer_info = {};
as_validation_buffer_info.acceleration_structure = dst;
const VkDeviceSize validation_buffer_size =
// One uint for number of instances to validate
4 +
// Two uint for the replacement acceleration structure handle
8 +
// One uint for number of invalid handles found
4 +
// Two uint for the first invalid handle found
8 +
// One uint for the number of current valid handles
4 +
// Two uint for each current valid handle
(8 * current_valid_handles.size());
auto validation_buffer_create_info = LvlInitStruct<VkBufferCreateInfo>();
validation_buffer_create_info.size = validation_buffer_size;
validation_buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo validation_buffer_alloc_info = {};
validation_buffer_alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkResult result = vmaCreateBuffer(vmaAllocator, &validation_buffer_create_info, &validation_buffer_alloc_info,
&as_validation_buffer_info.buffer, &as_validation_buffer_info.buffer_allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
GpuAccelerationStructureBuildValidationBuffer *mapped_validation_buffer = nullptr;
result = vmaMapMemory(vmaAllocator, as_validation_buffer_info.buffer_allocation,
reinterpret_cast<void **>(&mapped_validation_buffer));
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory for acceleration structure build val buffer.");
aborted = true;
return;
}
mapped_validation_buffer->instances_to_validate = pInfo->instanceCount;
mapped_validation_buffer->replacement_handle_bits_0 =
reinterpret_cast<const uint32_t *>(&as_validation_state.replacement_as_handle)[0];
mapped_validation_buffer->replacement_handle_bits_1 =
reinterpret_cast<const uint32_t *>(&as_validation_state.replacement_as_handle)[1];
mapped_validation_buffer->invalid_handle_found = 0;
mapped_validation_buffer->invalid_handle_bits_0 = 0;
mapped_validation_buffer->invalid_handle_bits_1 = 0;
mapped_validation_buffer->valid_handles_count = static_cast<uint32_t>(current_valid_handles.size());
uint32_t *mapped_valid_handles = reinterpret_cast<uint32_t *>(&mapped_validation_buffer[1]);
for (std::size_t i = 0; i < current_valid_handles.size(); i++) {
const uint64_t current_valid_handle = current_valid_handles[i];
*mapped_valid_handles = reinterpret_cast<const uint32_t *>(¤t_valid_handle)[0];
++mapped_valid_handles;
*mapped_valid_handles = reinterpret_cast<const uint32_t *>(¤t_valid_handle)[1];
++mapped_valid_handles;
}
vmaUnmapMemory(vmaAllocator, as_validation_buffer_info.buffer_allocation);
static constexpr const VkDeviceSize k_instance_size = 64;
const VkDeviceSize instance_buffer_size = k_instance_size * pInfo->instanceCount;
result = desc_set_manager->GetDescriptorSet(&as_validation_buffer_info.descriptor_pool, debug_desc_layout,
&as_validation_buffer_info.descriptor_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to get descriptor set for acceleration structure build.");
aborted = true;
return;
}
VkDescriptorBufferInfo descriptor_buffer_infos[2] = {};
descriptor_buffer_infos[0].buffer = instanceData;
descriptor_buffer_infos[0].offset = instanceOffset;
descriptor_buffer_infos[0].range = instance_buffer_size;
descriptor_buffer_infos[1].buffer = as_validation_buffer_info.buffer;
descriptor_buffer_infos[1].offset = 0;
descriptor_buffer_infos[1].range = validation_buffer_size;
VkWriteDescriptorSet descriptor_set_writes[2] = {
LvlInitStruct<VkWriteDescriptorSet>(),
LvlInitStruct<VkWriteDescriptorSet>(),
};
descriptor_set_writes[0].dstSet = as_validation_buffer_info.descriptor_set;
descriptor_set_writes[0].dstBinding = 0;
descriptor_set_writes[0].descriptorCount = 1;
descriptor_set_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_set_writes[0].pBufferInfo = &descriptor_buffer_infos[0];
descriptor_set_writes[1].dstSet = as_validation_buffer_info.descriptor_set;
descriptor_set_writes[1].dstBinding = 1;
descriptor_set_writes[1].descriptorCount = 1;
descriptor_set_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptor_set_writes[1].pBufferInfo = &descriptor_buffer_infos[1];
DispatchUpdateDescriptorSets(device, 2, descriptor_set_writes, 0, nullptr);
// Issue a memory barrier to make sure anything writing to the instance buffer has finished.
auto memory_barrier = LvlInitStruct<VkMemoryBarrier>();
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
DispatchCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 1,
&memory_barrier, 0, nullptr, 0, nullptr);
// Save a copy of the compute pipeline state that needs to be restored.
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_state.get(), VK_PIPELINE_BIND_POINT_COMPUTE);
// Switch to and launch the validation compute shader to find, replace, and report invalid acceleration structure handles.
DispatchCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, as_validation_state.pipeline);
DispatchCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, as_validation_state.pipeline_layout, 0, 1,
&as_validation_buffer_info.descriptor_set, 0, nullptr);
DispatchCmdDispatch(commandBuffer, 1, 1, 1);
// Issue a buffer memory barrier to make sure that any invalid bottom level acceleration structure handles
// have been replaced by the validation compute shader before any builds take place.
auto instance_buffer_barrier = LvlInitStruct<VkBufferMemoryBarrier>();
instance_buffer_barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
instance_buffer_barrier.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_NV;
instance_buffer_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
instance_buffer_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
instance_buffer_barrier.buffer = instanceData;
instance_buffer_barrier.offset = instanceOffset;
instance_buffer_barrier.size = instance_buffer_size;
DispatchCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV, 0, 0, nullptr, 1, &instance_buffer_barrier, 0,
nullptr);
// Restore the previous compute pipeline state.
restorable_state.Restore(commandBuffer);
cb_state->as_validation_buffers.emplace_back(std::move(as_validation_buffer_info));
}
void gpuav_state::CommandBuffer::ProcessAccelerationStructure(VkQueue queue) {
if (!has_build_as_cmd) {
return;
}
auto *device_state = static_cast<GpuAssisted *>(dev_data);
for (const auto &as_validation_buffer_info : as_validation_buffers) {
GpuAccelerationStructureBuildValidationBuffer *mapped_validation_buffer = nullptr;
VkResult result = vmaMapMemory(device_state->vmaAllocator, as_validation_buffer_info.buffer_allocation,
reinterpret_cast<void **>(&mapped_validation_buffer));
if (result == VK_SUCCESS) {
if (mapped_validation_buffer->invalid_handle_found > 0) {
uint64_t invalid_handle = 0;
reinterpret_cast<uint32_t *>(&invalid_handle)[0] = mapped_validation_buffer->invalid_handle_bits_0;
reinterpret_cast<uint32_t *>(&invalid_handle)[1] = mapped_validation_buffer->invalid_handle_bits_1;
device_state->LogError(
as_validation_buffer_info.acceleration_structure, "UNASSIGNED-AccelerationStructure",
"Attempted to build top level acceleration structure using invalid bottom level acceleration structure "
"handle (%" PRIu64 ")",
invalid_handle);
}
vmaUnmapMemory(device_state->vmaAllocator, as_validation_buffer_info.buffer_allocation);
}
}
}
void GpuAssisted::PostCallRecordBindAccelerationStructureMemoryNV(VkDevice device, uint32_t bindInfoCount,
const VkBindAccelerationStructureMemoryInfoNV *pBindInfos,
VkResult result) {
if (VK_SUCCESS != result) return;
ValidationStateTracker::PostCallRecordBindAccelerationStructureMemoryNV(device, bindInfoCount, pBindInfos, result);
for (uint32_t i = 0; i < bindInfoCount; i++) {
const VkBindAccelerationStructureMemoryInfoNV &info = pBindInfos[i];
auto as_state = Get<ACCELERATION_STRUCTURE_STATE>(info.accelerationStructure);
if (as_state) {
DispatchGetAccelerationStructureHandleNV(device, info.accelerationStructure, 8, &as_state->opaque_handle);
}
}
}
// Free the device memory and descriptor set(s) associated with a command buffer.
void GpuAssisted::DestroyBuffer(GpuAssistedBufferInfo &buffer_info) {
vmaDestroyBuffer(vmaAllocator, buffer_info.output_mem_block.buffer, buffer_info.output_mem_block.allocation);
if (buffer_info.bda_input_mem_block.buffer) {
vmaDestroyBuffer(vmaAllocator, buffer_info.bda_input_mem_block.buffer, buffer_info.bda_input_mem_block.allocation);
}
if (buffer_info.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
if (buffer_info.pre_draw_resources.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.pre_draw_resources.desc_pool, buffer_info.pre_draw_resources.desc_set);
}
if (buffer_info.pre_dispatch_resources.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.pre_dispatch_resources.desc_pool,
buffer_info.pre_dispatch_resources.desc_set);
}
}
void GpuAssisted::DestroyBuffer(GpuAssistedAccelerationStructureBuildValidationBufferInfo &as_validation_buffer_info) {
vmaDestroyBuffer(vmaAllocator, as_validation_buffer_info.buffer, as_validation_buffer_info.buffer_allocation);
if (as_validation_buffer_info.descriptor_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(as_validation_buffer_info.descriptor_pool, as_validation_buffer_info.descriptor_set);
}
}
void GpuAssisted::PostCallRecordGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pPhysicalDeviceProperties) {
// There is an implicit layer that can cause this call to return 0 for maxBoundDescriptorSets - Ignore such calls
if (enabled[gpu_validation_reserve_binding_slot] && pPhysicalDeviceProperties->limits.maxBoundDescriptorSets > 0) {
if (pPhysicalDeviceProperties->limits.maxBoundDescriptorSets > 1) {
pPhysicalDeviceProperties->limits.maxBoundDescriptorSets -= 1;
} else {
LogWarning(physicalDevice, "UNASSIGNED-GPU-Assisted Validation Setup Error.",
"Unable to reserve descriptor binding slot on a device with only one slot.");
}
}
ValidationStateTracker::PostCallRecordGetPhysicalDeviceProperties(physicalDevice, pPhysicalDeviceProperties);
}
void GpuAssisted::PostCallRecordGetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pPhysicalDeviceProperties2) {
// There is an implicit layer that can cause this call to return 0 for maxBoundDescriptorSets - Ignore such calls
if (enabled[gpu_validation_reserve_binding_slot] && pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets > 0) {
if (pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets > 1) {
pPhysicalDeviceProperties2->properties.limits.maxBoundDescriptorSets -= 1;
} else {
LogWarning(physicalDevice, "UNASSIGNED-GPU-Assisted Validation Setup Error.",
"Unable to reserve descriptor binding slot on a device with only one slot.");
}
}
ValidationStateTracker::PostCallRecordGetPhysicalDeviceProperties2(physicalDevice, pPhysicalDeviceProperties2);
}
void GpuAssisted::PreCallRecordDestroyRenderPass(VkDevice device, VkRenderPass renderPass,
const VkAllocationCallbacks *pAllocator) {
auto pipeline = pre_draw_validation_state.renderpass_to_pipeline.pop(renderPass);
if (pipeline != pre_draw_validation_state.renderpass_to_pipeline.end()) {
DispatchDestroyPipeline(device, pipeline->second, nullptr);
}
ValidationStateTracker::PreCallRecordDestroyRenderPass(device, renderPass, pAllocator);
}
bool GpuValidateShader(const layer_data::span<const uint32_t> &input, bool SetRelaxBlockLayout, bool SetScalerBlockLayout, std::string &error) {
// Use SPIRV-Tools validator to try and catch any issues with the module
spv_target_env spirv_environment = SPV_ENV_VULKAN_1_1;
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{input.data(), input.size()};
spv_diagnostic diag = nullptr;
spv_validator_options options = spvValidatorOptionsCreate();
spvValidatorOptionsSetRelaxBlockLayout(options, SetRelaxBlockLayout);
spvValidatorOptionsSetScalarBlockLayout(options, SetScalerBlockLayout);
spv_result_t result = spvValidateWithOptions(ctx, options, &binary, &diag);
if (result != SPV_SUCCESS && diag) error = diag->error;
return (result == SPV_SUCCESS);
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool GpuAssisted::InstrumentShader(const layer_data::span<const uint32_t> &input, std::vector<uint32_t> &new_pgm,
uint32_t *unique_shader_id) {
if (aborted) return false;
if (input[0] != spv::MagicNumber) return false;
const spvtools::MessageConsumer gpu_console_message_consumer =
[this](spv_message_level_t level, const char *, const spv_position_t &position, const char *message) -> void {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
this->LogError(this->device, "UNASSIGNED-GPU-Assisted", "Error during shader instrumentation: line %zu: %s",
position.index, message);
break;
default:
break;
}
};
// Load original shader SPIR-V
new_pgm.clear();
new_pgm.reserve(input.size());
new_pgm.insert(new_pgm.end(), &input.front(), &input.back() + 1);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
using namespace spvtools;
spv_target_env target_env = PickSpirvEnv(api_version, IsExtEnabled(device_extensions.vk_khr_spirv_1_4));
spvtools::ValidatorOptions val_options;
AdjustValidatorOptions(device_extensions, enabled_features, val_options);
spvtools::OptimizerOptions opt_options;
opt_options.set_run_validator(true);
opt_options.set_validator_options(val_options);
Optimizer optimizer(target_env);
optimizer.SetMessageConsumer(gpu_console_message_consumer);
optimizer.RegisterPass(CreateInstBindlessCheckPass(desc_set_bind_index, unique_shader_module_id, descriptor_indexing,
descriptor_indexing, buffer_oob_enabled, buffer_oob_enabled));
// Call CreateAggressiveDCEPass with preserve_interface == true
optimizer.RegisterPass(CreateAggressiveDCEPass(true));
if ((IsExtEnabled(device_extensions.vk_ext_buffer_device_address) ||
IsExtEnabled(device_extensions.vk_khr_buffer_device_address)) &&
shaderInt64 && enabled_features.core12.bufferDeviceAddress) {
optimizer.RegisterPass(CreateInstBuffAddrCheckPass(desc_set_bind_index, unique_shader_module_id));
}
bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm, opt_options);
std::string instrumented_error;
if (!pass) {
ReportSetupProblem(device, "Failure to instrument shader. Proceeding with non-instrumented shader.");
} else if (validate_instrumented_shaders &&
(!GpuValidateShader(new_pgm, device_extensions.vk_khr_relaxed_block_layout,
device_extensions.vk_ext_scalar_block_layout, instrumented_error))) {
std::ostringstream strm;
strm << "Instrumented shader is invalid, error = " << instrumented_error << " Proceeding with non instrumented shader.";
ReportSetupProblem(device, strm.str().c_str());
pass = false;
}
*unique_shader_id = unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
void GpuAssisted::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
void *csm_state_data) {
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
const bool pass = InstrumentShader(layer_data::make_span(pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)),
csm_state->instrumented_pgm, &csm_state->unique_shader_id);
if (pass) {
csm_state->instrumented_create_info.pCode = csm_state->instrumented_pgm.data();
csm_state->instrumented_create_info.codeSize = csm_state->instrumented_pgm.size() * sizeof(uint32_t);
}
ValidationStateTracker::PreCallRecordCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule, csm_state_data);
}
// Generate the part of the message describing the violation.
bool GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg, bool &oob_access,
const GpuAssistedBufferInfo &buf_info, GpuAssisted *gpu_assisted) {
using namespace spvtools;
std::ostringstream strm;
bool return_code = true;
static_assert(
spvtools::kInstErrorMax == _kInstErrorMax,
"If this asserts then SPIRV-Tools was updated with a new instrument.hpp and kInstErrorMax was updated. This needs to be "
"changed in GPU-AV so that the GLSL gpu_shaders can read the constants.");
static_assert(spvtools::kInstValidationOutError == _kInstValidationOutError,
"If this asserts then SPIRV-Tools was updated with a new instrument.hpp and kInstValidationOutError was updated. "
"This needs to be changed in GPU-AV so that the GLSL gpu_shaders can read the constants.");
const GpuVuid vuid = GetGpuVuid(buf_info.cmd_type);
oob_access = false;
switch (debug_record[kInstValidationOutError]) {
case kInstErrorBindlessBounds: {
strm << "Index of " << debug_record[kInstBindlessBoundsOutDescIndex] << " used to index descriptor array of length "
<< debug_record[kInstBindlessBoundsOutDescBound] << ". ";
vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
} break;
case kInstErrorBindlessUninit: {
strm << "Descriptor index " << debug_record[kInstBindlessUninitOutDescIndex] << " is uninitialized.";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} break;
case kInstErrorBuffAddrUnallocRef: {
oob_access = true;
uint64_t *ptr = (uint64_t *)&debug_record[kInstBuffAddrUnallocOutDescPtrLo];
strm << "Device address 0x" << std::hex << *ptr << " access out of bounds. ";
vuid_msg = "UNASSIGNED-Device address out of bounds";
} break;
case kInstErrorBuffOOBUniform:
case kInstErrorBuffOOBStorage: {
auto size = debug_record[kInstBindlessBuffOOBOutBuffSize];
if (size == 0) {
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex] << " is uninitialized.";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} else {
oob_access = true;
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex]
<< " access out of bounds. Descriptor size is " << debug_record[kInstBindlessBuffOOBOutBuffSize]
<< " and highest byte accessed was " << debug_record[kInstBindlessBuffOOBOutBuffOff];
if (debug_record[kInstValidationOutError] == kInstErrorBuffOOBUniform)
vuid_msg = vuid.uniform_access_oob;
else
vuid_msg = vuid.storage_access_oob;
}
} break;
case kInstErrorBuffOOBUniformTexel:
case kInstErrorBuffOOBStorageTexel: {
auto size = debug_record[kInstBindlessBuffOOBOutBuffSize];
if (size == 0) {
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex] << " is uninitialized.";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} else {
oob_access = true;
strm << "Descriptor index " << debug_record[kInstBindlessBuffOOBOutDescIndex]
<< " access out of bounds. Descriptor size is " << debug_record[kInstBindlessBuffOOBOutBuffSize]
<< " texels and highest texel accessed was " << debug_record[kInstBindlessBuffOOBOutBuffOff];
if (debug_record[kInstValidationOutError] == kInstErrorBuffOOBUniformTexel)
vuid_msg = vuid.uniform_access_oob;
else
vuid_msg = vuid.storage_access_oob;
}
} break;
case _kInstErrorPreDrawValidate: {
// Buffer size must be >= (stride * (drawCount - 1) + offset + sizeof(VkDrawIndexedIndirectCommand))
if (debug_record[_kPreValidateSubError] == pre_draw_count_exceeds_bufsize_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
uint32_t stride = buf_info.pre_draw_resources.stride;
uint32_t offset = static_cast<uint32_t>(buf_info.pre_draw_resources.offset);
uint32_t draw_size = (stride * (count - 1) + offset + sizeof(VkDrawIndexedIndirectCommand));
strm << "Indirect draw count of " << count << " would exceed buffer size " << buf_info.pre_draw_resources.buf_size
<< " of buffer " << buf_info.pre_draw_resources.buffer << " stride = " << stride << " offset = " << offset
<< " (stride * (drawCount - 1) + offset + sizeof(VkDrawIndexedIndirectCommand)) = " << draw_size;
if (count == 1) {
vuid_msg = vuid.count_exceeds_bufsize_1;
} else {
vuid_msg = vuid.count_exceeds_bufsize;
}
} else if (debug_record[_kPreValidateSubError] == pre_draw_count_exceeds_limit_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect draw count of " << count << " would exceed maxDrawIndirectCount limit of "
<< gpu_assisted->phys_dev_props.limits.maxDrawIndirectCount;
vuid_msg = vuid.count_exceeds_device_limit;
} else if (debug_record[_kPreValidateSubError] == pre_draw_first_instance_error) {
uint32_t index = debug_record[_kPreValidateSubError + 1];
strm << "The drawIndirectFirstInstance feature is not enabled, but the firstInstance member of the "
<< ((buf_info.cmd_type == CMD_DRAWINDIRECT) ? "VkDrawIndirectCommand" : "VkDrawIndexedIndirectCommand")
<< " structure at index " << index << " is not zero";
vuid_msg = vuid.first_instance_not_zero;
}
return_code = false;
} break;
case _kInstErrorPreDispatchValidate: {
if (debug_record[_kPreValidateSubError] == pre_dispatch_count_exceeds_limit_x_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect dispatch VkDispatchIndirectCommand::x of " << count
<< " would exceed maxComputeWorkGroupCount[0] limit of "
<< gpu_assisted->phys_dev_props.limits.maxComputeWorkGroupCount[0];
vuid_msg = vuid.group_exceeds_device_limit_x;
} else if (debug_record[_kPreValidateSubError] == pre_dispatch_count_exceeds_limit_y_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect dispatch VkDispatchIndirectCommand:y of " << count
<< " would exceed maxComputeWorkGroupCount[1] limit of "
<< gpu_assisted->phys_dev_props.limits.maxComputeWorkGroupCount[1];
vuid_msg = vuid.group_exceeds_device_limit_y;
} else if (debug_record[_kPreValidateSubError] == pre_dispatch_count_exceeds_limit_z_error) {
uint32_t count = debug_record[_kPreValidateSubError + 1];
strm << "Indirect dispatch VkDispatchIndirectCommand::z of " << count
<< " would exceed maxComputeWorkGroupCount[2] limit of "
<< gpu_assisted->phys_dev_props.limits.maxComputeWorkGroupCount[2];
vuid_msg = vuid.group_exceeds_device_limit_z;
}
return_code = false;
} break;
default: {
strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
vuid_msg = "UNASSIGNED-Internal Error";
assert(false);
} break;
}
msg = strm.str();
return return_code;
}
// Pull together all the information from the debug record to build the error message strings,
// and then assemble them into a single message string.
// Retrieve the shader program referenced by the unique shader ID provided in the debug record.
// We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
// sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
// keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
//
void GpuAssisted::AnalyzeAndGenerateMessages(VkCommandBuffer command_buffer, VkQueue queue, GpuAssistedBufferInfo &buffer_info,
uint32_t operation_index, uint32_t *const debug_output_buffer) {
using namespace spvtools;
const uint32_t total_words = debug_output_buffer[kDebugOutputSizeOffset];
bool oob_access;
// A zero here means that the shader instrumentation didn't write anything.
// If you have nothing to say, don't say it here.
if (0 == total_words) {
return;
}
// The second word in the debug output buffer is the number of words that would have
// been written by the shader instrumentation, if there was enough room in the buffer we provided.
// The number of words actually written by the shaders is determined by the size of the buffer
// we provide via the descriptor. So, we process only the number of words that can fit in the
// buffer.
// Each "report" written by the shader instrumentation is considered a "record". This function
// is hard-coded to process only one record because it expects the buffer to be large enough to
// hold only one record. If there is a desire to process more than one record, this function needs
// to be modified to loop over records and the buffer size increased.
std::string validation_message;
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
std::string vuid_msg;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<uint32_t> pgm;
// The first record starts at this offset after the total_words.
const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = shader_map.find(debug_record[kInstCommonOutShaderId]);
if (it != shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
const bool gen_full_message =
GenerateValidationMessage(debug_record, validation_message, vuid_msg, oob_access, buffer_info, this);
if (gen_full_message) {
UtilGenerateStageMessage(debug_record, stage_message);
UtilGenerateCommonMessage(report_data, command_buffer, debug_record, shader_module_handle, pipeline_handle,
buffer_info.pipeline_bind_point, operation_index, common_message);
UtilGenerateSourceMessages(pgm, debug_record, false, filename_message, source_message);
if (buffer_info.uses_robustness && oob_access) {
if (warn_on_robust_oob) {
LogWarning(queue, vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(),
stage_message.c_str(), filename_message.c_str(), source_message.c_str());
}
} else {
LogError(queue, vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(),
stage_message.c_str(), filename_message.c_str(), source_message.c_str());
}
}
else {
LogError(queue, vuid_msg.c_str(), "%s", validation_message.c_str());
}
// Clear the written size and any error messages. Note that this preserves the first word, which contains flags.
const uint32_t words_to_clear = std::min(total_words, output_buffer_size - kDebugOutputDataOffset);
debug_output_buffer[kDebugOutputSizeOffset] = 0;
memset(&debug_output_buffer[kDebugOutputDataOffset], 0, sizeof(uint32_t) * words_to_clear);
}
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void gpuav_state::CommandBuffer::Process(VkQueue queue) {
auto *device_state = static_cast<GpuAssisted *>(dev_data);
if (has_draw_cmd || has_trace_rays_cmd || has_dispatch_cmd) {
auto &gpu_buffer_list = per_draw_buffer_list;
uint32_t draw_index = 0;
uint32_t compute_index = 0;
uint32_t ray_trace_index = 0;
for (auto &buffer_info : gpu_buffer_list) {
char *data;
uint32_t operation_index = 0;
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
operation_index = draw_index;
draw_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
operation_index = compute_index;
compute_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
operation_index = ray_trace_index;
ray_trace_index++;
} else {
assert(false);
}
VkResult result = vmaMapMemory(device_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&data);
if (result == VK_SUCCESS) {
device_state->AnalyzeAndGenerateMessages(commandBuffer(), queue, buffer_info, operation_index, (uint32_t *)data);
vmaUnmapMemory(device_state->vmaAllocator, buffer_info.output_mem_block.allocation);
}
}
}
ProcessAccelerationStructure(queue);
}
void GpuAssisted::SetBindingState(uint32_t *data, uint32_t index, const cvdescriptorset::DescriptorBinding *binding) {
switch (binding->descriptor_class) {
case cvdescriptorset::DescriptorClass::GeneralBuffer: {
auto buffer_binding = static_cast<const cvdescriptorset::BufferBinding *>(binding);
for (uint32_t di = 0; di < buffer_binding->count; di++) {
const auto &desc = buffer_binding->descriptors[di];
if (!buffer_binding->updated[di]) {
data[index++] = 0;
continue;
}
auto buffer = desc.GetBuffer();
if (buffer == VK_NULL_HANDLE) {
data[index++] = UINT_MAX;
} else {
auto buffer_state = desc.GetBufferState();
data[index++] = static_cast<uint32_t>(buffer_state->createInfo.size);
}
}
break;
}
case cvdescriptorset::DescriptorClass::TexelBuffer: {
auto texel_binding = static_cast<const cvdescriptorset::TexelBinding *>(binding);
for (uint32_t di = 0; di < texel_binding->count; di++) {
const auto &desc = texel_binding->descriptors[di];
if (!texel_binding->updated[di]) {
data[index++] = 0;
continue;
}
auto buffer_view = desc.GetBufferView();
if (buffer_view == VK_NULL_HANDLE) {
data[index++] = UINT_MAX;
} else {
auto buffer_view_state = desc.GetBufferViewState();
data[index++] = static_cast<uint32_t>(buffer_view_state->buffer_state->createInfo.size);
}
}
break;
}
case cvdescriptorset::DescriptorClass::Mutable: {
auto mutable_binding = static_cast<const cvdescriptorset::MutableBinding *>(binding);
for (uint32_t di = 0; di < mutable_binding->count; di++) {
const auto &desc = mutable_binding->descriptors[di];
if (!mutable_binding->updated[di]) {
data[index++] = 0;
continue;
}
switch (desc.ActiveType()) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
data[index++] = static_cast<uint32_t>(desc.GetBufferSize());
break;
default:
data[index++] = 1;
break;
}
}
break;
}
default: {
for (uint32_t i = 0; i < binding->count; i++, index++) {
data[index] = static_cast<uint32_t>(binding->updated[i]);
}
break;
}
}
}
// For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors
void GpuAssisted::UpdateInstrumentationBuffer(gpuav_state::CommandBuffer *cb_node) {
uint32_t *data;
for (const auto &buffer_info : cb_node->di_input_buffer_list) {
if (buffer_info.update_at_submit.size() > 0) {
VkResult result =
vmaMapMemory(vmaAllocator, buffer_info.allocation, reinterpret_cast<void **>(&data));
if (result == VK_SUCCESS) {
for (const auto &update : buffer_info.update_at_submit) {
SetBindingState(data, update.first, update.second);
}
vmaUnmapMemory(vmaAllocator, buffer_info.allocation);
}
}
}
}
void GpuAssisted::PostCallRecordCmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets) {
ValidationStateTracker::PostCallRecordCmdBindDescriptorSets(commandBuffer, pipelineBindPoint, layout, firstSet,
descriptorSetCount, pDescriptorSets, dynamicOffsetCount,
pDynamicOffsets);
if (aborted) return;
auto cb_node = GetWrite<gpuav_state::CommandBuffer>(commandBuffer);
if (!cb_node) {
ReportSetupProblem(device, "Unrecognized command buffer");
aborted = true;
return;
}
const auto lv_bind_point = ConvertToLvlBindPoint(pipelineBindPoint);
auto const &last_bound = cb_node->lastBound[lv_bind_point];
uint32_t number_of_sets = static_cast<uint32_t>(last_bound.per_set.size());
// Figure out how much memory we need for the input block based on how many sets and bindings there are
// and how big each of the bindings is
if (number_of_sets > 0 && (descriptor_indexing || buffer_oob_enabled)) {
// Note that the size of the input buffer is dependent on the maximum binding number, which
// can be very large. This is because for (set = s, binding = b, index = i), the validation
// code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
// see if descriptors have been written. In gpu_validation.md, we note this and advise
// using densely packed bindings as a best practice when using gpu-av with descriptor indexing
bool has_buffers = false;
uint32_t descriptor_count = 0; // Number of descriptors, including all array elements
uint32_t binding_count = 0; // Number of bindings based on the max binding number used
// Figure out how much memory we need for the input block based on how many sets and bindings there are
// and how big each of the bindings is
for (const auto &s : last_bound.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
binding_count += desc->GetLayout()->GetMaxBinding() + 1;
for (const auto &binding : *desc) {
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
descriptor_count++;
LogWarning(device, "UNASSIGNED-GPU-Assisted Validation Warning",
"VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted "
"validation");
} else {
descriptor_count += binding->count;
}
if (!has_buffers && (binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER ||
binding->type == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)) {
has_buffers = true;
}
}
}
}
if (descriptor_indexing || has_buffers) {
// Note that the size of the input buffer is dependent on the maximum binding number, which
// can be very large. This is because for (set = s, binding = b, index = i), the validation
// code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
// see if descriptors have been written. In gpu_validation.md, we note this and advise
// using densely packed bindings as a best practice when using gpu-av with descriptor indexing
uint32_t words_needed;
if (descriptor_indexing) {
words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count;
} else {
words_needed = 1 + number_of_sets + binding_count + descriptor_count;
}
VkBufferCreateInfo buffer_info = LvlInitStruct<VkBufferCreateInfo>();
buffer_info.size = words_needed * 4;
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_info = {};
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_info.pool = VK_NULL_HANDLE;
GpuAssistedDeviceMemoryBlock di_input_block = {};
VkResult result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &di_input_block.buffer, &di_input_block.allocation,
nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.", true);
aborted = true;
return;
}
uint32_t *data_ptr;
cb_node->current_input_buffer = di_input_block.buffer;
// Populate input buffer first with the sizes of every descriptor in every set, then with whether
// each element of each descriptor has been written or not. See gpu_validation.md for a more thourough
// outline of the input buffer format
result = vmaMapMemory(vmaAllocator, di_input_block.allocation, reinterpret_cast<void **>(&data_ptr));
memset(data_ptr, 0, static_cast<size_t>(buffer_info.size));
// Descriptor indexing needs the number of descriptors at each binding.
if (descriptor_indexing) {
// Pointer to a sets array that points into the sizes array
uint32_t *sets_to_sizes = data_ptr + 1;
// Pointer to the sizes array that contains the array size of the descriptor at each binding
uint32_t *sizes = sets_to_sizes + number_of_sets;
// Pointer to another sets array that points into the bindings array that points into the written array
uint32_t *sets_to_bindings = sizes + binding_count;
// Pointer to the bindings array that points at the start of the writes in the writes array for each binding
uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
// Index of the next entry in the written array to be updated
uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2);
uint32_t bind_counter = number_of_sets + 1;
// Index of the start of the sets_to_bindings array
data_ptr[0] = number_of_sets + binding_count + 1;
for (const auto &s : last_bound.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
auto layout = desc->GetLayout();
// For each set, fill in index of its bindings sizes in the sizes array
*sets_to_sizes++ = bind_counter;
// For each set, fill in the index of its bindings in the bindings_to_written array
*sets_to_bindings++ = bind_counter + number_of_sets + binding_count;
for (auto &binding : *desc) {
// For each binding, fill in its size in the sizes array
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline
// uniform blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == binding->type) {
sizes[binding->binding] = 1;
} else {
sizes[binding->binding] = binding->count;
}
// Fill in the starting index for this binding in the written array in the bindings_to_written array
bindings_to_written[binding->binding] = written_index;
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline
// uniform blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == binding->type) {
data_ptr[written_index++] = UINT_MAX;
continue;
}
if ((binding->binding_flags & VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT) != 0) {
di_input_block.update_at_submit[written_index] = binding.get();
} else {
SetBindingState(data_ptr, written_index, binding.get());
}
written_index += binding->count;
}
auto last = desc->GetLayout()->GetMaxBinding();
bindings_to_written += last + 1;
bind_counter += last + 1;
sizes += last + 1;
} else {
*sets_to_sizes++ = 0;
*sets_to_bindings++ = 0;
}
}
} else {
// If no descriptor indexing, we don't need number of descriptors at each binding, so
// no sets_to_sizes or sizes arrays, just sets_to_bindings, bindings_to_written and written_index
// Pointer to sets array that points into the bindings array that points into the written array
uint32_t *sets_to_bindings = data_ptr + 1;
// Pointer to the bindings array that points at the start of the writes in the writes array for each binding
uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
// Index of the next entry in the written array to be updated
uint32_t written_index = 1 + number_of_sets + binding_count;
uint32_t bind_counter = number_of_sets + 1;
data_ptr[0] = 1;
for (const auto &s : last_bound.per_set) {
auto desc = s.bound_descriptor_set;
if (desc && (desc->GetBindingCount() > 0)) {
auto layout = desc->GetLayout();
*sets_to_bindings++ = bind_counter;
for (auto &binding : *desc) {
// Fill in the starting index for this binding in the written array in the bindings_to_written array
bindings_to_written[binding->binding] = written_index;
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline
// uniform blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == binding->type) {
data_ptr[written_index++] = UINT_MAX;
continue;
}
// note that VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT is part of descriptor indexing
SetBindingState(data_ptr, written_index, binding.get());
written_index += binding->count;
}
auto last = desc->GetLayout()->GetMaxBinding();
bindings_to_written += last + 1;
bind_counter += last + 1;
} else {
*sets_to_bindings++ = 0;
}
}
}
vmaUnmapMemory(vmaAllocator, di_input_block.allocation);
cb_node->di_input_buffer_list.emplace_back(di_input_block);
}
}
}
void GpuAssisted::PreRecordCommandBuffer(VkCommandBuffer command_buffer) {
auto cb_node = GetWrite<gpuav_state::CommandBuffer>(command_buffer);
UpdateInstrumentationBuffer(cb_node.get());
for (auto *secondary_cmd_buffer : cb_node->linkedCommandBuffers) {
auto guard = secondary_cmd_buffer->WriteLock();
UpdateInstrumentationBuffer(static_cast<gpuav_state::CommandBuffer *>(secondary_cmd_buffer));
}
}
void GpuAssisted::PreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
ValidationStateTracker::PreCallRecordQueueSubmit(queue, submitCount, pSubmits, fence);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
PreRecordCommandBuffer(submit->pCommandBuffers[i]);
}
}
}
void GpuAssisted::PreCallRecordQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence) {
ValidationStateTracker::PreCallRecordQueueSubmit2KHR(queue, submitCount, pSubmits, fence);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2KHR *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
PreRecordCommandBuffer(submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void GpuAssisted::PreCallRecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence) {
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2 *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
PreRecordCommandBuffer(submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void GpuAssisted::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
ValidationStateTracker::PreCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAW);
}
void GpuAssisted::PreCallRecordCmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawInfoEXT *pVertexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMultiEXT(commandBuffer, drawCount, pVertexInfo, instanceCount, firstInstance,
stride);
for (uint32_t i = 0; i < drawCount; i++) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMULTIEXT);
}
}
void GpuAssisted::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
ValidationStateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset,
firstInstance);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXED);
}
void GpuAssisted::PreCallRecordCmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount,
uint32_t firstInstance, uint32_t stride, const int32_t *pVertexOffset) {
ValidationStateTracker::PreCallRecordCmdDrawMultiIndexedEXT(commandBuffer, drawCount, pIndexInfo, instanceCount, firstInstance,
stride, pVertexOffset);
for (uint32_t i = 0; i < drawCount; i++) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMULTIINDEXEDEXT);
}
}
void GpuAssisted::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, count, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, count, stride, VK_NULL_HANDLE, 0};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, count, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, count, stride, VK_NULL_HANDLE, 0};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECTCOUNTKHR, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECTCOUNT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectByteCountEXT(commandBuffer, instanceCount, firstInstance, counterBuffer,
counterBufferOffset, counterOffset, vertexStride);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECTBYTECOUNTEXT);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECTCOUNTKHR, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, stride, countBuffer, countBufferOffset};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECTCOUNT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksNV(commandBuffer, taskCount, firstTask);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSNV);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectNV(commandBuffer, buffer, offset, drawCount, stride);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSINDIRECTNV);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectCountNV(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSINDIRECTCOUNTNV);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSEXT);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSINDIRECTEXT);
}
void GpuAssisted::PreCallRecordCmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWMESHTASKSINDIRECTCOUNTEXT);
}
void GpuAssisted::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
ValidationStateTracker::PreCallRecordCmdDispatch(commandBuffer, x, y, z);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCH);
}
void GpuAssisted::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
ValidationStateTracker::PreCallRecordCmdDispatchIndirect(commandBuffer, buffer, offset);
GpuAssistedCmdIndirectState indirect_state = {buffer, offset, 0, 0, VK_NULL_HANDLE, 0};
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHINDIRECT, &indirect_state);
}
void GpuAssisted::PreCallRecordCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
ValidationStateTracker::PreCallRecordCmdDispatchBase(commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX,
groupCountY, groupCountZ);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHBASE);
}
void GpuAssisted::PreCallRecordCmdDispatchBaseKHR(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
ValidationStateTracker::PreCallRecordCmdDispatchBaseKHR(commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX,
groupCountY, groupCountZ);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHBASEKHR);
}
void GpuAssisted::PreCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
ValidationStateTracker::PreCallRecordCmdTraceRaysNV(
commandBuffer, raygenShaderBindingTableBuffer, raygenShaderBindingOffset, missShaderBindingTableBuffer,
missShaderBindingOffset, missShaderBindingStride, hitShaderBindingTableBuffer, hitShaderBindingOffset,
hitShaderBindingStride, callableShaderBindingTableBuffer, callableShaderBindingOffset, callableShaderBindingStride, width,
height, depth);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV, CMD_TRACERAYSNV);
}
void GpuAssisted::PreCallRecordCmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
uint32_t height, uint32_t depth) {
ValidationStateTracker::PreCallRecordCmdTraceRaysKHR(commandBuffer, pRaygenShaderBindingTable, pMissShaderBindingTable,
pHitShaderBindingTable, pCallableShaderBindingTable, width, height, depth);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, CMD_TRACERAYSKHR);
}
void GpuAssisted::PreCallRecordCmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress) {
ValidationStateTracker::PreCallRecordCmdTraceRaysIndirectKHR(commandBuffer, pRaygenShaderBindingTable, pMissShaderBindingTable,
pHitShaderBindingTable, pCallableShaderBindingTable,
indirectDeviceAddress);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, CMD_TRACERAYSINDIRECTKHR);
}
void GpuAssisted::PreCallRecordCmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress) {
ValidationStateTracker::PreCallRecordCmdTraceRaysIndirect2KHR(commandBuffer, indirectDeviceAddress);
AllocateValidationResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, CMD_TRACERAYSINDIRECT2KHR);
}
// This function will add the returned VkPipeline handle to another object incharge of destroying it. Caller does NOT have to
// destroy it
VkPipeline GpuAssisted::GetValidationPipeline(VkRenderPass render_pass) {
VkPipeline pipeline = VK_NULL_HANDLE;
//NOTE: for dynamic rendering, render_pass will be VK_NULL_HANDLE but we'll use that as a map
//key anyways;
auto pipeentry = pre_draw_validation_state.renderpass_to_pipeline.find(render_pass);
if (pipeentry != pre_draw_validation_state.renderpass_to_pipeline.end()) {
pipeline = pipeentry->second;
}
if (pipeline != VK_NULL_HANDLE) {
return pipeline;
}
auto pipeline_stage_ci = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
pipeline_stage_ci.stage = VK_SHADER_STAGE_VERTEX_BIT;
pipeline_stage_ci.module = pre_draw_validation_state.shader_module;
pipeline_stage_ci.pName = "main";
auto pipeline_ci = LvlInitStruct<VkGraphicsPipelineCreateInfo>();
auto vertex_input_state = LvlInitStruct<VkPipelineVertexInputStateCreateInfo>();
auto input_assembly_state = LvlInitStruct<VkPipelineInputAssemblyStateCreateInfo>();
input_assembly_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
auto rasterization_state = LvlInitStruct<VkPipelineRasterizationStateCreateInfo>();
rasterization_state.rasterizerDiscardEnable = VK_TRUE;
auto color_blend_state = LvlInitStruct<VkPipelineColorBlendStateCreateInfo>();
pipeline_ci.pVertexInputState = &vertex_input_state;
pipeline_ci.pInputAssemblyState = &input_assembly_state;
pipeline_ci.pRasterizationState = &rasterization_state;
pipeline_ci.pColorBlendState = &color_blend_state;
pipeline_ci.renderPass = render_pass;
pipeline_ci.layout = pre_draw_validation_state.pipeline_layout;
pipeline_ci.stageCount = 1;
pipeline_ci.pStages = &pipeline_stage_ci;
VkResult result = DispatchCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr, &pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create graphics pipeline. Aborting GPU-AV");
aborted = true;
return VK_NULL_HANDLE;
}
pre_draw_validation_state.renderpass_to_pipeline.insert(render_pass, pipeline);
return pipeline;
}
void GpuAssisted::AllocatePreDrawValidationResources(const GpuAssistedDeviceMemoryBlock &output_block,
GpuAssistedPreDrawResources &resources, const VkRenderPass render_pass,
VkPipeline *pPipeline, const GpuAssistedCmdIndirectState *indirect_state) {
VkResult result;
if (!pre_draw_validation_state.initialized) {
auto shader_module_ci = LvlInitStruct<VkShaderModuleCreateInfo>();
shader_module_ci.codeSize = sizeof(gpu_pre_draw_vert);
shader_module_ci.pCode = gpu_pre_draw_vert;
result = DispatchCreateShaderModule(device, &shader_module_ci, nullptr, &pre_draw_validation_state.shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create shader module. Aborting GPU-AV");
aborted = true;
return;
}
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT, nullptr}, // output buffer
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT, nullptr}, // count/draws buffer
};
VkDescriptorSetLayoutCreateInfo ds_layout_ci = LvlInitStruct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.bindingCount = static_cast<uint32_t>(bindings.size());
ds_layout_ci.pBindings = bindings.data();
result = DispatchCreateDescriptorSetLayout(device, &ds_layout_ci, nullptr, &pre_draw_validation_state.ds_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create descriptor set layout. Aborting GPU-AV");
aborted = true;
return;
}
VkPushConstantRange push_constant_range = {};
push_constant_range.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constant_range.offset = 0;
push_constant_range.size = resources.push_constant_words * sizeof(uint32_t);
VkPipelineLayoutCreateInfo pipeline_layout_ci = LvlInitStruct<VkPipelineLayoutCreateInfo>();
pipeline_layout_ci.pushConstantRangeCount = 1;
pipeline_layout_ci.pPushConstantRanges = &push_constant_range;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &pre_draw_validation_state.ds_layout;
result = DispatchCreatePipelineLayout(device, &pipeline_layout_ci, nullptr, &pre_draw_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Aborting GPU-AV");
aborted = true;
return;
}
pre_draw_validation_state.initialized = true;
}
*pPipeline = GetValidationPipeline(render_pass);
if (*pPipeline == VK_NULL_HANDLE) {
ReportSetupProblem(device, "Could not find or create a pipeline. Aborting GPU-AV");
aborted = true;
return;
}
result = desc_set_manager->GetDescriptorSet(&resources.desc_pool, pre_draw_validation_state.ds_layout, &resources.desc_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor set. Aborting GPU-AV");
aborted = true;
return;
}
const uint32_t buffer_count = 2;
VkDescriptorBufferInfo buffer_infos[buffer_count] = {};
// Error output buffer
buffer_infos[0].buffer = output_block.buffer;
buffer_infos[0].offset = 0;
buffer_infos[0].range = VK_WHOLE_SIZE;
if (indirect_state->count_buffer) {
// Count buffer
buffer_infos[1].buffer = indirect_state->count_buffer;
} else {
// Draw Buffer
buffer_infos[1].buffer = indirect_state->buffer;
}
buffer_infos[1].offset = 0;
buffer_infos[1].range = VK_WHOLE_SIZE;
VkWriteDescriptorSet desc_writes[buffer_count] = {};
for (uint32_t i = 0; i < buffer_count; i++) {
desc_writes[i] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[i].dstBinding = i;
desc_writes[i].descriptorCount = 1;
desc_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[i].pBufferInfo = &buffer_infos[i];
desc_writes[i].dstSet = resources.desc_set;
}
DispatchUpdateDescriptorSets(device, buffer_count, desc_writes, 0, NULL);
}
void GpuAssisted::AllocatePreDispatchValidationResources(const GpuAssistedDeviceMemoryBlock &output_block,
GpuAssistedPreDispatchResources &resources,
const GpuAssistedCmdIndirectState *indirect_state) {
VkResult result;
if (!pre_dispatch_validation_state.initialized) {
auto shader_module_ci = LvlInitStruct<VkShaderModuleCreateInfo>();
shader_module_ci.codeSize = sizeof(gpu_pre_dispatch_comp);
shader_module_ci.pCode = gpu_pre_dispatch_comp;
result = DispatchCreateShaderModule(device, &shader_module_ci, nullptr, &pre_dispatch_validation_state.shader_module);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create shader module. Aborting GPU-AV");
aborted = true;
return;
}
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr}, // output buffer
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr}, // indirect buffer
};
VkDescriptorSetLayoutCreateInfo ds_layout_ci = LvlInitStruct<VkDescriptorSetLayoutCreateInfo>();
ds_layout_ci.bindingCount = static_cast<uint32_t>(bindings.size());
ds_layout_ci.pBindings = bindings.data();
result = DispatchCreateDescriptorSetLayout(device, &ds_layout_ci, nullptr, &pre_dispatch_validation_state.ds_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create descriptor set layout. Aborting GPU-AV");
aborted = true;
return;
}
VkPushConstantRange push_constant_range = {};
push_constant_range.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
push_constant_range.offset = 0;
push_constant_range.size = resources.push_constant_words * sizeof(uint32_t);
VkPipelineLayoutCreateInfo pipeline_layout_ci = LvlInitStruct<VkPipelineLayoutCreateInfo>();
pipeline_layout_ci.pushConstantRangeCount = 1;
pipeline_layout_ci.pPushConstantRanges = &push_constant_range;
pipeline_layout_ci.setLayoutCount = 1;
pipeline_layout_ci.pSetLayouts = &pre_dispatch_validation_state.ds_layout;
result = DispatchCreatePipelineLayout(device, &pipeline_layout_ci, nullptr, &pre_dispatch_validation_state.pipeline_layout);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Aborting GPU-AV");
aborted = true;
return;
}
// Create pipeline
auto pipeline_stage_ci = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
pipeline_stage_ci.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline_stage_ci.module = pre_dispatch_validation_state.shader_module;
pipeline_stage_ci.pName = "main";
auto pipeline_ci = LvlInitStruct<VkComputePipelineCreateInfo>();
pipeline_ci.stage = pipeline_stage_ci;
pipeline_ci.layout = pre_dispatch_validation_state.pipeline_layout;
result = DispatchCreateComputePipelines(device, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr,
&pre_dispatch_validation_state.pipeline);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Failed to create compute pipeline for pre dispatch validation.");
}
pre_dispatch_validation_state.initialized = true;
}
result = desc_set_manager->GetDescriptorSet(&resources.desc_pool, pre_dispatch_validation_state.ds_layout, &resources.desc_set);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor set. Aborting GPU-AV");
aborted = true;
return;
}
const uint32_t buffer_count = 2;
VkDescriptorBufferInfo buffer_infos[buffer_count] = {};
// Error output buffer
buffer_infos[0].buffer = output_block.buffer;
buffer_infos[0].offset = 0;
buffer_infos[0].range = VK_WHOLE_SIZE;
buffer_infos[1].buffer = indirect_state->buffer;
buffer_infos[1].offset = 0;
buffer_infos[1].range = VK_WHOLE_SIZE;
VkWriteDescriptorSet desc_writes[buffer_count] = {};
for (uint32_t i = 0; i < buffer_count; i++) {
desc_writes[i] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[i].dstBinding = i;
desc_writes[i].descriptorCount = 1;
desc_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[i].pBufferInfo = &buffer_infos[i];
desc_writes[i].dstSet = resources.desc_set;
}
DispatchUpdateDescriptorSets(device, buffer_count, desc_writes, 0, nullptr);
}
void GpuAssisted::AllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point,
CMD_TYPE cmd_type, const GpuAssistedCmdIndirectState *indirect_state) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
VkResult result;
if (aborted) return;
auto cb_node = GetWrite<gpuav_state::CommandBuffer>(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(device, "Unrecognized command buffer");
aborted = true;
return;
}
const auto lv_bind_point = ConvertToLvlBindPoint(bind_point);
auto const &last_bound = cb_node->lastBound[lv_bind_point];
const auto *pipeline_state = last_bound.pipeline_state;
bool uses_robustness = false;
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = desc_set_manager->GetDescriptorSets(1, &desc_pool, debug_desc_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor sets. Device could become unstable.");
aborted = true;
return;
}
VkDescriptorBufferInfo output_desc_buffer_info = {};
output_desc_buffer_info.range = output_buffer_size;
// Allocate memory for the output block that the gpu will use to return any error information
GpuAssistedDeviceMemoryBlock output_block = {};
VkBufferCreateInfo buffer_info = LvlInitStruct<VkBufferCreateInfo>();
buffer_info.size = output_buffer_size;
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_info = {};
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_info.pool = output_buffer_pool;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &output_block.buffer, &output_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.", true);
aborted = true;
return;
}
uint32_t *data_ptr;
result = vmaMapMemory(vmaAllocator, output_block.allocation, reinterpret_cast<void **>(&data_ptr));
if (result == VK_SUCCESS) {
memset(data_ptr, 0, output_buffer_size);
if (buffer_oob_enabled || buffer_device_address) {
uses_robustness =
(enabled_features.core.robustBufferAccess || enabled_features.robustness2_features.robustBufferAccess2 ||
pipeline_state->uses_pipeline_robustness);
data_ptr[spvtools::kDebugOutputFlagsOffset] = spvtools::kInstBufferOOBEnable;;
}
vmaUnmapMemory(vmaAllocator, output_block.allocation);
}
GpuAssistedDeviceMemoryBlock bda_input_block = {};
VkDescriptorBufferInfo di_input_desc_buffer_info = {};
VkDescriptorBufferInfo bda_input_desc_buffer_info = {};
VkWriteDescriptorSet desc_writes[3] = {};
GpuAssistedPreDrawResources pre_draw_resources = {};
GpuAssistedPreDispatchResources pre_dispatch_resources = {};
uint32_t desc_count = 1;
if (validate_draw_indirect && ((cmd_type == CMD_DRAWINDIRECTCOUNT || cmd_type == CMD_DRAWINDIRECTCOUNTKHR ||
cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNT || cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNTKHR) ||
((cmd_type == CMD_DRAWINDIRECT || cmd_type == CMD_DRAWINDEXEDINDIRECT) &&
!(enabled_features.core.drawIndirectFirstInstance)))) {
// Insert a draw that can examine some device memory right before the draw we're validating (Pre Draw Validation)
//
// NOTE that this validation does not attempt to abort invalid api calls as most other validation does. A crash
// or DEVICE_LOST resulting from the invalid call will prevent preceeding validation errors from being reported.
assert(bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS);
assert(indirect_state != NULL);
VkPipeline validation_pipeline;
AllocatePreDrawValidationResources(output_block, pre_draw_resources, cb_node->activeRenderPass.get()->renderPass(),
&validation_pipeline, indirect_state);
if (aborted) return;
// Save current graphics pipeline state
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_node.get(), VK_PIPELINE_BIND_POINT_GRAPHICS);
// Save parameters for error message
pre_draw_resources.buffer = indirect_state->buffer;
pre_draw_resources.offset = indirect_state->offset;
pre_draw_resources.stride = indirect_state->stride;
uint32_t push_constants[pre_draw_resources.push_constant_words] = {};
if (cmd_type == CMD_DRAWINDIRECTCOUNT || cmd_type == CMD_DRAWINDIRECTCOUNTKHR || cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNT ||
cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNTKHR) {
// Validate count buffer
if (indirect_state->count_buffer_offset > std::numeric_limits<uint32_t>::max()) {
ReportSetupProblem(device,
"Count buffer offset is larger than can be contained in an unsigned int. Aborting GPU-AV");
aborted = true;
return;
}
// Buffer size must be >= (stride * (drawCount - 1) + offset + sizeof(VkDrawIndirectCommand))
uint32_t struct_size;
if (cmd_type == CMD_DRAWINDIRECTCOUNT || cmd_type == CMD_DRAWINDIRECTCOUNTKHR) {
struct_size = sizeof(VkDrawIndirectCommand);
} else {
assert(cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNT || cmd_type == CMD_DRAWINDEXEDINDIRECTCOUNTKHR);
struct_size = sizeof(VkDrawIndexedIndirectCommand);
}
auto buffer_state = Get<BUFFER_STATE>(indirect_state->buffer);
uint32_t max_count;
uint64_t bufsize = buffer_state->createInfo.size;
uint64_t first_command_bytes = struct_size + indirect_state->offset;
if (first_command_bytes > bufsize) {
max_count = 0;
} else {
max_count = 1 + static_cast<uint32_t>(std::floor(((bufsize - first_command_bytes) / indirect_state->stride)));
}
pre_draw_resources.buf_size = buffer_state->createInfo.size;
assert(phys_dev_props.limits.maxDrawIndirectCount > 0);
push_constants[0] = phys_dev_props.limits.maxDrawIndirectCount;
push_constants[1] = max_count;
push_constants[2] = static_cast<uint32_t>((indirect_state->count_buffer_offset / sizeof(uint32_t)));
} else {
// Validate buffer for firstInstance check instead of count buffer check
push_constants[0] = 0;
push_constants[1] = indirect_state->draw_count;
if (cmd_type == CMD_DRAWINDIRECT) {
push_constants[2] = static_cast<uint32_t>(
((indirect_state->offset + offsetof(struct VkDrawIndirectCommand, firstInstance)) / sizeof(uint32_t)));
} else {
assert(cmd_type == CMD_DRAWINDEXEDINDIRECT);
push_constants[2] = static_cast<uint32_t>(
((indirect_state->offset + offsetof(struct VkDrawIndexedIndirectCommand, firstInstance)) / sizeof(uint32_t)));
}
push_constants[3] = (indirect_state->stride / sizeof(uint32_t));
}
// Insert diagnostic draw
DispatchCmdBindPipeline(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, validation_pipeline);
DispatchCmdPushConstants(cmd_buffer, pre_draw_validation_state.pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, 0,
sizeof(push_constants), push_constants);
DispatchCmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pre_draw_validation_state.pipeline_layout, 0, 1,
&pre_draw_resources.desc_set, 0, nullptr);
DispatchCmdDraw(cmd_buffer, 3, 1, 0, 0);
// Restore the previous graphics pipeline state.
restorable_state.Restore(cmd_buffer);
} else if (validate_dispatch_indirect && cmd_type == CMD_DISPATCHINDIRECT) {
// Insert a dispatch that can examine some device memory right before the dispatch we're validating
//
// NOTE that this validation does not attempt to abort invalid api calls as most other validation does. A crash
// or DEVICE_LOST resulting from the invalid call will prevent preceeding validation errors from being reported.
AllocatePreDispatchValidationResources(output_block, pre_dispatch_resources, indirect_state);
if (aborted) return;
// Save current graphics pipeline state
GPUAV_RESTORABLE_PIPELINE_STATE restorable_state;
restorable_state.Create(cb_node.get(), VK_PIPELINE_BIND_POINT_COMPUTE);
// Save parameters for error message
pre_dispatch_resources.buffer = indirect_state->buffer;
pre_dispatch_resources.offset = indirect_state->offset;
uint32_t push_constants[pre_dispatch_resources.push_constant_words] = {};
push_constants[0] = phys_dev_props.limits.maxComputeWorkGroupCount[0];
push_constants[1] = phys_dev_props.limits.maxComputeWorkGroupCount[1];
push_constants[2] = phys_dev_props.limits.maxComputeWorkGroupCount[2];
push_constants[3] = static_cast<uint32_t>((indirect_state->offset / sizeof(uint32_t)));
// Insert diagnostic dispatch
DispatchCmdBindPipeline(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pre_dispatch_validation_state.pipeline);
DispatchCmdPushConstants(cmd_buffer, pre_dispatch_validation_state.pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
sizeof(push_constants), push_constants);
DispatchCmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pre_dispatch_validation_state.pipeline_layout, 0,
1, &pre_dispatch_resources.desc_set, 0, nullptr);
DispatchCmdDispatch(cmd_buffer, 1, 1, 1);
// Restore the previous compute pipeline state.
restorable_state.Restore(cmd_buffer);
}
if (cb_node->current_input_buffer != VK_NULL_HANDLE) {
di_input_desc_buffer_info.range = VK_WHOLE_SIZE;
di_input_desc_buffer_info.buffer = cb_node->current_input_buffer;
di_input_desc_buffer_info.offset = 0;
desc_writes[desc_count] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[desc_count].dstBinding = 1;
desc_writes[desc_count].descriptorCount = 1;
desc_writes[desc_count].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[desc_count].pBufferInfo = &di_input_desc_buffer_info;
desc_writes[desc_count].dstSet = desc_sets[0];
desc_count++;
}
if (buffer_device_address) {
auto address_ranges = GetBufferAddressRanges();
if (address_ranges.size() > 0) {
// Example BDA input buffer assuming 2 buffers using BDA:
// Word 0 | Index of start of buffer sizes (in this case 5)
// Word 1 | 0x0000000000000000
// Word 2 | Device Address of first buffer (Addresses sorted in ascending order)
// Word 3 | Device Address of second buffer
// Word 4 | 0xffffffffffffffff
// Word 5 | 0 (size of pretend buffer at word 1)
// Word 6 | Size in bytes of first buffer
// Word 7 | Size in bytes of second buffer
// Word 8 | 0 (size of pretend buffer in word 4)
uint32_t num_buffers = static_cast<uint32_t>(address_ranges.size());
uint32_t words_needed = (num_buffers + 3) + (num_buffers + 2);
buffer_info.size = words_needed * 8; // 64 bit words
alloc_info.pool = VK_NULL_HANDLE;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &bda_input_block.buffer, &bda_input_block.allocation,
nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.", true);
aborted = true;
return;
}
uint64_t *bda_data;
result = vmaMapMemory(vmaAllocator, bda_input_block.allocation, reinterpret_cast<void **>(&bda_data));
uint32_t address_index = 1;
uint32_t size_index = 3 + num_buffers;
memset(bda_data, 0, static_cast<size_t>(buffer_info.size));
bda_data[0] = size_index; // Start of buffer sizes
bda_data[address_index++] = 0; // NULL address
bda_data[size_index++] = 0;
for (const auto &range : address_ranges) {
bda_data[address_index++] = range.begin;
bda_data[size_index++] = range.end - range.begin;
}
bda_data[address_index] = UINTPTR_MAX;
bda_data[size_index] = 0;
vmaUnmapMemory(vmaAllocator, bda_input_block.allocation);
bda_input_desc_buffer_info.range = (words_needed * 8);
bda_input_desc_buffer_info.buffer = bda_input_block.buffer;
bda_input_desc_buffer_info.offset = 0;
desc_writes[desc_count] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[desc_count].dstBinding = 2;
desc_writes[desc_count].descriptorCount = 1;
desc_writes[desc_count].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[desc_count].pBufferInfo = &bda_input_desc_buffer_info;
desc_writes[desc_count].dstSet = desc_sets[0];
desc_count++;
}
}
// Write the descriptor
output_desc_buffer_info.buffer = output_block.buffer;
output_desc_buffer_info.offset = 0;
desc_writes[0] = LvlInitStruct<VkWriteDescriptorSet>();
desc_writes[0].descriptorCount = 1;
desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[0].pBufferInfo = &output_desc_buffer_info;
desc_writes[0].dstSet = desc_sets[0];
DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL);
if (pipeline_state) {
const auto pipeline_layout = pipeline_state->PipelineLayoutState();
// If GPL is used, it's possible the pipeline layout used at pipeline creation time is null. If CmdBindDescriptorSets has
// not been called yet (i.e., state.pipeline_null), then fall back to the layout associated with pre-raster state.
// PipelineLayoutState should be used for the purposes of determining the number of sets in the layout, but this layout
// may be a "pseudo layout" used to represent the union of pre-raster and fragment shader layouts, and therefore have a
// null handle.
VkPipelineLayout pipeline_layout_handle = VK_NULL_HANDLE;
if (last_bound.pipeline_layout) {
pipeline_layout_handle = last_bound.pipeline_layout;
} else if (!pipeline_state->PreRasterPipelineLayoutState()->Destroyed()) {
pipeline_layout_handle = pipeline_state->PreRasterPipelineLayoutState()->layout();
}
if ((pipeline_layout->set_layouts.size() <= desc_set_bind_index) && pipeline_layout_handle != VK_NULL_HANDLE) {
DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_layout_handle, desc_set_bind_index, 1, desc_sets.data(),
0, nullptr);
}
if (pipeline_layout_handle == VK_NULL_HANDLE) {
ReportSetupProblem(device, "Unable to find pipeline layout to bind debug descriptor set. Aborting GPU-AV");
aborted = true;
} else {
// Record buffer and memory info in CB state tracking
cb_node->per_draw_buffer_list.emplace_back(output_block, bda_input_block, pre_draw_resources, pre_dispatch_resources,
desc_sets[0], desc_pool, bind_point, uses_robustness, cmd_type);
}
} else {
ReportSetupProblem(device, "Unable to find pipeline state");
aborted = true;
}
if (aborted) {
vmaDestroyBuffer(vmaAllocator, bda_input_block.buffer, bda_input_block.allocation);
vmaDestroyBuffer(vmaAllocator, output_block.buffer, output_block.allocation);
return;
}
}
std::shared_ptr<CMD_BUFFER_STATE> GpuAssisted::CreateCmdBufferState(VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *pool) {
return std::static_pointer_cast<CMD_BUFFER_STATE>(std::make_shared<gpuav_state::CommandBuffer>(this, cb, pCreateInfo, pool));
}
gpuav_state::CommandBuffer::CommandBuffer(GpuAssisted *ga, VkCommandBuffer cb, const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *pool)
: gpu_utils_state::CommandBuffer(ga, cb, pCreateInfo, pool) {}
gpuav_state::CommandBuffer::~CommandBuffer() { Destroy(); }
void gpuav_state::CommandBuffer::Destroy() {
ResetCBState();
CMD_BUFFER_STATE::Destroy();
}
void gpuav_state::CommandBuffer::Reset() {
CMD_BUFFER_STATE::Reset();
ResetCBState();
}
void gpuav_state::CommandBuffer::ResetCBState() {
auto gpuav = static_cast<GpuAssisted *>(dev_data);
// Free the device memory and descriptor set(s) associated with a command buffer.
for (auto &buffer_info : per_draw_buffer_list) {
gpuav->DestroyBuffer(buffer_info);
}
per_draw_buffer_list.clear();
for (auto &buffer_info : di_input_buffer_list) {
vmaDestroyBuffer(gpuav->vmaAllocator, buffer_info.buffer, buffer_info.allocation);
}
di_input_buffer_list.clear();
current_input_buffer = VK_NULL_HANDLE;
for (auto &as_validation_buffer_info : as_validation_buffers) {
gpuav->DestroyBuffer(as_validation_buffer_info);
}
as_validation_buffers.clear();
}
|