File: range_vector.h

package info (click to toggle)
vulkan-validationlayers 1.3.239.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 33,020 kB
  • sloc: cpp: 424,221; python: 16,164; ansic: 3,523; sh: 359; xml: 27; makefile: 21
file content (1930 lines) | stat: -rw-r--r-- 85,812 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
/* Copyright (c) 2019-2022 The Khronos Group Inc.
 * Copyright (c) 2019-2022 Valve Corporation
 * Copyright (c) 2019-2022 LunarG, Inc.
 * Copyright (C) 2019-2022 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * John Zulauf <jzulauf@lunarg.com>
 *
 */
#pragma once

#include <algorithm>
#include <cassert>
#include <limits>
#include <map>
#include <utility>
#include <cstdint>
#include "vk_layer_data.h"

#define RANGE_ASSERT(b) assert(b)

namespace sparse_container {
// range_map
//
// Implements an ordered map of non-overlapping, non-empty ranges
//
template <typename Index>
struct range {
    using index_type = Index;
    index_type begin;  // Inclusive lower bound of range
    index_type end;    // Exlcusive upper bound of range

    inline bool empty() const { return begin == end; }
    inline bool valid() const { return begin <= end; }
    inline bool invalid() const { return !valid(); }
    inline bool non_empty() const { return begin < end; }  //  valid and !empty

    inline bool is_prior_to(const range &other) const { return end == other.begin; }
    inline bool is_subsequent_to(const range &other) const { return begin == other.end; }
    inline bool includes(const index_type &index) const { return (begin <= index) && (index < end); }
    inline bool includes(const range &other) const { return (begin <= other.begin) && (other.end <= end); }
    inline bool excludes(const index_type &index) const { return (index < begin) || (end <= index); }
    inline bool excludes(const range &other) const { return (other.end <= begin) || (end <= other.begin); }
    inline bool intersects(const range &other) const { return includes(other.begin) || other.includes(begin); }
    inline index_type distance() const { return end - begin; }

    inline bool operator==(const range &rhs) const { return (begin == rhs.begin) && (end == rhs.end); }
    inline bool operator!=(const range &rhs) const { return (begin != rhs.begin) || (end != rhs.end); }

    inline range &operator-=(const index_type &offset) {
        begin = begin - offset;
        end = end - offset;
        return *this;
    }

    inline range &operator+=(const index_type &offset) {
        begin = begin + offset;
        end = end + offset;
        return *this;
    }

    inline range operator+(const index_type &offset) const { return range(begin + offset, end + offset); }

    // for a reversible/transitive < operator compare first on begin and then end
    // only less or begin is less or if end is less when begin is equal
    bool operator<(const range &rhs) const {
        bool result = false;
        if (invalid()) {
            // all invalid < valid, allows map/set validity check by looking at begin()->first
            // all invalid are equal, thus only equal if this is invalid and rhs is valid
            result = rhs.valid();
        } else if (begin < rhs.begin) {
            result = true;
        } else if ((begin == rhs.begin) && (end < rhs.end)) {
            result = true;  // Simple common case -- boundary case require equality check for correctness.
        }
        return result;
    }

    // use as "strictly less/greater than" to check for non-overlapping ranges
    bool strictly_less(const range &rhs) const { return end <= rhs.begin; }
    bool strictly_less(const index_type &index) const { return end <= index; }
    bool strictly_greater(const range &rhs) const { return rhs.end <= begin; }
    bool strictly_greater(const index_type &index) const { return index < begin; }

    range &operator=(const range &rhs) {
        begin = rhs.begin;
        end = rhs.end;
        return *this;
    }

    range operator&(const range &rhs) const {
        if (includes(rhs.begin)) {
            return range(rhs.begin, std::min(end, rhs.end));
        } else if (rhs.includes(begin)) {
            return range(begin, std::min(end, rhs.end));
        }
        return range();  // Empty default range on non-intersection
    }

    index_type size() const { return end - begin; }
    range() : begin(), end() {}
    range(const index_type &begin_, const index_type &end_) : begin(begin_), end(end_) {}
    range(const range &other) : begin(other.begin), end(other.end) {}
};

template <typename Range>
class range_view {
  public:
    using index_type = typename Range::index_type;
    class iterator {
      public:
        iterator &operator++() {
            ++current;
            return *this;
        }
        const index_type &operator*() const { return current; }
        bool operator!=(const iterator &rhs) const { return current != rhs.current; }
        iterator(index_type value) : current(value) {}

      private:
        index_type current;
    };
    range_view(const Range &range) : range_(range) {}
    const iterator begin() const { return iterator(range_.begin); }
    const iterator end() const { return iterator(range_.end); }

  private:
    const Range &range_;
};

// Type parameters for the range_map(s)
struct insert_range_no_split_bounds {
    const static bool split_boundaries = false;
};

struct insert_range_split_bounds {
    const static bool split_boundaries = true;
};

struct split_op_keep_both {
    static constexpr bool keep_lower() { return true; }
    static constexpr bool keep_upper() { return true; }
};

struct split_op_keep_lower {
    static constexpr bool keep_lower() { return true; }
    static constexpr bool keep_upper() { return false; }
};

struct split_op_keep_upper {
    static constexpr bool keep_lower() { return false; }
    static constexpr bool keep_upper() { return true; }
};

enum class value_precedence { prefer_source, prefer_dest };

template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range);

// The range based sparse map implemented on the ImplMap
template <typename Key, typename T, typename RangeKey = range<Key>, typename ImplMap = std::map<RangeKey, T>>
class range_map {
  public:
  protected:
    using MapKey = RangeKey;
    ImplMap impl_map_;
    using ImplIterator = typename ImplMap::iterator;
    using ImplConstIterator = typename ImplMap::const_iterator;

  public:
    using mapped_type = typename ImplMap::mapped_type;
    using value_type = typename ImplMap::value_type;
    using key_type = typename ImplMap::key_type;
    using index_type = typename key_type::index_type;
    using size_type = typename ImplMap::size_type;

  protected:
    template <typename ThisType>
    using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin());

    template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
    static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) {
        if (key.valid()) {
            // ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key,
            // not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin
            // with the operator > in range, we can safely use an empty range for comparison
            auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin));

            // If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin
            // or lower is at end
            if (!that.at_impl_begin(lower)) {
                auto prev = lower;
                --prev;
                // If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower
                if (key.begin < prev->first.end) {
                    lower = prev;
                }
            }
            return lower;
        }
        // Key is ill-formed
        return that.impl_end();  // Point safely to nothing.
    }

    ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); }

    ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); }

    template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
    static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) {
        if (key.valid()) {
            // the upper bound is the first range that is full greater (upper.begin >= key.end
            // we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is
            // exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound
            auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end));
            if (!that.at_impl_end(upper) && (upper != that.impl_begin())) {
                auto prev = upper;
                --prev;
                // We know key.end  is >= prev.begin, the only question is whether it's ==
                if (prev->first.begin == key.end) {
                    upper = prev;
                }
            }
            return upper;
        }
        return that.impl_end();  // Point safely to nothing.
    }

    ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); }

    ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); }

    ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); }
    ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); }
    bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); }

    ImplIterator impl_end() { return impl_map_.end(); }
    ImplConstIterator impl_end() const { return impl_map_.end(); }

    ImplIterator impl_begin() { return impl_map_.begin(); }
    ImplConstIterator impl_begin() const { return impl_map_.begin(); }

    inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); }
    inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); }

    inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); }
    inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); }

    ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); }

    template <typename Value>
    ImplIterator impl_insert(const ImplIterator &hint, Value &&value) {
        RANGE_ASSERT(impl_not_found(value.first));
        RANGE_ASSERT(value.first.non_empty());
        return impl_map_.emplace_hint(hint, std::forward<Value>(value));
    }
    ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) {
        return impl_insert(hint, std::make_pair(key, value));
    }

    ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) {
        return impl_insert(hint, key_type(begin, end), value);
    }

    template <typename SplitOp>
    ImplIterator split_impl(const ImplIterator &split_it, const index_type &index, const SplitOp &) {
        // Make sure contains the split point
        if (!split_it->first.includes(index)) return split_it;  // If we don't have a valid split point, just return the iterator

        const auto range = split_it->first;
        key_type lower_range(range.begin, index);
        if (lower_range.empty() && SplitOp::keep_upper()) {
            return split_it;  // this is a noop we're keeping the upper half which is the same as split_it;
        }
        // Save the contents of it and erase it
        auto value = split_it->second;
        auto next_it = impl_map_.erase(split_it);  // Keep this, just in case the split point results in an empty "keep" set

        if (lower_range.empty() && !SplitOp::keep_upper()) {
            // This effectively an erase...
            return next_it;
        }
        // Upper range cannot be empty
        key_type upper_range(index, range.end);
        key_type move_range;
        key_type copy_range;

        // Were either going to keep one or both of the split pieces.  If we keep both, we'll copy value to the upper,
        // and move to the lower, and return the lower, else move to, and return the kept one.
        if (SplitOp::keep_lower() && !lower_range.empty()) {
            move_range = lower_range;
            if (SplitOp::keep_upper()) {
                copy_range = upper_range;  // only need a valid copy range if we keep both.
            }
        } else if (SplitOp::keep_upper()) {  // We're not keeping the lower split because it's either empty or not wanted
            move_range = upper_range;        // this will be non_empty as index is included ( < end) in the original range)
        }

        // we insert from upper to lower because that's what emplace_hint can do in constant time. (not log time in C++11)
        if (!copy_range.empty()) {
            // We have a second range to create, so do it by copy
            RANGE_ASSERT(impl_map_.find(copy_range) == impl_map_.end());
            next_it = impl_map_.emplace_hint(next_it, std::make_pair(copy_range, value));
        }

        if (!move_range.empty()) {
            // Whether we keep one or both, the one we return gets value moved to it, as the other one already has a copy
            RANGE_ASSERT(impl_map_.find(move_range) == impl_map_.end());
            next_it = impl_map_.emplace_hint(next_it, std::make_pair(move_range, std::move(value)));
        }

        // point to the beginning of the inserted elements (or the next from the erase
        return next_it;
    }

    // do an ranged insert that splits existing ranges at the boundaries, and writes value to any non-initialized sub-ranges
    range<ImplIterator> infill_and_split(const key_type &bounds, const mapped_type &value, ImplIterator lower, bool split_bounds) {
        auto pos = lower;
        if (at_impl_end(pos)) return range<ImplIterator>(pos, pos);  // defensive...

        // Logic assumes we are starting at lower bound
        RANGE_ASSERT(lower == lower_bound_impl(bounds));

        // Trim/infil the beginning if needed
        const auto first_begin = pos->first.begin;
        if (bounds.begin > first_begin && split_bounds) {
            pos = split_impl(pos, bounds.begin, split_op_keep_both());
            lower = pos;
            ++lower;
            RANGE_ASSERT(lower == lower_bound_impl(bounds));
        } else if (bounds.begin < first_begin) {
            pos = impl_insert(pos, bounds.begin, first_begin, value);
            lower = pos;
            RANGE_ASSERT(lower == lower_bound_impl(bounds));
        }

        // in the trim case pos starts one before lower_bound, but that allows trimming a single entry range in loop.
        // NOTE that the loop is trimming and infilling at pos + 1
        while (!at_impl_end(pos) && pos->first.begin < bounds.end) {
            auto last_end = pos->first.end;
            // check for in-fill
            ++pos;
            if (at_impl_end(pos)) {
                if (last_end < bounds.end) {
                    // Gap after last entry in impl_map and before end,
                    pos = impl_insert(pos, last_end, bounds.end, value);
                    ++pos;  // advances to impl_end, as we're at upper boundary
                    RANGE_ASSERT(at_impl_end(pos));
                }
            } else if (pos->first.begin != last_end) {
                // we have a gap between last entry and current... fill, but not beyond bounds
                if (bounds.includes(pos->first.begin)) {
                    pos = impl_insert(pos, last_end, pos->first.begin, value);
                    //  don't further advance pos, because we may need to split the next entry and thus can't skip it.
                } else if (last_end < bounds.end) {
                    // Non-zero length final gap in-bounds
                    pos = impl_insert(pos, last_end, bounds.end, value);
                    ++pos;  // advances back to the out of bounds entry which we inserted just before
                    RANGE_ASSERT(!bounds.includes(pos->first.begin));
                }
            } else if (pos->first.includes(bounds.end)) {
                if (split_bounds) {
                    // extends past the end of the bounds range, snip to only include the bounded section
                    // NOTE: this splits pos, but the upper half of the split should now be considered upper_bound
                    // for the range
                    pos = split_impl(pos, bounds.end, split_op_keep_both());
                }
                // advance to the upper half of the split which will be upper_bound  or to next which will both be out of bounds
                ++pos;
                RANGE_ASSERT(!bounds.includes(pos->first.begin));
            }
        }
        // Return the current position which should be the upper_bound for bounds
        RANGE_ASSERT(pos == upper_bound_impl(bounds));
        return range<ImplIterator>(lower, pos);
    }

    template <typename TouchOp>
    ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower, const TouchOp &touch_mapped_value) {
        // Logic assumes we are starting at a valid lower bound
        RANGE_ASSERT(!at_impl_end(lower));
        RANGE_ASSERT(lower == lower_bound_impl(bounds));

        // Trim/infill the beginning if needed
        auto current = lower;
        const auto first_begin = current->first.begin;
        if (bounds.begin > first_begin) {
            // Preserve the portion of lower bound excluded from bounds
            if (current->first.end <= bounds.end) {
                // If current ends within the erased bound we can discard the the upper portion of current
                current = split_impl(current, bounds.begin, split_op_keep_lower());
            } else {
                // Keep the upper portion of current for the later split below
                current = split_impl(current, bounds.begin, split_op_keep_both());
            }
            // Exclude the preserved portion
            ++current;
            RANGE_ASSERT(current == lower_bound_impl(bounds));
        }

        // Loop over completely contained entries and erase them
        while (!at_impl_end(current) && (current->first.end <= bounds.end)) {
            if (touch_mapped_value(current->second)) {
                current = impl_erase(current);
            } else {
                ++current;
            }
        }

        if (!at_impl_end(current) && current->first.includes(bounds.end)) {
            // last entry extends past the end of the bounds range, snip to only erase the bounded section
            current = split_impl(current, bounds.end, split_op_keep_both());
            // test if lower_bound (eventually) computed in split_impl is not empty.
            // If it is not empty, then it contains values inside the bounds range,
            // they need to be touched
            if ((current->first & bounds).non_empty()) {
                if (touch_mapped_value(current->second)) {
                    current = impl_erase(current);
                } else {
                    // make current point to upper bound
                    ++current;
                }
            }
        }

        RANGE_ASSERT(current == upper_bound_impl(bounds));
        return current;
    }

    template <typename ValueType, typename WrappedIterator_>
    struct iterator_impl {
      public:
        friend class range_map;
        using WrappedIterator = WrappedIterator_;

      private:
        WrappedIterator pos_;

        // Create an iterator at a specific internal state -- only from the parent container
        iterator_impl(const WrappedIterator &pos) : pos_(pos) {}

      public:
        iterator_impl() : iterator_impl(WrappedIterator()){};
        iterator_impl(const iterator_impl &other) : pos_(other.pos_){};

        iterator_impl &operator=(const iterator_impl &rhs) {
            pos_ = rhs.pos_;
            return *this;
        }

        inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; }

        inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; }

        ValueType &operator*() const { return *pos_; }
        ValueType *operator->() const { return &*pos_; }

        iterator_impl &operator++() {
            ++pos_;
            return *this;
        }

        iterator_impl &operator--() {
            --pos_;
            return *this;
        }

        // To allow for iterator -> const_iterator construction
        // NOTE: while it breaks strict encapsulation, it does so less than friend
        const WrappedIterator &get_pos() const { return pos_; };
    };

  public:
    using iterator = iterator_impl<value_type, ImplIterator>;

    // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
    class const_iterator : public iterator_impl<const value_type, ImplConstIterator> {
        using Base = iterator_impl<const value_type, ImplConstIterator>;
        friend range_map;

      public:
        const_iterator &operator=(const const_iterator &other) {
            Base::operator=(other);
            return *this;
        }
        const_iterator(const const_iterator &other) : Base(other){};
        const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {}
        const_iterator() : Base() {}

      private:
        const_iterator(const ImplConstIterator &pos) : Base(pos) {}
    };

  protected:
    inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); }
    inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); }
    inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); }

    template <typename That, typename Iterator>
    static bool is_contiguous_impl(That *const that, const key_type &range, const Iterator &lower) {
        // Search range or intersection is empty
        if (lower == that->impl_end() || lower->first.excludes(range)) return false;

        if (lower->first.includes(range)) {
            return true;  // there is one entry that contains the whole key range
        }

        bool contiguous = true;
        for (auto pos = lower; contiguous && pos != that->impl_end() && range.includes(pos->first.begin); ++pos) {
            // if current doesn't cover the rest of the key range, check to see that the next is extant and abuts
            if (pos->first.end < range.end) {
                auto next = pos;
                ++next;
                contiguous = (next != that->impl_end()) && pos->first.is_prior_to(next->first);
            }
        }
        return contiguous;
    }

  public:
    iterator end() { return iterator(impl_map_.end()); }                          //  policy and bounds don't matter for end
    const_iterator end() const { return const_iterator(impl_map_.end()); }        //  policy and bounds don't matter for end
    iterator begin() { return iterator(impl_map_.begin()); }                      // with default policy, and thus no bounds
    const_iterator begin() const { return const_iterator(impl_map_.begin()); }    // with default policy, and thus no bounds
    const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); }  // with default policy, and thus no bounds
    const_iterator cend() const { return const_iterator(impl_map_.cend()); }      // with default policy, and thus no bounds

    iterator erase(const iterator &pos) {
        RANGE_ASSERT(!at_end(pos));
        return iterator(impl_erase(pos.pos_));
    }

    iterator erase(range<iterator> bounds) {
        auto current = bounds.begin.pos_;
        while (current != bounds.end.pos_) {
            RANGE_ASSERT(!at_impl_end(current));
            current = impl_map_.erase(current);
        }
        RANGE_ASSERT(current == bounds.end.pos_);
        return current;
    }

    iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); }

    // Before trying to erase a range, function touch_mapped_value is called on the mapped value.
    // touch_mapped_value is allowed to have it's parameter type to be non const reference.
    // If it returns true, regular erase will occur.
    // Else, range is kept.
    template <typename TouchOp>
    iterator erase_range_or_touch(const key_type &bounds, const TouchOp &touch_mapped_value) {
        auto lower = lower_bound_impl(bounds);

        if (at_impl_end(lower) || !bounds.intersects(lower->first)) {
            // There is nothing in this range lower bound is above bound
            return iterator(lower);
        }
        auto next = impl_erase_range(bounds, lower, touch_mapped_value);
        return iterator(next);
    }

    iterator erase_range(const key_type &bounds) {
        return erase_range_or_touch(bounds, [](const auto &) { return true; });
    }

    void clear() { impl_map_.clear(); }

    iterator find(const key_type &key) { return iterator(impl_map_.find(key)); }

    const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); }

    iterator find(const index_type &index) {
        auto lower = lower_bound(range<index_type>(index, index + 1));
        if (!at_end(lower) && lower->first.includes(index)) {
            return lower;
        }
        return end();
    }

    const_iterator find(const index_type &index) const {
        auto lower = lower_bound(key_type(index, index + 1));
        if (!at_end(lower) && lower->first.includes(index)) {
            return lower;
        }
        return end();
    }

    iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); }

    const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); }

    iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); }

    const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); }

    range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; }
    range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; }
    range<const_iterator> bounds(const key_type &key) const { return cbounds(key); }

    using insert_pair = std::pair<iterator, bool>;

    // This is traditional no replacement insert.
    insert_pair insert(const value_type &value) {
        const auto &key = value.first;
        if (!key.non_empty()) {
            // It's an invalid key, early bail pointing to end
            return std::make_pair(end(), false);
        }

        // Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
        // we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
        auto lower = lower_bound_impl(key);
        if (at_impl_end(lower) || !lower->first.intersects(key)) {
            // range is not even partially overlapped, and lower is strictly > than key
            auto impl_insert = impl_map_.emplace_hint(lower, value);
            // auto impl_insert = impl_map_.emplace(value);
            iterator wrap_it(impl_insert);
            return std::make_pair(wrap_it, true);
        }
        // We don't replace
        return std::make_pair(iterator(lower), false);
    };

    iterator insert(const_iterator hint, const value_type &value) {
        bool hint_open;
        ImplConstIterator impl_next = hint.pos_;
        if (impl_map_.empty()) {
            hint_open = true;
        } else if (impl_next == impl_map_.cbegin()) {
            hint_open = value.first.strictly_less(impl_next->first);
        } else if (impl_next == impl_map_.cend()) {
            auto impl_prev = impl_next;
            --impl_prev;
            hint_open = value.first.strictly_greater(impl_prev->first);
        } else {
            auto impl_prev = impl_next;
            --impl_prev;
            hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first);
        }

        if (!hint_open) {
            // Hint was unhelpful, fall back to the non-hinted version
            auto plain_insert = insert(value);
            return plain_insert.first;
        }

        auto impl_insert = impl_map_.insert(impl_next, value);
        return iterator(impl_insert);
    }

    // Try to insert value. If insertion failed, recursively split union of retrieved stored range with inserted range.
    // Split at intersection of stored range and inserted range.
    // Range intersection is merged using merge_op.
    // Ranges before and after this intersection are recursively inserted.
    // merge_pos should have this signature: (mapped_type& current_value, const mapped_type& new_value) -> void
    template <typename MergeOp>
    iterator split_and_merge_insert(const value_type &value, const MergeOp &merge_op) {
        if (!value.first.non_empty()) {
            return end();
        }

        if (auto [it, was_inserted] = insert(value); !was_inserted) {
            // insert failed, so at least one stored range intersects with new range
            const RangeKey it_range = it->first;
            const auto &[inserted_range, insert_mapped_value] = value;
            const RangeKey intersection = it_range & inserted_range;
            // if intersection is empty or invalid, insertion should have succeeded
            assert(intersection.non_empty());

            const iterator split_point_it = sparse_container::split(it, *this, intersection);
            // given it->first and instersection do intersect, split should have succeeded
            RANGE_ASSERT(split_point_it != end());
            // merge values at inserted range and retrieved range intersection
            merge_op(split_point_it->second, insert_mapped_value);

            // Recursively insert ranges before and after intersection
            const RangeKey range_after_intersection(intersection.end, std::max(it_range.end, inserted_range.end));
            const RangeKey range_before_intersection(std::min(it_range.begin, inserted_range.begin), intersection.begin);
            split_and_merge_insert({range_after_intersection, insert_mapped_value}, merge_op);
            if (range_before_intersection.non_empty()) {
                return split_and_merge_insert({range_before_intersection, insert_mapped_value}, merge_op);
            } else {
                return split_point_it;
            }
        } else {
            return it;
        }
    }

    template <typename SplitOp>
    iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
        auto split_it = split_impl(whole_it.pos_, index, split_op);
        return iterator(split_it);
    }

    // The overwrite hint here is lower.... and if it's not right... this fails
    template <typename Value>
    iterator overwrite_range(const iterator &lower, Value &&value) {
        // We're not robust to a bad hint, so detect it with extreme prejudice
        // TODO: Add bad hint test to make this robust...
        auto lower_impl = lower.pos_;
        auto insert_hint = lower_impl;
        if (!at_impl_end(lower_impl)) {
            // If we're at end (and the hint is good, there's nothing to erase
            RANGE_ASSERT(lower == lower_bound(value.first));
            insert_hint = impl_erase_range(value.first, lower_impl, [](const auto &) { return true; });
        }
        auto inserted = impl_insert(insert_hint, std::forward<Value>(value));
        return iterator(inserted);
    }

    template <typename Value>
    iterator overwrite_range(Value &&value) {
        auto lower = lower_bound(value.first);
        return overwrite_range(lower, value);
    }

    bool empty() const { return impl_map_.empty(); }
    size_type size() const { return impl_map_.size(); }

    // For configuration/debug use // Use with caution...
    ImplMap &get_implementation_map() { return impl_map_; }
    const ImplMap &get_implementation_map() const { return impl_map_; }
};

template <typename Container>
using const_correct_iterator = decltype(std::declval<Container>().begin());

// The an array based small ordered map for range keys for use as the range map "ImplMap" as an alternate to std::map
//
// Assumes RangeKey::index_type is unsigned (TBD is it useful to generalize to unsigned?)
// Assumes RangeKey implements begin, end, < and (TBD) from template range above
template <typename Key, typename T, typename RangeKey = range<Key>, size_t N = 64, typename SmallIndex = uint8_t>
class small_range_map {
    using SmallRange = range<SmallIndex>;

  public:
    using mapped_type = T;
    using key_type = RangeKey;
    using value_type = std::pair<const key_type, mapped_type>;
    using index_type = typename key_type::index_type;

    using size_type = SmallIndex;
    template <typename Map_, typename Value_>
    struct IteratorImpl {
      public:
        using Map = Map_;
        using Value = Value_;
        friend Map;
        Value *operator->() const { return map_->get_value(pos_); }
        Value &operator*() const { return *(map_->get_value(pos_)); }
        IteratorImpl &operator++() {
            pos_ = map_->next_range(pos_);
            return *this;
        }
        IteratorImpl &operator--() {
            pos_ = map_->prev_range(pos_);
            return *this;
        }
        IteratorImpl &operator=(const IteratorImpl &other) {
            map_ = other.map_;
            pos_ = other.pos_;
            return *this;
        }
        bool operator==(const IteratorImpl &other) const {
            if (at_end() && other.at_end()) {
                return true;  // all ends are equal
            }
            return (map_ == other.map_) && (pos_ == other.pos_);
        }
        bool operator!=(const IteratorImpl &other) const { return !(*this == other); }

        // At end()
        IteratorImpl() : map_(nullptr), pos_(N) {}
        IteratorImpl(const IteratorImpl &other) : map_(other.map_), pos_(other.pos_) {}

        // Raw getters to allow for const_iterator conversion below
        Map *get_map() const { return map_; }
        SmallIndex get_pos() const { return pos_; }

        bool at_end() const { return (map_ == nullptr) || (pos_ >= map_->get_limit()); }

      protected:
        IteratorImpl(Map *map, SmallIndex pos) : map_(map), pos_(pos) {}

      private:
        Map *map_;
        SmallIndex pos_;  // the begin of the current small_range
    };
    using iterator = IteratorImpl<small_range_map, value_type>;

    // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
    class const_iterator : public IteratorImpl<const small_range_map, const value_type> {
        using Base = IteratorImpl<const small_range_map, const value_type>;
        friend small_range_map;

      public:
        const_iterator(const iterator &it) : Base(it.get_map(), it.get_pos()) {}
        const_iterator() : Base() {}

      private:
        const_iterator(const small_range_map *map, SmallIndex pos) : Base(map, pos) {}
    };

    iterator begin() {
        // Either ranges of 0 is valid and begin is 0 and begin *or* it's invalid an points to the first valid range (or end)
        return iterator(this, ranges_[0].begin);
    }
    const_iterator cbegin() const { return const_iterator(this, ranges_[0].begin); }
    const_iterator begin() const { return cbegin(); }
    iterator end() { return iterator(); }
    const_iterator cend() const { return const_iterator(); }
    const_iterator end() const { return cend(); }

    void clear() {
        const SmallRange clear_range(limit_, 0);
        for (SmallIndex i = 0; i < limit_; ++i) {
            auto &range = ranges_[i];
            if (range.begin == i) {
                // Clean up the backing store
                destruct_value(i);
            }
            range = clear_range;
        }
        size_ = 0;
    }

    // Find entry with an exact key match (uncommon use case)
    iterator find(const key_type &key) {
        RANGE_ASSERT(in_bounds(key));
        if (key.begin < limit_) {
            const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
            const auto &range = ranges_[small_begin];
            if (range.begin == small_begin) {
                const auto small_end = static_cast<SmallIndex>(key.end);
                if (range.end == small_end) return iterator(this, small_begin);
            }
        }
        return end();
    }
    const_iterator find(const key_type &key) const {
        RANGE_ASSERT(in_bounds(key));
        if (key.begin < limit_) {
            const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
            const auto &range = ranges_[small_begin];
            if (range.begin == small_begin) {
                const auto small_end = static_cast<SmallIndex>(key.end);
                if (range.end == small_end) return const_iterator(this, small_begin);
            }
        }
        return end();
    }

    iterator find(const index_type &index) {
        if (index < get_limit()) {
            const SmallIndex small_index = static_cast<SmallIndex>(index);
            const auto &range = ranges_[small_index];
            if (range.valid()) {
                return iterator(this, range.begin);
            }
        }
        return end();
    }

    const_iterator find(const index_type &index) const {
        if (index < get_limit()) {
            const SmallIndex small_index = static_cast<SmallIndex>(index);
            const auto &range = ranges_[small_index];
            if (range.valid()) {
                return const_iterator(this, range.begin);
            }
        }
        return end();
    }

    size_type size() const { return size_; }
    bool empty() const { return 0 == size_; }

    iterator erase(const_iterator pos) {
        RANGE_ASSERT(pos.map_ == this);
        return erase_impl(pos.get_pos());
    }

    iterator erase(iterator pos) {
        RANGE_ASSERT(pos.map_ == this);
        return erase_impl(pos.get_pos());
    }

    // Must be called with rvalue or lvalue of value_type
    template <typename Value>
    iterator emplace(Value &&value) {
        const auto &key = value.first;
        RANGE_ASSERT(in_bounds(key));
        if (key.begin >= limit_) return end();  // Invalid key (end is checked in "is_open")
        const SmallRange range(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
        if (is_open(key)) {
            // This needs to be the fast path, but I don't see how we can avoid the sanity checks above
            for (auto i = range.begin; i < range.end; ++i) {
                ranges_[i] = range;
            }
            // Update the next information for the previous unused slots (as stored in begin invalidly)
            auto prev = range.begin;
            while (prev > 0) {
                --prev;
                if (ranges_[prev].valid()) break;
                ranges_[prev].begin = range.begin;
            }
            // Placement new into the storage interpreted as Value
            construct_value(range.begin, value_type(std::forward<Value>(value)));
            auto next = range.end;
            // update the previous range information for the next unsed slots (as stored in end invalidly)
            while (next < limit_) {
                // End is exclusive... increment *after* update
                if (ranges_[next].valid()) break;
                ranges_[next].end = range.end;
                ++next;
            }
            return iterator(this, range.begin);
        } else {
            // Can't insert into occupied ranges.
            // if ranges_[key.begin] is valid then this is the collision (starting at .begin
            // if it's invalid .begin points to the overlapping entry from is_open (or end if key was out of range)
            return iterator(this, ranges_[range.begin].begin);
        }
    }

    // As hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
    template <typename Value>
    iterator emplace_hint(const const_iterator &hint, Value &&value) {
        // We have direct access so we can drop the hint
        return emplace(std::forward<Value>(value));
    }

    template <typename Value>
    iterator emplace_hint(const iterator &hint, Value &&value) {
        // We have direct access so we can drop the hint
        return emplace(std::forward<Value>(value));
    }

    // Again, hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
    iterator insert(const const_iterator &hint, const value_type &value) { return emplace(value); }
    iterator insert(const iterator &hint, const value_type &value) { return emplace(value); }

    std::pair<iterator, bool> insert(const value_type &value) {
        const auto &key = value.first;
        RANGE_ASSERT(in_bounds(key));
        if (key.begin >= limit_) return std::make_pair(end(), false);  // Invalid key, not inserted.
        if (is_open(key)) {
            return std::make_pair(emplace(value), true);
        }
        // If invalid we point to the subsequent range that collided, if valid begin is the start of the valid range
        const auto &collision_begin = ranges_[key.begin].begin;
        RANGE_ASSERT(ranges_[collision_begin].valid());
        return std::make_pair(iterator(this, collision_begin), false);
    }

    template <typename SplitOp>
    iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
        if (!whole_it->first.includes(index)) return whole_it;  // If we don't have a valid split point, just return the iterator

        const auto &key = whole_it->first;
        const auto small_key = make_small_range(key);
        key_type lower_key(key.begin, index);
        if (lower_key.empty() && SplitOp::keep_upper()) {
            return whole_it;  // this is a noop we're keeping the upper half which is the same as whole_it;
        }

        if ((lower_key.empty() && !SplitOp::keep_upper()) || !(SplitOp::keep_lower() || SplitOp::keep_upper())) {
            // This effectively an erase... so erase.
            return erase(whole_it);
        }

        // Upper range cannot be empty (because the split point would be included...
        const auto small_lower_key = make_small_range(lower_key);
        const SmallRange small_upper_key{small_lower_key.end, small_key.end};
        if (SplitOp::keep_upper()) {
            // Note: create the upper section before the lower, as processing the lower may erase it
            RANGE_ASSERT(!small_upper_key.empty());
            const key_type upper_key{lower_key.end, key.end};
            if (SplitOp::keep_lower()) {
                construct_value(small_upper_key.begin, std::make_pair(upper_key, get_value(small_key.begin)->second));
            } else {
                // If we aren't keeping the lower, move instead of copy
                construct_value(small_upper_key.begin, std::make_pair(upper_key, std::move(get_value(small_key.begin)->second)));
            }
            for (auto i = small_upper_key.begin; i < small_upper_key.end; ++i) {
                ranges_[i] = small_upper_key;
            }
        } else {
            // rewrite "end" to the next valid range (or end)
            RANGE_ASSERT(SplitOp::keep_lower());
            auto next = next_range(small_key.begin);
            rerange(small_upper_key, SmallRange(next, small_lower_key.end));
            // for any already invalid, we just rewrite the end.
            rerange_end(small_upper_key.end, next, small_lower_key.end);
        }
        SmallIndex split_index;
        if (SplitOp::keep_lower()) {
            resize_value(small_key.begin, lower_key.end);
            rerange_end(small_lower_key.begin, small_lower_key.end, small_lower_key.end);
            split_index = small_lower_key.begin;
        } else {
            // Remove lower and rewrite empty space
            RANGE_ASSERT(SplitOp::keep_upper());
            destruct_value(small_key.begin);

            // Rewrite prior empty space (if any)
            auto prev = prev_range(small_key.begin);
            SmallIndex limit = small_lower_key.end;
            SmallIndex start = 0;
            if (small_key.begin != 0) {
                const auto &prev_start = ranges_[prev];
                if (prev_start.valid()) {
                    // If there is a previous used range, the empty space starts after it.
                    start = prev_start.end;
                } else {
                    RANGE_ASSERT(prev == 0);  // prev_range only returns invalid ranges "off the front"
                    start = prev;
                }
                // for the section *prior* to key begin only need to rewrite the "invalid" begin (i.e. next "in use" begin)
                rerange_begin(start, small_lower_key.begin, limit);
            }
            // for the section being erased rewrite the invalid range reflecting the empty space
            rerange(small_lower_key, SmallRange(limit, start));
            split_index = small_lower_key.end;
        }

        return iterator(this, split_index);
    }

    // For the value.first range rewrite the range...
    template <typename Value>
    iterator overwrite_range(Value &&value) {
        const auto &key = value.first;

        // Small map only has a restricted range supported
        RANGE_ASSERT(in_bounds(key));
        if (key.end > get_limit()) {
            return end();
        }

        const auto small_key = make_small_range(key);
        clear_out_range(small_key, /* valid clear range */ true);
        construct_value(small_key.begin, std::forward<Value>(value));
        return iterator(this, small_key.begin);
    }

    // We don't need a hint...
    template <typename Value>
    iterator overwrite_range(const iterator &hint, Value &&value) {
        return overwrite_range(std::forward<Value>(value));
    }

    // For the range erase all contents within range, trimming any overlapping ranges
    iterator erase_range(const key_type &range) {
        // Small map only has a restricted range supported
        RANGE_ASSERT(in_bounds(range));
        if (range.end > get_limit() || range.empty()) {
            return end();
        }
        const auto empty = clear_out_range(make_small_range(range), /* valid clear range */ false);
        return iterator(this, empty.end);
    }

    template <typename Iterator>
    iterator erase(const Iterator &first, const Iterator &last) {
        RANGE_ASSERT(this == first.map_);
        RANGE_ASSERT(this == last.map_);
        auto first_pos = !first.at_end() ? first.pos_ : limit_;
        auto last_pos = !last.at_end() ? last.pos_ : limit_;
        RANGE_ASSERT(first_pos <= last_pos);
        const SmallRange clear_me(first_pos, last_pos);
        if (!clear_me.empty()) {
            const SmallRange empty_range(find_empty_left(clear_me), last_pos);
            clear_and_set_range(empty_range.begin, empty_range.end, make_invalid_range(empty_range));
        }
        return iterator(this, last_pos);
    }

    iterator lower_bound(const key_type &key) { return iterator(this, lower_bound_impl(this, key)); }
    const_iterator lower_bound(const key_type &key) const { return const_iterator(this, lower_bound_impl(this, key)); }

    iterator upper_bound(const key_type &key) { return iterator(this, upper_bound_impl(this, key)); }
    const_iterator upper_bound(const key_type &key) const { return const_iterator(this, upper_bound_impl(this, key)); }

    small_range_map(index_type limit = N) : size_(0), limit_(static_cast<SmallIndex>(limit)) {
        RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
        init_range();
    }

    // Only valid for empty maps
    void set_limit(size_t limit) {
        RANGE_ASSERT(size_ == 0);
        RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
        limit_ = static_cast<SmallIndex>(limit);
        init_range();
    }
    inline index_type get_limit() const { return static_cast<index_type>(limit_); }

  private:
    inline bool in_bounds(index_type index) const { return index < get_limit(); }
    inline bool in_bounds(const RangeKey &key) const { return key.begin < get_limit() && key.end <= get_limit(); }

    inline SmallRange make_small_range(const RangeKey &key) const {
        RANGE_ASSERT(in_bounds(key));
        return SmallRange(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
    }

    inline SmallRange make_invalid_range(const SmallRange &key) const { return SmallRange(key.end, key.begin); }

    bool is_open(const key_type &key) const {
        // Remebering that invalid range.begin is the beginning the next used range.
        const auto small_key = make_small_range(key);
        const auto &range = ranges_[small_key.begin];
        return range.invalid() && small_key.end <= range.begin;
    }
    // Only call this with a valid beginning index
    iterator erase_impl(SmallIndex erase_index) {
        RANGE_ASSERT(erase_index == ranges_[erase_index].begin);
        auto &range = ranges_[erase_index];
        destruct_value(erase_index);
        // Need to update the ranges to accommodate the erasure
        SmallIndex prev = 0;  // This is correct for the case erase_index is 0....
        if (erase_index != 0) {
            prev = prev_range(erase_index);
            // This works if prev is valid or invalid, because the invalid end will be either 0 (and correct) or the end of the
            // prior valid range and the valid end will be the end of the previous range (and thus correct)
            prev = ranges_[prev].end;
        }
        auto next = next_range(erase_index);
        // We have to be careful of next == limit_...
        if (next < limit_) {
            next = ranges_[next].begin;
        }
        // Rewrite both adjoining and newly empty entries
        SmallRange infill(next, prev);
        for (auto i = prev; i < next; ++i) {
            ranges_[i] = infill;
        }
        return iterator(this, next);
    }
    // This implements the "range lower bound logic" directly on the ranges
    template <typename Map>
    static SmallIndex lower_bound_impl(Map *const that, const key_type &key) {
        if (!that->in_bounds(key.begin)) return that->limit_;
        // If range is invalid, then begin points to the next valid (or end) with must be the lower bound
        // If range is valid, the begin points to a the lowest range that interects key
        const auto lb = that->ranges_[static_cast<SmallIndex>(key.begin)].begin;
        return lb;
    }

    template <typename Map>
    static SmallIndex upper_bound_impl(Map *that, const key_type &key) {
        const auto limit = that->get_limit();
        if (key.end >= limit) return that->limit_;  //  at end
        const auto &end_range = that->ranges_[key.end];
        // If range is invalid, then begin points to the next valid (or end) with must be the upper bound (key < range because
        auto ub = end_range.begin;
        // If range is valid, the begin points to a range that may interects key, which is be upper iff range.begin == key.end
        if (end_range.valid() && (key.end > end_range.begin)) {
            // the ub candidate *intersects* the key, so we have to go to the next range.
            ub = that->next_range(end_range.begin);
        }
        return ub;
    }

    // This is and inclusive "inuse", the entry itself
    SmallIndex find_inuse_right(const SmallRange &range) const {
        if (range.end >= limit_) return limit_;
        // if range is valid, begin is the first use (== range.end), else it's the first used after the invalid range
        return ranges_[range.end].begin;
    }
    // This is an exclusive "inuse", the end of the previous range
    SmallIndex find_inuse_left(const SmallRange &range) const {
        if (range.begin == 0) return 0;
        // if range is valid, end is the end of the first use (== range.begin), else it's the end of the in use range before the
        // invalid range
        return ranges_[range.begin - 1].end;
    }
    SmallRange find_empty(const SmallRange &range) const { return SmallRange(find_inuse_left(range), find_inuse_right(range)); }

    // Clear out the given range, trimming as needed.  The clear_range can be set as valid or invalid
    SmallRange clear_out_range(const SmallRange &clear_range, bool valid_clear_range) {
        // By copy to avoid reranging side affect
        auto first_range = ranges_[clear_range.begin];

        // fast path for matching ranges...
        if (first_range == clear_range) {
            // clobber the existing value
            destruct_value(clear_range.begin);
            if (valid_clear_range) {
                return clear_range;  // This is the overwrite fastpath for matching range
            } else {
                const auto empty_range = find_empty(clear_range);
                rerange(empty_range, make_invalid_range(empty_range));
                return empty_range;
            }
        }

        SmallRange empty_left(clear_range.begin, clear_range.begin);
        SmallRange empty_right(clear_range.end, clear_range.end);

        // The clearout is entirely within a single extant range, trim and set.
        if (first_range.valid() && first_range.includes(clear_range)) {
            // Shuffle around first_range, three cases...
            if (first_range.begin < clear_range.begin) {
                // We have a lower trimmed area to preserve.
                resize_value(first_range.begin, clear_range.begin);
                rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
                if (first_range.end > clear_range.end) {
                    // And an upper portion of first that needs to copy from the lower
                    construct_value(clear_range.end, std::make_pair(key_type(clear_range.end, first_range.end),
                                                                    get_value(first_range.begin)->second));
                    rerange_begin(clear_range.end, first_range.end, clear_range.end);
                } else {
                    RANGE_ASSERT(first_range.end == clear_range.end);
                    empty_right.end = find_inuse_right(clear_range);
                }
            } else {
                RANGE_ASSERT(first_range.end > clear_range.end);
                RANGE_ASSERT(first_range.begin == clear_range.begin);
                // Only an upper trimmed area to preserve, so move the first range value to the upper trim zone.
                resize_value_right(first_range, clear_range.end);
                rerange_begin(clear_range.end, first_range.end, clear_range.end);
                empty_left.begin = find_inuse_left(clear_range);
            }
        } else {
            if (first_range.valid()) {
                if (first_range.begin < clear_range.begin) {
                    // Trim left.
                    RANGE_ASSERT(first_range.end < clear_range.end);  // we handled the "includes" case above
                    resize_value(first_range.begin, clear_range.begin);
                    rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
                }
            } else {
                empty_left.begin = find_inuse_left(clear_range);
            }

            // rewrite excluded portion of final range
            if (clear_range.end < limit_) {
                const auto &last_range = ranges_[clear_range.end];
                if (last_range.valid()) {
                    // for a valid adjoining range we don't have to change empty_right, but we may have to trim
                    if (last_range.begin < clear_range.end) {
                        resize_value_right(last_range, clear_range.end);
                        rerange_begin(clear_range.end, last_range.end, clear_range.end);
                    }
                } else {
                    // Note: invalid ranges "begin" and the next inuse range (or end)
                    empty_right.end = last_range.begin;
                }
            }
        }

        const SmallRange empty(empty_left.begin, empty_right.end);
        // Clear out the contents
        for (auto i = empty.begin; i < empty.end; ++i) {
            const auto &range = ranges_[i];
            if (range.begin == i) {
                RANGE_ASSERT(range.valid());
                // Clean up the backing store
                destruct_value(i);
            }
        }

        // Rewrite the ranges
        if (valid_clear_range) {
            rerange_begin(empty_left.begin, empty_left.end, clear_range.begin);
            rerange(clear_range, clear_range);
            rerange_end(empty_right.begin, empty_right.end, clear_range.end);
        } else {
            rerange(empty, make_invalid_range(empty));
        }
        RANGE_ASSERT(empty.end == limit_ || ranges_[empty.end].valid());
        RANGE_ASSERT(empty.begin == 0 || ranges_[empty.begin - 1].valid());
        return empty;
    }

    void init_range() {
        const SmallRange init_val(limit_, 0);
        for (SmallIndex i = 0; i < limit_; ++i) {
            ranges_[i] = init_val;
            in_use_[i] = false;
        }
    }
    value_type *get_value(SmallIndex index) {
        RANGE_ASSERT(index < limit_);  // Must be inbounds
        return reinterpret_cast<value_type *>(&(backing_store_[index]));
    }
    const value_type *get_value(SmallIndex index) const {
        RANGE_ASSERT(index < limit_);                 // Must be inbounds
        RANGE_ASSERT(index == ranges_[index].begin);  // Must be the record at begin
        return reinterpret_cast<const value_type *>(&(backing_store_[index]));
    }

    template <typename Value>
    void construct_value(SmallIndex index, Value &&value) {
        RANGE_ASSERT(!in_use_[index]);
        new (get_value(index)) value_type(std::forward<Value>(value));
        in_use_[index] = true;
        ++size_;
    }

    void destruct_value(SmallIndex index) {
        // there are times when the range and destruct logic clash... allow for double attempted deletes
        if (in_use_[index]) {
            RANGE_ASSERT(size_ > 0);
            --size_;
            get_value(index)->~value_type();
            in_use_[index] = false;
        }
    }

    // No need to move around the value, when just the key is moving
    // Use the destructor/placement new just in case of a complex key with range's semantics
    // Note: Call resize before rewriting ranges_
    void resize_value(SmallIndex current_begin, index_type new_end) {
        // Destroy and rewrite the key in place
        RANGE_ASSERT(ranges_[current_begin].end != new_end);
        key_type new_key(current_begin, new_end);
        key_type *key = const_cast<key_type *>(&get_value(current_begin)->first);
        key->~key_type();
        new (key) key_type(new_key);
    }

    inline void rerange_end(SmallIndex old_begin, SmallIndex new_end, SmallIndex new_end_value) {
        for (auto i = old_begin; i < new_end; ++i) {
            ranges_[i].end = new_end_value;
        }
    }
    inline void rerange_begin(SmallIndex new_begin, SmallIndex old_end, SmallIndex new_begin_value) {
        for (auto i = new_begin; i < old_end; ++i) {
            ranges_[i].begin = new_begin_value;
        }
    }
    inline void rerange(const SmallRange &range, const SmallRange &range_value) {
        for (auto i = range.begin; i < range.end; ++i) {
            ranges_[i] = range_value;
        }
    }

    // for resize right need both begin and end...
    void resize_value_right(const SmallRange &current_range, index_type new_begin) {
        // Use move semantics for (potentially) heavyweight mapped_type's
        RANGE_ASSERT(current_range.begin != new_begin);
        // Move second from it's current location and update the first at the same time
        construct_value(static_cast<SmallIndex>(new_begin),
                        std::make_pair(key_type(new_begin, current_range.end), std::move(get_value(current_range.begin)->second)));
        destruct_value(current_range.begin);
    }

    // Now we can walk a range and rewrite it cleaning up any live contents
    void clear_and_set_range(SmallIndex rewrite_begin, SmallIndex rewrite_end, const SmallRange &new_range) {
        for (auto i = rewrite_begin; i < rewrite_end; ++i) {
            auto &range = ranges_[i];
            if (i == range.begin) {
                destruct_value(i);
            }
            range = new_range;
        }
    }

    SmallIndex next_range(SmallIndex current) const {
        SmallIndex next = ranges_[current].end;
        // If the next range is invalid, skip to the next range, which *must* be (or be end)
        if ((next < limit_) && ranges_[next].invalid()) {
            // For invalid ranges, begin is the beginning of the next range
            next = ranges_[next].begin;
            RANGE_ASSERT(next == limit_ || ranges_[next].valid());
        }
        return next;
    }

    SmallIndex prev_range(SmallIndex current) const {
        if (current == 0) {
            return 0;
        }

        auto prev = current - 1;
        if (ranges_[prev].valid()) {
            // For valid ranges, the range denoted by begin (as that's where the backing store keeps values
            prev = ranges_[prev].begin;
        } else if (prev != 0) {
            // Invalid but not off the front, we can recur (only once) from the end of the prev range to get the answer
            // For invalid ranges this is the end of the previous range
            prev = prev_range(ranges_[prev].end);
        }
        return prev;
    }

    friend iterator;
    friend const_iterator;
    // Stores range boundaries only
    //     open ranges, stored as inverted, invalid range (begining of next, end of prev]
    //     inuse(begin, end) for all entries  on (begin, end]
    // Used for placement new of T for each range begin.
    struct alignas(alignof(value_type)) BackingStore {
        uint8_t data[sizeof(value_type)];
    };

    SmallIndex size_;
    SmallIndex limit_;
    std::array<SmallRange, N> ranges_;
    std::array<BackingStore, N> backing_store_;
    std::array<bool, N> in_use_;
};

// Forward index iterator, tracking an index value and the appropos lower bound
// returns an index_type, lower_bound pair.  Supports ++,  offset, and seek affecting the index,
// lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced
// iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1)
//
// Must be explicitly invalidated when the underlying map is changed.
template <typename Map>
class cached_lower_bound_impl {
    using plain_map_type = typename std::remove_const<Map>::type;  // Allow instatiation with const or non-const Map
  public:
    using iterator = const_correct_iterator<Map>;
    using key_type = typename plain_map_type::key_type;
    using mapped_type = typename plain_map_type::mapped_type;
    // Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state
    // and we don't want and caller altering internal state.
    using index_type = typename Map::index_type;
    struct value_type {
        const index_type &index;
        const iterator &lower_bound;
        const bool &valid;
        value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_)
            : index(index_), lower_bound(lower_bound_), valid(valid_) {}
    };

  private:
    Map *const map_;
    const iterator end_;
    value_type pos_;

    index_type index_;
    iterator lower_bound_;
    bool valid_;

    bool is_valid() const { return includes(index_); }

    // Allow reuse of a type with const semantics
    void set_value(const index_type &index, const iterator &it) {
        RANGE_ASSERT(it == lower_bound(index));
        index_ = index;
        lower_bound_ = it;
        valid_ = is_valid();
    }

    void update(const index_type &index) {
        RANGE_ASSERT(lower_bound_ == lower_bound(index));
        index_ = index;
        valid_ = is_valid();
    }

    inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); }
    inline bool at_end(const iterator &it) const { return it == end_; }

    bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); }

  public:
    // The cached lower bound knows the parent map, and thus can tell us this...
    inline bool at_end() const { return at_end(lower_bound_); }
    // includes(index) is a convenience function to test if the index would be in the currently cached lower bound
    bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); }

    // The return is const because we are sharing the internal state directly.
    const value_type &operator*() const { return pos_; }
    const value_type *operator->() const { return &pos_; }

    // Advance the cached location by 1
    cached_lower_bound_impl &operator++() {
        const index_type next = index_ + 1;
        if (is_lower_than(next, lower_bound_)) {
            update(next);
        } else {
            // if we're past pos_->second, next *must* be the new lower bound.
            // NOTE: that next can't be past end, so lower_bound_ isn't end.
            auto next_it = lower_bound_;
            ++next_it;
            set_value(next, next_it);

            // However we *must* not be past next.
            RANGE_ASSERT(is_lower_than(next, next_it));
        }

        return *this;
    }

    // seek(index) updates lower_bound for index, updating lower_bound_ as needed.
    cached_lower_bound_impl &seek(const index_type &seek_to) {
        // Optimize seeking to  forward
        if (index_ == seek_to) {
            // seek to self is a NOOP.  To reset lower bound after a map change, use invalidate
        } else if (index_ < seek_to) {
            // See if the current or next ranges are the appropriate lower_bound... should be a common use case
            if (is_lower_than(seek_to, lower_bound_)) {
                // lower_bound_ is still the correct lower bound
                update(seek_to);
            } else {
                // Look to see if the next range is the new lower_bound (and we aren't at end)
                auto next_it = lower_bound_;
                ++next_it;
                if (is_lower_than(seek_to, next_it)) {
                    // next_it is the correct new lower bound
                    set_value(seek_to, next_it);
                } else {
                    // We don't know where we are...  and we aren't going to walk the tree looking for seek_to.
                    set_value(seek_to, lower_bound(seek_to));
                }
            }
        } else {
            // General case... this is += so we're not implmenting optimized negative offset logic
            set_value(seek_to, lower_bound(seek_to));
        }
        return *this;
    }

    // Advance the cached location by offset.
    cached_lower_bound_impl &offset(const index_type &offset) {
        const index_type next = index_ + offset;
        return seek(next);
    }

    // invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations
    // Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_
    cached_lower_bound_impl &invalidate(index_type index) {
        set_value(index, lower_bound(index));
        return *this;
    }

    // For times when the application knows what it's done to the underlying map... (with assert in set_value)
    cached_lower_bound_impl &invalidate(const iterator &hint, index_type index) {
        set_value(index, hint);
        return *this;
    }

    cached_lower_bound_impl &invalidate() { return invalidate(index_); }

    // Allow a hint for a *valid* lower bound for current index
    // TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...)
    cached_lower_bound_impl &invalidate(const iterator &hint) {
        if ((hint != end_) && hint->first.includes(index_)) {
            auto index = index_;  // by copy set modifies in place
            set_value(index, hint);
        } else {
            invalidate();
        }
        return *this;
    }

    // The offset in index type to the next change (the end of the current range, or the transition from invalid to
    // valid.  If invalid and at_end, returns index_type(0)
    index_type distance_to_edge() {
        if (valid_) {
            // Distance to edge of
            return lower_bound_->first.end - index_;
        } else if (at_end()) {
            return index_type(0);
        } else {
            return lower_bound_->first.begin - index_;
        }
    }

    Map &map() { return *map_; }
    const Map &map() const { return *map_; }

    // Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use.
    cached_lower_bound_impl()
        : map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {}
    cached_lower_bound_impl(Map &map, const index_type &index)
        : map_(&map),
          end_(map.end()),
          pos_(index_, lower_bound_, valid_),
          index_(index),
          lower_bound_(lower_bound(index)),
          valid_(is_valid()) {}
};

template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type>
const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) {
    if (clb->valid) {
        return clb->lower_bound->second;
    }
    return default_value;
}

// Split a range into pieces bound by the intersection of the iterator's range and the supplied range
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range) {
    assert(in != map.end());  // Not designed for use with invalid iterators...
    const auto in_range = in->first;
    const auto split_range = in_range & range;

    if (split_range.empty()) return map.end();

    auto pos = in;
    if (split_range.begin != in_range.begin) {
        pos = map.split(pos, split_range.begin, sparse_container::split_op_keep_both());
        ++pos;
    }
    if (split_range.end != in_range.end) {
        pos = map.split(pos, split_range.end, sparse_container::split_op_keep_both());
    }
    return pos;
}

// Parallel iterator
// Traverse to range maps over the the same range, but without assumptions of aligned ranges.
// ++ increments to the next point where on of the two maps changes range, giving a range over which the two
// maps do not transition ranges
template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type>
class parallel_iterator {
  public:
    using key_type = KeyType;
    using index_type = typename key_type::index_type;

    // The traits keep the iterator/const_interator consistent with the constness of the map.
    using map_type_A = MapA;
    using plain_map_type_A = typename std::remove_const<MapA>::type;  // Allow instatiation with const or non-const Map
    using key_type_A = typename plain_map_type_A::key_type;
    using index_type_A = typename plain_map_type_A::index_type;
    using iterator_A = const_correct_iterator<map_type_A>;
    using lower_bound_A = cached_lower_bound_impl<map_type_A>;

    using map_type_B = MapB;
    using plain_map_type_B = typename std::remove_const<MapB>::type;
    using key_type_B = typename plain_map_type_B::key_type;
    using index_type_B = typename plain_map_type_B::index_type;
    using iterator_B = const_correct_iterator<map_type_B>;
    using lower_bound_B = cached_lower_bound_impl<map_type_B>;

    // This is the value we'll always be returning, but the referenced object will be updated by the operations
    struct value_type {
        const key_type &range;
        const lower_bound_A &pos_A;
        const lower_bound_B &pos_B;
        value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_)
            : range(range_), pos_A(pos_A_), pos_B(pos_B_) {}
    };

  private:
    lower_bound_A pos_A_;
    lower_bound_B pos_B_;
    key_type range_;
    value_type pos_;
    index_type compute_delta() {
        auto delta_A = pos_A_.distance_to_edge();
        auto delta_B = pos_B_.distance_to_edge();
        index_type delta_min;

        // If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
        if (delta_A == 0) {  // lower A is at end
            delta_min = static_cast<index_type>(delta_B);
        } else if (delta_B == 0) {  // lower B is at end
            delta_min = static_cast<index_type>(delta_A);
        } else {
            // Neither are at end, use the nearest edge, s.t. over this range A and B are both constant
            delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B));
        }
        return delta_min;
    }

  public:
    // Default constructed object will report range empty (for end checks), but otherwise is unsafe to use
    parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {}
    parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index)
        : pos_A_(map_A, static_cast<index_type_A>(index)),
          pos_B_(map_B, static_cast<index_type_B>(index)),
          range_(index, index + compute_delta()),
          pos_(range_, pos_A_, pos_B_) {}

    // Advance to the next spot one of the two maps changes
    parallel_iterator &operator++() {
        const auto start = range_.end;         // we computed this the last time we set range
        const auto delta = range_.distance();  // we computed this the last time we set range
        RANGE_ASSERT(delta != 0);              // Trying to increment past end

        pos_A_.offset(static_cast<index_type_A>(delta));
        pos_B_.offset(static_cast<index_type_B>(delta));

        range_ = key_type(start, start + compute_delta());  // find the next boundary (must be after offset)
        RANGE_ASSERT(pos_A_->index == start);
        RANGE_ASSERT(pos_B_->index == start);

        return *this;
    }

    // Seeks to a specific index in both maps reseting range.  Cannot guarantee range.begin is on edge boundary,
    /// but range.end will be.  Lower bound objects assumed to invalidate their cached lower bounds on seek.
    parallel_iterator &seek(const index_type &index) {
        pos_A_.seek(static_cast<index_type_A>(index));
        pos_B_.seek(static_cast<index_type_B>(index));
        range_ = key_type(index, index + compute_delta());
        RANGE_ASSERT(pos_A_->index == index);
        RANGE_ASSERT(pos_A_->index == pos_B_->index);
        return *this;
    }

    // Invalidates the lower_bound caches, reseting range.  Cannot guarantee range.begin is on edge boundary,
    // but range.end will be.
    parallel_iterator &invalidate() {
        const index_type start = range_.begin;
        seek(start);
        return *this;
    }

    parallel_iterator &invalidate_A() {
        const index_type index = range_.begin;
        pos_A_.invalidate(static_cast<index_type_A>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &invalidate_A(const iterator_A &hint) {
        const index_type index = range_.begin;
        pos_A_.invalidate(hint, static_cast<index_type_A>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &invalidate_B() {
        const index_type index = range_.begin;
        pos_B_.invalidate(static_cast<index_type_B>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &invalidate_B(const iterator_B &hint) {
        const index_type index = range_.begin;
        pos_B_.invalidate(hint, static_cast<index_type_B>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &trim_A() {
        if (pos_A_->valid && (range_ != pos_A_->lower_bound->first)) {
            split(pos_A_->lower_bound, pos_A_.map(), range_);
            invalidate_A();
        }
        return *this;
    }

    // The return is const because we are sharing the internal state directly.
    const value_type &operator*() const { return pos_; }
    const value_type *operator->() const { return &pos_; }
};

template <typename DstRangeMap, typename SrcRangeMap, typename Updater,
          typename SourceIterator = typename SrcRangeMap::const_iterator>
bool splice(DstRangeMap &to, const SrcRangeMap &from, SourceIterator begin, SourceIterator end, const Updater &updater) {
    if (from.empty() || (begin == end) || (begin == from.cend())) return false;  // nothing to merge.

    using ParallelIterator = parallel_iterator<DstRangeMap, const SrcRangeMap>;
    using Key = typename SrcRangeMap::key_type;
    using CachedLowerBound = cached_lower_bound_impl<DstRangeMap>;
    using ConstCachedLowerBound = cached_lower_bound_impl<const SrcRangeMap>;
    ParallelIterator par_it(to, from, begin->first.begin);
    bool updated = false;
    while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) {
        const Key &range = par_it->range;
        const CachedLowerBound &to_lb = par_it->pos_A;
        const ConstCachedLowerBound &from_lb = par_it->pos_B;
        if (from_lb->valid) {
            auto read_it = from_lb->lower_bound;
            auto write_it = to_lb->lower_bound;
            // Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span
            // transitions between map entries or between valid and invalid ranges)
            if (to_lb->valid) {
                if (write_it->first == range) {
                    // if the source and destination ranges match we can overwrite everything
                    updated |= updater.update(write_it->second, read_it->second);
                } else {
                    // otherwise we need to split the destination range.
                    auto value_to_update = write_it->second; // intentional copy
                    updated |= updater.update(value_to_update, read_it->second);
                    auto intersected_range = write_it->first & range;
                    to.overwrite_range(to_lb->lower_bound, std::make_pair(intersected_range, value_to_update));
                    par_it.invalidate_A();  // we've changed map 'to' behind to_lb's back... let it know.
                }
            } else {
                // Insert into the gap.
                auto opt = updater.insert(read_it->second);
                if (opt) {
                    to.insert(write_it, std::make_pair(range, std::move(*opt)));
                    updated = true;
                    par_it.invalidate_A();  // we've changed map 'to' behind to_lb's back... let it know.
                }
            }
        }
        ++par_it;  // next range over which both 'to' and 'from' stay constant
    }
    return updated;
}
// And short hand for "from begin to end"
template <typename DstRangeMap, typename SrcRangeMap, typename Updater>
bool splice(DstRangeMap &to, const SrcRangeMap &from, const Updater &updater) {
    return splice(to, from, from.cbegin(), from.cend(), updater);
}

template <typename T>
struct update_prefer_source {
    bool update(T &dst, const T &src) const {
        if (dst != src) {
            dst = src;
            return true;
        }
        return false;
    }

    std::optional<T> insert(const T &src) const { return std::optional<T>(layer_data::in_place, src); }
};

template <typename T>
struct update_prefer_dest {
    bool update(T &dst, const T &src) const { return false; }

    std::optional<T> insert(const T &src) const { return std::optional<T>(layer_data::in_place, src); }
};

template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter, SourceIterator begin, SourceIterator end) {
    if (arbiter == value_precedence::prefer_source) {
        return splice(to, from, from.cbegin(), from.cend(), update_prefer_source<typename RangeMap::mapped_type>());
    } else {
        return splice(to, from, from.cbegin(), from.cend(), update_prefer_dest<typename RangeMap::mapped_type>());
    }
}

// And short hand for "from begin to end"
template <typename RangeMap>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter) {
    return splice(to, from, arbiter, from.cbegin(), from.cend());
}

template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type>
bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) {
    using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<Map>;
    CachedLowerBound pos(map, range.begin);

    bool updated = false;
    while (range.includes(pos->index)) {
        if (!pos->valid) {
            if (precedence == value_precedence::prefer_source) {
                // We can convert this into and overwrite...
                map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
                return true;
            }
            // Fill in the leading space (or in the case of pos at end the trailing space
            const auto start = pos->index;
            auto it = pos->lower_bound;
            const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
            map.insert(it, std::make_pair(Range(start, limit), value));
            // We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
            // will fix this (and move the state to valid)
            pos.seek(limit);
            updated = true;
        }
        // Note that after the "fill" operation pos may have become valid so we check again
        if (pos->valid) {
            if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) {
                // We've found a place where we're changing the value, at this point might as well simply over write the range
                // and be done with it. (save on later merge operations....)
                pos.seek(range.begin);
                map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
                return true;

            } else {
                // "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
                // Point just past the end of this section,  if it's within the given range, it will get filled next iteration
                // ++pos could move us past the end of range (which would exit the loop) so we don't use it.
                pos.seek(pos->lower_bound->first.end);
            }
        }
    }
    return updated;
}

//  combines directly adjacent ranges with equal RangeMap::mapped_type .
template <typename RangeMap>
void consolidate(RangeMap &map) {
    using Value = typename RangeMap::value_type;
    using Key = typename RangeMap::key_type;
    using It = typename RangeMap::iterator;

    It current = map.begin();
    const It map_end = map.end();

    // To be included in a merge range there must be no gap in the Key space, and the mapped_type values must match
    auto can_merge = [](const It &last, const It &cur) {
        return cur->first.begin == last->first.end && cur->second == last->second;
    };

    while (current != map_end) {
        // Establish a trival merge range at the current location, advancing current. Merge range is inclusive of merge_last
        const It merge_first = current;
        It merge_last = current;
        ++current;

        // Expand the merge range as much as possible
        while (current != map_end && can_merge(merge_last, current)) {
            merge_last = current;
            ++current;
        }

        // Current isn't in the active merge range. If there is a non-trivial merge range, we resolve it here.
        if (merge_first != merge_last) {
            // IFF there is more than one range in (merge_first, merge_last)  <- again noting the *inclusive* last
            // Create a new Val spanning (first, last), substitute it for the multiple entries.
            Value merged_value = std::make_pair(Key(merge_first->first.begin, merge_last->first.end), merge_last->second);
            // Note that current points to merge_last + 1, and is valid even if at map_end for these operations
            map.erase(merge_first, current);
            map.insert(current, std::move(merged_value));
        }
    }
}

}  // namespace sparse_container