1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
/* Copyright (c) 2015-2023 The Khronos Group Inc.
* Copyright (c) 2015-2023 Valve Corporation
* Copyright (c) 2015-2023 LunarG, Inc.
* Copyright (C) 2015-2022 Google Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
* Modifications Copyright (C) 2022 RasterGrid Kft.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Courtney Goeltzenleuchter <courtneygo@google.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: John Zulauf <jzulauf@lunarg.com>
* Author: Tobias Hector <tobias.hector@amd.com>
* Author: Jeremy Gebben <jeremyg@lunarg.com>
* Author: Daniel Rakos <daniel.rakos@rastergrid.com>
*/
#include "image_state.h"
#include "pipeline_state.h"
#include "descriptor_sets.h"
#include "state_tracker.h"
#include <limits>
static VkImageSubresourceRange MakeImageFullRange(const VkImageCreateInfo &create_info) {
const auto format = create_info.format;
VkImageSubresourceRange init_range{0, 0, VK_REMAINING_MIP_LEVELS, 0, VK_REMAINING_ARRAY_LAYERS};
#ifdef VK_USE_PLATFORM_ANDROID_KHR
const VkExternalFormatANDROID *external_format_android = LvlFindInChain<VkExternalFormatANDROID>(&create_info);
const bool is_external_format_conversion = (external_format_android != nullptr && external_format_android->externalFormat != 0);
#else
const bool is_external_format_conversion = false;
#endif
if (FormatIsColor(format) || FormatIsMultiplane(format) || is_external_format_conversion) {
init_range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; // Normalization will expand this for multiplane
} else {
init_range.aspectMask =
(FormatHasDepth(format) ? VK_IMAGE_ASPECT_DEPTH_BIT : 0) | (FormatHasStencil(format) ? VK_IMAGE_ASPECT_STENCIL_BIT : 0);
}
return NormalizeSubresourceRange(create_info, init_range);
}
static uint32_t ResolveRemainingLevels(const VkImageSubresourceRange *range, uint32_t mip_levels) {
// Return correct number of mip levels taking into account VK_REMAINING_MIP_LEVELS
uint32_t mip_level_count = range->levelCount;
if (range->levelCount == VK_REMAINING_MIP_LEVELS) {
mip_level_count = mip_levels - range->baseMipLevel;
}
return mip_level_count;
}
static uint32_t ResolveRemainingLayers(const VkImageSubresourceRange *range, uint32_t layers) {
// Return correct number of layers taking into account VK_REMAINING_ARRAY_LAYERS
uint32_t array_layer_count = range->layerCount;
if (range->layerCount == VK_REMAINING_ARRAY_LAYERS) {
array_layer_count = layers - range->baseArrayLayer;
}
return array_layer_count;
}
VkImageSubresourceRange NormalizeSubresourceRange(const VkImageCreateInfo &image_create_info,
const VkImageSubresourceRange &range) {
VkImageSubresourceRange norm = range;
norm.levelCount = ResolveRemainingLevels(&range, image_create_info.mipLevels);
norm.layerCount = ResolveRemainingLayers(&range, image_create_info.arrayLayers);
// For multiplanar formats, IMAGE_ASPECT_COLOR is equivalent to adding the aspect of the individual planes
if (FormatIsMultiplane(image_create_info.format)) {
if (norm.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
norm.aspectMask &= ~VK_IMAGE_ASPECT_COLOR_BIT;
norm.aspectMask |= (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT);
if (FormatPlaneCount(image_create_info.format) > 2) {
norm.aspectMask |= VK_IMAGE_ASPECT_PLANE_2_BIT;
}
}
}
return norm;
}
static bool IsDepthSliced(const VkImageCreateInfo &image_create_info, const VkImageViewCreateInfo &create_info) {
auto kDepthSlicedFlags = VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT | VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT;
return ((image_create_info.flags & kDepthSlicedFlags) != 0) &&
(create_info.viewType == VK_IMAGE_VIEW_TYPE_2D || create_info.viewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY);
}
VkImageSubresourceRange NormalizeSubresourceRange(const VkImageCreateInfo &image_create_info,
const VkImageViewCreateInfo &create_info) {
auto subres_range = create_info.subresourceRange;
// if we're mapping a 3D image to a 2d image view, convert the view's subresource range to be compatible with the
// image's understanding of the world. From the VkImageSubresourceRange section of the Vulkan spec:
//
// When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D image’s mip level in
// order to create a 2D or 2D array image view of a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT,
// baseArrayLayer and layerCount specify the first slice index and the number of slices to include in the created
// image view. Such an image view can be used as a framebuffer attachment that refers only to the specified range
// of slices of the selected mip level. However, any layout transitions performed on such an attachment view during
// a render pass instance still apply to the entire subresource referenced which includes all the slices of the
// selected mip level.
//
if (IsDepthSliced(image_create_info, create_info)) {
subres_range.baseArrayLayer = 0;
subres_range.layerCount = 1;
}
return NormalizeSubresourceRange(image_create_info, subres_range);
}
static VkExternalMemoryHandleTypeFlags GetExternalHandleType(const VkImageCreateInfo *pCreateInfo) {
const auto *external_memory_info = LvlFindInChain<VkExternalMemoryImageCreateInfo>(pCreateInfo->pNext);
return external_memory_info ? external_memory_info->handleTypes : 0;
}
static VkSwapchainKHR GetSwapchain(const VkImageCreateInfo *pCreateInfo) {
const auto *swapchain_info = LvlFindInChain<VkImageSwapchainCreateInfoKHR>(pCreateInfo->pNext);
return swapchain_info ? swapchain_info->swapchain : VK_NULL_HANDLE;
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
static uint64_t GetExternalFormat(const VkImageCreateInfo *info) {
const VkExternalFormatANDROID *ext_format_android = LvlFindInChain<VkExternalFormatANDROID>(info->pNext);
return ext_format_android ? ext_format_android->externalFormat : 0;
}
#else
static uint64_t GetExternalFormat(const VkImageCreateInfo *info) { return 0; }
#endif // VK_USE_PLATFORM_ANDROID_KHR
static IMAGE_STATE::MemoryReqs GetMemoryRequirements(const ValidationStateTracker *dev_data, VkImage img,
const VkImageCreateInfo *create_info, bool disjoint, bool is_external_ahb) {
IMAGE_STATE::MemoryReqs result{};
// Record the memory requirements in case they won't be queried
// External AHB memory can't be queried until after memory is bound
if (!is_external_ahb) {
if (disjoint == false) {
DispatchGetImageMemoryRequirements(dev_data->device, img, &result[0]);
} else {
uint32_t plane_count = FormatPlaneCount(create_info->format);
static const std::array<VkImageAspectFlagBits, 3> aspects{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT,
VK_IMAGE_ASPECT_PLANE_2_BIT};
assert(plane_count <= aspects.size());
auto image_plane_req = LvlInitStruct<VkImagePlaneMemoryRequirementsInfo>();
auto mem_req_info2 = LvlInitStruct<VkImageMemoryRequirementsInfo2>(&image_plane_req);
mem_req_info2.image = img;
for (uint32_t i = 0; i < plane_count; i++) {
auto mem_reqs2 = LvlInitStruct<VkMemoryRequirements2>();
image_plane_req.planeAspect = aspects[i];
switch (dev_data->device_extensions.vk_khr_get_memory_requirements2) {
case kEnabledByApiLevel:
DispatchGetImageMemoryRequirements2(dev_data->device, &mem_req_info2, &mem_reqs2);
break;
case kEnabledByCreateinfo:
DispatchGetImageMemoryRequirements2KHR(dev_data->device, &mem_req_info2, &mem_reqs2);
break;
default:
// The VK_KHR_sampler_ycbcr_conversion extension requires VK_KHR_get_memory_requirements2,
// so validation of this vkCreateImage call should have already failed.
assert(false);
}
result[i] = mem_reqs2.memoryRequirements;
}
}
}
return result;
}
static IMAGE_STATE::SparseReqs GetSparseRequirements(const ValidationStateTracker *dev_data, VkImage img,
const VkImageCreateInfo *create_info) {
IMAGE_STATE::SparseReqs result;
if (create_info->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) {
uint32_t count = 0;
DispatchGetImageSparseMemoryRequirements(dev_data->device, img, &count, nullptr);
result.resize(count);
DispatchGetImageSparseMemoryRequirements(dev_data->device, img, &count, result.data());
}
return result;
}
static bool SparseMetaDataRequired(const IMAGE_STATE::SparseReqs &sparse_reqs) {
bool result = false;
for (const auto &req : sparse_reqs) {
if (req.formatProperties.aspectMask & VK_IMAGE_ASPECT_METADATA_BIT) {
result = true;
break;
}
}
return result;
}
#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkImageCreateInfo *info, VkExportMetalObjectTypeFlagBitsEXT object_type_required) {
bool retval = false;
auto export_metal_object_info = LvlFindInChain<VkExportMetalObjectCreateInfoEXT>(info->pNext);
while (export_metal_object_info) {
if (export_metal_object_info->exportObjectType == object_type_required) {
retval = true;
break;
}
export_metal_object_info = LvlFindInChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
}
return retval;
}
#endif // VK_USE_PLATFORM_METAL_EXT
IMAGE_STATE::IMAGE_STATE(const ValidationStateTracker *dev_data, VkImage img, const VkImageCreateInfo *pCreateInfo,
VkFormatFeatureFlags2KHR ff)
: BINDABLE(img, kVulkanObjectTypeImage, (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0,
(pCreateInfo->flags & VK_IMAGE_CREATE_PROTECTED_BIT) == 0, GetExternalHandleType(pCreateInfo)),
safe_create_info(pCreateInfo),
createInfo(*safe_create_info.ptr()),
shared_presentable(false),
layout_locked(false),
ahb_format(GetExternalFormat(pCreateInfo)),
full_range{MakeImageFullRange(*pCreateInfo)},
create_from_swapchain(GetSwapchain(pCreateInfo)),
owned_by_swapchain(false),
swapchain_image_index(0),
format_features(ff),
disjoint((pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0),
requirements(GetMemoryRequirements(dev_data, img, pCreateInfo, disjoint, IsExternalAHB())),
memory_requirements_checked{{false, false, false}},
sparse_requirements(GetSparseRequirements(dev_data, img, pCreateInfo)),
sparse_metadata_required(SparseMetaDataRequired(sparse_requirements)),
get_sparse_reqs_called(false),
sparse_metadata_bound(false),
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_image_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT)),
metal_io_surface_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT)),
#endif // VK_USE_PLATFORM_METAL_EXT
subresource_encoder(full_range),
fragment_encoder(nullptr),
store_device_as_workaround(dev_data->device), // TODO REMOVE WHEN encoder can be const
supported_video_profiles(
dev_data->video_profile_cache_.Get(dev_data, LvlFindInChain<VkVideoProfileListInfoKHR>(pCreateInfo->pNext))) {
}
IMAGE_STATE::IMAGE_STATE(const ValidationStateTracker *dev_data, VkImage img, const VkImageCreateInfo *pCreateInfo,
VkSwapchainKHR swapchain, uint32_t swapchain_index, VkFormatFeatureFlags2KHR ff)
: BINDABLE(img, kVulkanObjectTypeImage, (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0,
(pCreateInfo->flags & VK_IMAGE_CREATE_PROTECTED_BIT) == 0, GetExternalHandleType(pCreateInfo)),
safe_create_info(pCreateInfo),
createInfo(*safe_create_info.ptr()),
shared_presentable(false),
layout_locked(false),
ahb_format(GetExternalFormat(pCreateInfo)),
full_range{MakeImageFullRange(*pCreateInfo)},
create_from_swapchain(swapchain),
owned_by_swapchain(true),
swapchain_image_index(swapchain_index),
format_features(ff),
disjoint((pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0),
requirements{},
memory_requirements_checked{false, false, false},
sparse_requirements{},
sparse_metadata_required(false),
get_sparse_reqs_called(false),
sparse_metadata_bound(false),
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_image_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT)),
metal_io_surface_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT)),
#endif // VK_USE_PLATFORM_METAL_EXT
subresource_encoder(full_range),
fragment_encoder(nullptr),
store_device_as_workaround(dev_data->device), // TODO REMOVE WHEN encoder can be const
supported_video_profiles(
dev_data->video_profile_cache_.Get(dev_data, LvlFindInChain<VkVideoProfileListInfoKHR>(pCreateInfo->pNext))) {
fragment_encoder =
std::unique_ptr<const subresource_adapter::ImageRangeEncoder>(new subresource_adapter::ImageRangeEncoder(*this));
}
void IMAGE_STATE::Destroy() {
// NOTE: due to corner cases in aliased images, the layout_range_map MUST not be cleaned up here.
// If it is, bad local entries could be created by CMD_BUFFER_STATE::GetImageSubresourceLayoutMap()
// If an aliasing image was being destroyed (and layout_range_map was reset()), a nullptr keyed
// entry could get put into CMD_BUFFER_STATE::aliased_image_layout_map.
//
// NOTE: the fragment_encoder should not be cleaned-up in case a semaphore to an acquired image is being processed
// after the swapchain is waited, and the range generation needs an intact encoder.
if (bind_swapchain) {
bind_swapchain->RemoveParent(this);
bind_swapchain = nullptr;
}
BINDABLE::Destroy();
}
void IMAGE_STATE::NotifyInvalidate(const BASE_NODE::NodeList &invalid_nodes, bool unlink) {
BINDABLE::NotifyInvalidate(invalid_nodes, unlink);
if (unlink) {
bind_swapchain = nullptr;
}
}
bool IMAGE_STATE::IsCreateInfoEqual(const VkImageCreateInfo &other_createInfo) const {
bool is_equal = (createInfo.sType == other_createInfo.sType) && (createInfo.flags == other_createInfo.flags);
is_equal = is_equal && IsImageTypeEqual(other_createInfo) && IsFormatEqual(other_createInfo);
is_equal = is_equal && IsMipLevelsEqual(other_createInfo) && IsArrayLayersEqual(other_createInfo);
is_equal = is_equal && IsUsageEqual(other_createInfo) && IsInitialLayoutEqual(other_createInfo);
is_equal = is_equal && IsExtentEqual(other_createInfo) && IsTilingEqual(other_createInfo);
is_equal = is_equal && IsSamplesEqual(other_createInfo) && IsSharingModeEqual(other_createInfo);
return is_equal &&
((createInfo.sharingMode == VK_SHARING_MODE_CONCURRENT) ? IsQueueFamilyIndicesEqual(other_createInfo) : true);
}
// Check image compatibility rules for VK_NV_dedicated_allocation_image_aliasing
bool IMAGE_STATE::IsCreateInfoDedicatedAllocationImageAliasingCompatible(const VkImageCreateInfo &other_createInfo) const {
bool is_compatible = (createInfo.sType == other_createInfo.sType) && (createInfo.flags == other_createInfo.flags);
is_compatible = is_compatible && IsImageTypeEqual(other_createInfo) && IsFormatEqual(other_createInfo);
is_compatible = is_compatible && IsMipLevelsEqual(other_createInfo);
is_compatible = is_compatible && IsUsageEqual(other_createInfo) && IsInitialLayoutEqual(other_createInfo);
is_compatible = is_compatible && IsSamplesEqual(other_createInfo) && IsSharingModeEqual(other_createInfo);
is_compatible = is_compatible &&
((createInfo.sharingMode == VK_SHARING_MODE_CONCURRENT) ? IsQueueFamilyIndicesEqual(other_createInfo) : true);
is_compatible = is_compatible && IsTilingEqual(other_createInfo);
is_compatible = is_compatible && createInfo.extent.width <= other_createInfo.extent.width &&
createInfo.extent.height <= other_createInfo.extent.height &&
createInfo.extent.depth <= other_createInfo.extent.depth &&
createInfo.arrayLayers <= other_createInfo.arrayLayers;
return is_compatible;
}
bool IMAGE_STATE::IsCompatibleAliasing(IMAGE_STATE *other_image_state) const {
if (!IsSwapchainImage() && !other_image_state->IsSwapchainImage() &&
!(createInfo.flags & other_image_state->createInfo.flags & VK_IMAGE_CREATE_ALIAS_BIT)) {
return false;
}
const auto binding = Binding();
const auto other_binding = other_image_state->Binding();
if ((create_from_swapchain == VK_NULL_HANDLE) && binding && other_binding &&
(binding->memory_state == other_binding->memory_state) && (binding->memory_offset == other_binding->memory_offset) &&
IsCreateInfoEqual(other_image_state->createInfo)) {
return true;
}
if (bind_swapchain && (bind_swapchain == other_image_state->bind_swapchain) &&
(swapchain_image_index == other_image_state->swapchain_image_index)) {
return true;
}
return false;
}
void IMAGE_STATE::SetInitialLayoutMap() {
if (layout_range_map) {
return;
}
if ((createInfo.flags & VK_IMAGE_CREATE_ALIAS_BIT) != 0) {
// Look for another aliasing image and point at its layout state.
// ObjectBindings() is thread safe since returns by value, and once
// the weak_ptr is successfully locked, the other image state won't
// be freed out from under us.
for (auto const &memory_state : GetBoundMemoryStates()) {
for (auto &entry : memory_state->ObjectBindings()) {
if (entry.first.type == kVulkanObjectTypeImage) {
auto base_node = entry.second.lock();
if (base_node) {
auto other_image = static_cast<IMAGE_STATE *>(base_node.get());
if (other_image != this && other_image->IsCompatibleAliasing(this)) {
layout_range_map = other_image->layout_range_map;
break;
}
}
}
}
}
} else if (bind_swapchain) {
// Swapchains can also alias if multiple images are bound (or retrieved
// with vkGetSwapchainImages()) for a (single swapchain, index) pair.
// ObjectBindings() is thread safe since returns by value, and once
// the weak_ptr is successfully locked, the other image state won't
// be freed out from under us.
for (auto &entry : bind_swapchain->ObjectBindings()) {
if (entry.first.type == kVulkanObjectTypeImage) {
auto base_node = entry.second.lock();
if (base_node) {
auto other_image = static_cast<IMAGE_STATE *>(base_node.get());
if (other_image != this && other_image->IsCompatibleAliasing(this)) {
layout_range_map = other_image->layout_range_map;
break;
}
}
}
}
}
// ... otherwise set up the new map.
if (!layout_range_map) {
// set up the new map completely before making it available
auto new_map = std::make_shared<GlobalImageLayoutRangeMap>(subresource_encoder.SubresourceCount());
auto range_gen = subresource_adapter::RangeGenerator(subresource_encoder);
for (; range_gen->non_empty(); ++range_gen) {
new_map->insert(new_map->end(), std::make_pair(*range_gen, createInfo.initialLayout));
}
layout_range_map = std::move(new_map);
}
}
void IMAGE_STATE::SetSwapchain(std::shared_ptr<SWAPCHAIN_NODE> &swapchain, uint32_t swapchain_index) {
assert(IsSwapchainImage());
bind_swapchain = swapchain;
swapchain_image_index = swapchain_index;
bind_swapchain->AddParent(this);
}
VkDeviceSize IMAGE_STATE::GetFakeBaseAddress() const {
if (!IsSwapchainImage()) {
return BINDABLE::GetFakeBaseAddress();
}
if (!bind_swapchain) {
return 0;
}
return bind_swapchain->images[swapchain_image_index].fake_base_address;
}
VkExtent3D IMAGE_STATE::GetSubresourceExtent(VkImageAspectFlags aspect_mask, uint32_t mip_level) const {
// Return zero extent if mip level doesn't exist
if (mip_level >= createInfo.mipLevels) {
return VkExtent3D{0, 0, 0};
}
// Don't allow mip adjustment to create 0 dim, but pass along a 0 if that's what subresource specified
VkExtent3D extent = createInfo.extent;
// If multi-plane, adjust per-plane extent
if (FormatIsMultiplane(createInfo.format)) {
VkExtent2D divisors = FindMultiplaneExtentDivisors(createInfo.format, aspect_mask);
extent.width /= divisors.width;
extent.height /= divisors.height;
}
if (createInfo.flags & VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV) {
extent.width = (0 == extent.width ? 0 : std::max(2U, 1 + ((extent.width - 1) >> mip_level)));
extent.height = (0 == extent.height ? 0 : std::max(2U, 1 + ((extent.height - 1) >> mip_level)));
extent.depth = (0 == extent.depth ? 0 : std::max(2U, 1 + ((extent.depth - 1) >> mip_level)));
} else {
extent.width = (0 == extent.width ? 0 : std::max(1U, extent.width >> mip_level));
extent.height = (0 == extent.height ? 0 : std::max(1U, extent.height >> mip_level));
extent.depth = (0 == extent.depth ? 0 : std::max(1U, extent.depth >> mip_level));
}
// Image arrays have an effective z extent that isn't diminished by mip level
if (VK_IMAGE_TYPE_3D != createInfo.imageType) {
extent.depth = createInfo.arrayLayers;
}
return extent;
}
// Returns the effective extent of an image subresource, adjusted for mip level and array depth.
VkExtent3D IMAGE_STATE::GetSubresourceExtent(const VkImageSubresourceLayers &subresource) const {
return GetSubresourceExtent(subresource.aspectMask, subresource.mipLevel);
}
static VkSamplerYcbcrConversion GetSamplerConversion(const VkImageViewCreateInfo *ci) {
auto *conversion_info = LvlFindInChain<VkSamplerYcbcrConversionInfo>(ci->pNext);
return conversion_info ? conversion_info->conversion : VK_NULL_HANDLE;
}
static VkImageUsageFlags GetInheritedUsage(const VkImageViewCreateInfo *ci, const IMAGE_STATE &image_state) {
auto usage_create_info = LvlFindInChain<VkImageViewUsageCreateInfo>(ci->pNext);
return (usage_create_info) ? usage_create_info->usage : image_state.createInfo.usage;
}
static float GetImageViewMinLod(const VkImageViewCreateInfo* ci) {
auto image_view_min_lod = LvlFindInChain<VkImageViewMinLodCreateInfoEXT>(ci->pNext);
return (image_view_min_lod) ? image_view_min_lod->minLod : 0.0f;
}
#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkImageViewCreateInfo *info) {
bool retval = false;
auto export_metal_object_info = LvlFindInChain<VkExportMetalObjectCreateInfoEXT>(info->pNext);
while (export_metal_object_info) {
if (export_metal_object_info->exportObjectType == VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT) {
retval = true;
break;
}
export_metal_object_info = LvlFindInChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
}
return retval;
}
#endif // VK_USE_PLATFORM_METAL_EXT
IMAGE_VIEW_STATE::IMAGE_VIEW_STATE(const std::shared_ptr<IMAGE_STATE> &im, VkImageView iv, const VkImageViewCreateInfo *ci,
VkFormatFeatureFlags2KHR ff, const VkFilterCubicImageViewImageFormatPropertiesEXT &cubic_props)
: BASE_NODE(iv, kVulkanObjectTypeImageView),
safe_create_info(ci),
create_info(*safe_create_info.ptr()),
normalized_subresource_range(::NormalizeSubresourceRange(im->createInfo, *ci)),
range_generator(im->subresource_encoder, normalized_subresource_range),
samples(im->createInfo.samples),
// When the image has a external format the views format must be VK_FORMAT_UNDEFINED and it is required to use a sampler
// Ycbcr conversion. Thus we can't extract any meaningful information from the format parameter. As a Sampler Ycbcr
// conversion must be used the shader type is always float.
descriptor_format_bits(im->HasAHBFormat() ? static_cast<unsigned>(DESCRIPTOR_REQ_COMPONENT_TYPE_FLOAT)
: DescriptorRequirementsBitsFromFormat(ci->format)),
samplerConversion(GetSamplerConversion(ci)),
filter_cubic_props(cubic_props),
min_lod(GetImageViewMinLod(ci)),
format_features(ff),
inherited_usage(GetInheritedUsage(ci, *im)),
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_imageview_export(GetMetalExport(ci)),
#endif
image_state(im) {}
void IMAGE_VIEW_STATE::Destroy() {
if (image_state) {
image_state->RemoveParent(this);
image_state = nullptr;
}
BASE_NODE::Destroy();
}
bool IMAGE_VIEW_STATE::IsDepthSliced() const { return ::IsDepthSliced(image_state->createInfo, create_info); }
VkOffset3D IMAGE_VIEW_STATE::GetOffset() const {
VkOffset3D result = {0, 0, 0};
if (IsDepthSliced()) {
result.z = create_info.subresourceRange.baseArrayLayer;
}
return result;
}
VkExtent3D IMAGE_VIEW_STATE::GetExtent() const {
VkExtent3D result = image_state->createInfo.extent;
if (IsDepthSliced()) {
result.depth = create_info.subresourceRange.layerCount;
}
return result;
}
uint32_t IMAGE_VIEW_STATE::GetAttachmentLayerCount() const {
if (create_info.subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS && !IsDepthSliced()) {
return image_state->createInfo.arrayLayers;
}
return create_info.subresourceRange.layerCount;
}
static safe_VkImageCreateInfo GetImageCreateInfo(const VkSwapchainCreateInfoKHR *pCreateInfo) {
auto image_ci = LvlInitStruct<VkImageCreateInfo>();
// Pull out the format list only. This stack variable will get copied onto the heap
// by the 'safe' constructor used to build the return value below.
VkImageFormatListCreateInfo fmt_info;
auto chain_fmt_info = LvlFindInChain<VkImageFormatListCreateInfo>(pCreateInfo->pNext);
if (chain_fmt_info) {
fmt_info = *chain_fmt_info;
fmt_info.pNext = nullptr;
image_ci.pNext = &fmt_info;
} else {
image_ci.pNext = nullptr;
}
image_ci.flags = 0; // to be updated below
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.format = pCreateInfo->imageFormat;
image_ci.extent.width = pCreateInfo->imageExtent.width;
image_ci.extent.height = pCreateInfo->imageExtent.height;
image_ci.extent.depth = 1;
image_ci.mipLevels = 1;
image_ci.arrayLayers = pCreateInfo->imageArrayLayers;
image_ci.samples = VK_SAMPLE_COUNT_1_BIT;
image_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
image_ci.usage = pCreateInfo->imageUsage;
image_ci.sharingMode = pCreateInfo->imageSharingMode;
image_ci.queueFamilyIndexCount = pCreateInfo->queueFamilyIndexCount;
image_ci.pQueueFamilyIndices = pCreateInfo->pQueueFamilyIndices;
image_ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
if (pCreateInfo->flags & VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR) {
image_ci.flags |= VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT;
}
if (pCreateInfo->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
image_ci.flags |= VK_IMAGE_CREATE_PROTECTED_BIT;
}
if (pCreateInfo->flags & VK_SWAPCHAIN_CREATE_MUTABLE_FORMAT_BIT_KHR) {
image_ci.flags |= (VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | VK_IMAGE_CREATE_EXTENDED_USAGE_BIT);
}
return safe_VkImageCreateInfo(&image_ci);
}
SWAPCHAIN_NODE::SWAPCHAIN_NODE(ValidationStateTracker *dev_data_, const VkSwapchainCreateInfoKHR *pCreateInfo,
VkSwapchainKHR swapchain)
: BASE_NODE(swapchain, kVulkanObjectTypeSwapchainKHR),
createInfo(pCreateInfo),
images(),
exclusive_full_screen_access(false),
shared_presentable(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR == pCreateInfo->presentMode ||
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR == pCreateInfo->presentMode),
image_create_info(GetImageCreateInfo(pCreateInfo)),
dev_data(dev_data_) {}
void SWAPCHAIN_NODE::PresentImage(uint32_t image_index, uint64_t present_id) {
if (image_index >= images.size()) return;
assert(acquired_images > 0);
acquired_images--;
images[image_index].acquired = false;
if (shared_presentable) {
IMAGE_STATE *image_state = images[image_index].image_state;
if (image_state) {
image_state->layout_locked = true;
}
}
if (present_id > max_present_id) {
max_present_id = present_id;
}
}
void SWAPCHAIN_NODE::AcquireImage(uint32_t image_index) {
if (image_index >= images.size()) return;
assert(acquired_images < std::numeric_limits<uint32_t>::max());
acquired_images++;
images[image_index].acquired = true;
if (shared_presentable) {
IMAGE_STATE *image_state = images[image_index].image_state;
if (image_state) {
image_state->shared_presentable = shared_presentable;
}
}
}
void SWAPCHAIN_NODE::Destroy() {
for (auto &swapchain_image : images) {
if (swapchain_image.image_state) {
RemoveParent(swapchain_image.image_state);
dev_data->Destroy<IMAGE_STATE>(swapchain_image.image_state->image());
}
// NOTE: We don't have access to dev_data->fake_memory.Free() here, but it is currently a no-op
}
images.clear();
if (surface) {
surface->RemoveParent(this);
surface = nullptr;
}
BASE_NODE::Destroy();
}
void SWAPCHAIN_NODE::NotifyInvalidate(const BASE_NODE::NodeList &invalid_nodes, bool unlink) {
BASE_NODE::NotifyInvalidate(invalid_nodes, unlink);
if (unlink) {
surface = nullptr;
}
}
SWAPCHAIN_IMAGE SWAPCHAIN_NODE::GetSwapChainImage(uint32_t index) const {
if (index < images.size()) {
return images[index];
}
return SWAPCHAIN_IMAGE();
}
std::shared_ptr<const IMAGE_STATE> SWAPCHAIN_NODE::GetSwapChainImageShared(uint32_t index) const {
const SWAPCHAIN_IMAGE swapchain_image(GetSwapChainImage(index));
if (swapchain_image.image_state) {
return swapchain_image.image_state->shared_from_this();
}
return std::shared_ptr<const IMAGE_STATE>();
}
void SURFACE_STATE::Destroy() {
if (swapchain) {
swapchain = nullptr;
}
BASE_NODE::Destroy();
}
void SURFACE_STATE::RemoveParent(BASE_NODE *parent_node) {
if (swapchain == parent_node) {
swapchain = nullptr;
}
BASE_NODE::RemoveParent(parent_node);
}
void SURFACE_STATE::SetQueueSupport(VkPhysicalDevice phys_dev, uint32_t qfi, bool supported) {
auto guard = Lock();
assert(phys_dev);
GpuQueue key{phys_dev, qfi};
gpu_queue_support_[key] = supported;
}
bool SURFACE_STATE::GetQueueSupport(VkPhysicalDevice phys_dev, uint32_t qfi) const {
auto guard = Lock();
assert(phys_dev);
GpuQueue key{phys_dev, qfi};
auto iter = gpu_queue_support_.find(key);
if (iter != gpu_queue_support_.end()) {
return iter->second;
}
VkBool32 supported = VK_FALSE;
DispatchGetPhysicalDeviceSurfaceSupportKHR(phys_dev, qfi, surface(), &supported);
gpu_queue_support_[key] = (supported == VK_TRUE);
return supported == VK_TRUE;
}
// Save data from vkGetPhysicalDeviceSurfacePresentModes
void SURFACE_STATE::SetPresentModes(VkPhysicalDevice phys_dev, layer_data::span<const VkPresentModeKHR> modes) {
auto guard = Lock();
assert(phys_dev);
for (auto new_present_mode : modes) {
if ((present_modes_data_.find(phys_dev) == present_modes_data_.end()) ||
(present_modes_data_[phys_dev].find(new_present_mode) == present_modes_data_[phys_dev].end())) {
present_modes_data_[phys_dev][new_present_mode] = std::nullopt;
}
}
}
// Helper for data obtained from vkGetPhysicalDeviceSurfacePresentModesKHR
std::vector<VkPresentModeKHR> SURFACE_STATE::GetPresentModes(VkPhysicalDevice phys_dev) const {
auto guard = Lock();
assert(phys_dev);
std::vector<VkPresentModeKHR> result;
if (present_modes_data_.find(phys_dev) != present_modes_data_.end()) {
for (auto mode = present_modes_data_[phys_dev].begin(); mode != present_modes_data_[phys_dev].end(); mode++) {
result.push_back(mode->first);
}
return result;
}
uint32_t count = 0;
DispatchGetPhysicalDeviceSurfacePresentModesKHR(phys_dev, surface(), &count, nullptr);
result.resize(count);
DispatchGetPhysicalDeviceSurfacePresentModesKHR(phys_dev, surface(), &count, result.data());
return result;
}
void SURFACE_STATE::SetFormats(VkPhysicalDevice phys_dev, std::vector<VkSurfaceFormatKHR> &&fmts) {
auto guard = Lock();
assert(phys_dev);
formats_[phys_dev] = std::move(fmts);
}
std::vector<VkSurfaceFormatKHR> SURFACE_STATE::GetFormats(VkPhysicalDevice phys_dev) const {
auto guard = Lock();
assert(phys_dev);
auto iter = formats_.find(phys_dev);
if (iter != formats_.end()) {
return iter->second;
}
std::vector<VkSurfaceFormatKHR> result;
uint32_t count = 0;
DispatchGetPhysicalDeviceSurfaceFormatsKHR(phys_dev, surface(), &count, nullptr);
result.resize(count);
DispatchGetPhysicalDeviceSurfaceFormatsKHR(phys_dev, surface(), &count, result.data());
formats_[phys_dev] = result;
return result;
}
void SURFACE_STATE::SetCapabilities(VkPhysicalDevice phys_dev, const VkSurfaceCapabilitiesKHR &caps) {
auto guard = Lock();
assert(phys_dev);
capabilities_[phys_dev] = caps;
}
VkSurfaceCapabilitiesKHR SURFACE_STATE::GetCapabilities(VkPhysicalDevice phys_dev) const {
auto guard = Lock();
assert(phys_dev);
auto iter = capabilities_.find(phys_dev);
if (iter != capabilities_.end()) {
return iter->second;
}
VkSurfaceCapabilitiesKHR result{};
DispatchGetPhysicalDeviceSurfaceCapabilitiesKHR(phys_dev, surface(), &result);
capabilities_[phys_dev] = result;
return result;
}
void SURFACE_STATE::SetCompatibleModes(VkPhysicalDevice phys_dev, const VkPresentModeKHR present_mode,
layer_data::span<const VkPresentModeKHR> compatible_modes) {
auto guard = Lock();
assert(phys_dev);
// If this surface or the present_mode is not in the map, or if the state structure has no value,
// create and add the new present_mode state structure for each of the compatible modes
auto surface_map = present_modes_data_.find(phys_dev);
if ((surface_map == present_modes_data_.end()) || (surface_map->second.find(present_mode) == surface_map->second.end()) ||
(surface_map->second.find(present_mode)->second.has_value() == false)) {
auto present_mode_state = std::make_shared<PresentModeState>();
present_mode_state->compatible_present_modes_.assign(compatible_modes.begin(), compatible_modes.end());
// For every present mode in compatible modes, add present_mode_state for it in present_modes_data_
for (auto mode : compatible_modes) {
present_modes_data_[phys_dev][mode] = present_mode_state;
}
}
}
std::vector<VkPresentModeKHR> SURFACE_STATE::GetCompatibleModes(VkPhysicalDevice phys_dev, const VkPresentModeKHR present_mode) const {
auto guard = Lock();
assert(phys_dev);
auto iter = present_modes_data_.find(phys_dev);
if ((iter != present_modes_data_.end()) && (iter->second.find(present_mode) != iter->second.end())) {
if (((iter->second)[present_mode]).has_value()) {
auto &compatible_modes = *(iter->second)[present_mode];
if (compatible_modes->compatible_present_modes_.empty()) {
return compatible_modes->compatible_present_modes_;
}
}
}
// Compatible modes not in state tracker, call to get compatible modes
std::vector<VkPresentModeKHR> result;
auto surface_info = LvlInitStruct<VkPhysicalDeviceSurfaceInfo2KHR>();
surface_info.surface = surface();
auto surface_present_mode = LvlInitStruct<VkSurfacePresentModeEXT>();
surface_present_mode.presentMode = present_mode;
surface_info.pNext = &surface_present_mode;
auto present_mode_compatibility = LvlInitStruct<VkSurfacePresentModeCompatibilityEXT>();
auto surface_capabilities = LvlInitStruct<VkSurfaceCapabilities2KHR>();
surface_capabilities.pNext = &present_mode_compatibility;
DispatchGetPhysicalDeviceSurfaceCapabilities2KHR(phys_dev, &surface_info, &surface_capabilities);
result.resize(present_mode_compatibility.presentModeCount);
present_mode_compatibility.pPresentModes = result.data();
DispatchGetPhysicalDeviceSurfaceCapabilities2KHR(phys_dev, &surface_info, &surface_capabilities);
return result;
}
// Set the surface and scaling caps for this present mode
void SURFACE_STATE::SetPresentModeCapabilities(VkPhysicalDevice phys_dev, const VkPresentModeKHR present_mode,
const VkSurfaceCapabilitiesKHR &caps,
const VkSurfacePresentScalingCapabilitiesEXT &scaling_caps) {
auto guard = Lock();
assert(phys_dev);
if (!present_modes_data_[phys_dev][present_mode].has_value()) {
present_modes_data_[phys_dev][present_mode] = std::make_shared<PresentModeState>();
}
auto &present_mode_state = present_modes_data_[phys_dev][present_mode].value();
present_mode_state->scaling_capabilities_ = scaling_caps;
present_mode_state->surface_capabilities_ = caps;
}
// Get the surface caps this particular present mode
VkSurfaceCapabilitiesKHR SURFACE_STATE::GetPresentModeSurfaceCapabilities(VkPhysicalDevice phys_dev,
const VkPresentModeKHR present_mode) const {
auto iter = present_modes_data_.find(phys_dev);
if ((iter != present_modes_data_.end()) && (iter->second.find(present_mode) != iter->second.end())) {
auto const caps = (iter->second)[present_mode];
if (caps.has_value()) {
auto &surface_caps = *caps;
return surface_caps->surface_capabilities_;
}
}
// Present mode surface capabilties not in state tracker, call to get surface capabilities
auto surface_info = LvlInitStruct<VkPhysicalDeviceSurfaceInfo2KHR>();
surface_info.surface = surface();
auto surface_present_mode = LvlInitStruct<VkSurfacePresentModeEXT>();
surface_present_mode.presentMode = present_mode;
surface_info.pNext = &surface_present_mode;
auto surface_capabilities = LvlInitStruct<VkSurfaceCapabilities2KHR>();
DispatchGetPhysicalDeviceSurfaceCapabilities2KHR(phys_dev, &surface_info, &surface_capabilities);
return surface_capabilities.surfaceCapabilities;
}
// Get the scaling capabilities for this particular present mode
VkSurfacePresentScalingCapabilitiesEXT SURFACE_STATE::GetPresentModeScalingCapabilities(VkPhysicalDevice phys_dev,
const VkPresentModeKHR present_mode) const {
auto iter = present_modes_data_.find(phys_dev);
if ((iter != present_modes_data_.end()) && (iter->second.find(present_mode) != iter->second.end())) {
auto const &caps = (iter->second)[present_mode];
if (caps.has_value()) {
auto &scaling_caps = *caps;
return scaling_caps->scaling_capabilities_;
}
}
// Present mode scaling capabilties not in state tracker, call to get scaling capabilities
auto surface_info = LvlInitStruct<VkPhysicalDeviceSurfaceInfo2KHR>();
surface_info.surface = surface();
auto surface_present_mode = LvlInitStruct<VkSurfacePresentModeEXT>();
surface_present_mode.presentMode = present_mode;
surface_info.pNext = &surface_present_mode;
auto scaling_caps = LvlInitStruct<VkSurfacePresentScalingCapabilitiesEXT>();
auto surface_capabilities = LvlInitStruct<VkSurfaceCapabilities2KHR>();
surface_capabilities.pNext = &scaling_caps;
DispatchGetPhysicalDeviceSurfaceCapabilities2KHR(phys_dev, &surface_info, &surface_capabilities);
return scaling_caps;
}
|