1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
|
/* Copyright (c) 2019-2022 The Khronos Group Inc.
* Copyright (c) 2019-2022 Valve Corporation
* Copyright (c) 2019-2022 LunarG, Inc.
* Copyright (C) 2019-2022 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#pragma once
#include <algorithm>
#include <cassert>
#include <limits>
#include <map>
#include <utility>
#include <cstdint>
#include "vk_layer_data.h"
#define RANGE_ASSERT(b) assert(b)
namespace sparse_container {
// range_map
//
// Implements an ordered map of non-overlapping, non-empty ranges
//
template <typename Index>
struct range {
using index_type = Index;
index_type begin; // Inclusive lower bound of range
index_type end; // Exlcusive upper bound of range
inline bool empty() const { return begin == end; }
inline bool valid() const { return begin <= end; }
inline bool invalid() const { return !valid(); }
inline bool non_empty() const { return begin < end; } // valid and !empty
inline bool is_prior_to(const range &other) const { return end == other.begin; }
inline bool is_subsequent_to(const range &other) const { return begin == other.end; }
inline bool includes(const index_type &index) const { return (begin <= index) && (index < end); }
inline bool includes(const range &other) const { return (begin <= other.begin) && (other.end <= end); }
inline bool excludes(const index_type &index) const { return (index < begin) || (end <= index); }
inline bool excludes(const range &other) const { return (other.end <= begin) || (end <= other.begin); }
inline bool intersects(const range &other) const { return includes(other.begin) || other.includes(begin); }
inline index_type distance() const { return end - begin; }
inline bool operator==(const range &rhs) const { return (begin == rhs.begin) && (end == rhs.end); }
inline bool operator!=(const range &rhs) const { return (begin != rhs.begin) || (end != rhs.end); }
inline range &operator-=(const index_type &offset) {
begin = begin - offset;
end = end - offset;
return *this;
}
inline range &operator+=(const index_type &offset) {
begin = begin + offset;
end = end + offset;
return *this;
}
inline range operator+(const index_type &offset) const { return range(begin + offset, end + offset); }
// for a reversible/transitive < operator compare first on begin and then end
// only less or begin is less or if end is less when begin is equal
bool operator<(const range &rhs) const {
bool result = false;
if (invalid()) {
// all invalid < valid, allows map/set validity check by looking at begin()->first
// all invalid are equal, thus only equal if this is invalid and rhs is valid
result = rhs.valid();
} else if (begin < rhs.begin) {
result = true;
} else if ((begin == rhs.begin) && (end < rhs.end)) {
result = true; // Simple common case -- boundary case require equality check for correctness.
}
return result;
}
// use as "strictly less/greater than" to check for non-overlapping ranges
bool strictly_less(const range &rhs) const { return end <= rhs.begin; }
bool strictly_less(const index_type &index) const { return end <= index; }
bool strictly_greater(const range &rhs) const { return rhs.end <= begin; }
bool strictly_greater(const index_type &index) const { return index < begin; }
range &operator=(const range &rhs) {
begin = rhs.begin;
end = rhs.end;
return *this;
}
range operator&(const range &rhs) const {
if (includes(rhs.begin)) {
return range(rhs.begin, std::min(end, rhs.end));
} else if (rhs.includes(begin)) {
return range(begin, std::min(end, rhs.end));
}
return range(); // Empty default range on non-intersection
}
index_type size() const { return end - begin; }
range() : begin(), end() {}
range(const index_type &begin_, const index_type &end_) : begin(begin_), end(end_) {}
range(const range &other) : begin(other.begin), end(other.end) {}
};
template <typename Range>
class range_view {
public:
using index_type = typename Range::index_type;
class iterator {
public:
iterator &operator++() {
++current;
return *this;
}
const index_type &operator*() const { return current; }
bool operator!=(const iterator &rhs) const { return current != rhs.current; }
iterator(index_type value) : current(value) {}
private:
index_type current;
};
range_view(const Range &range) : range_(range) {}
const iterator begin() const { return iterator(range_.begin); }
const iterator end() const { return iterator(range_.end); }
private:
const Range &range_;
};
// Type parameters for the range_map(s)
struct insert_range_no_split_bounds {
const static bool split_boundaries = false;
};
struct insert_range_split_bounds {
const static bool split_boundaries = true;
};
struct split_op_keep_both {
static constexpr bool keep_lower() { return true; }
static constexpr bool keep_upper() { return true; }
};
struct split_op_keep_lower {
static constexpr bool keep_lower() { return true; }
static constexpr bool keep_upper() { return false; }
};
struct split_op_keep_upper {
static constexpr bool keep_lower() { return false; }
static constexpr bool keep_upper() { return true; }
};
enum class value_precedence { prefer_source, prefer_dest };
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range);
// The range based sparse map implemented on the ImplMap
template <typename Key, typename T, typename RangeKey = range<Key>, typename ImplMap = std::map<RangeKey, T>>
class range_map {
public:
protected:
using MapKey = RangeKey;
ImplMap impl_map_;
using ImplIterator = typename ImplMap::iterator;
using ImplConstIterator = typename ImplMap::const_iterator;
public:
using mapped_type = typename ImplMap::mapped_type;
using value_type = typename ImplMap::value_type;
using key_type = typename ImplMap::key_type;
using index_type = typename key_type::index_type;
using size_type = typename ImplMap::size_type;
protected:
template <typename ThisType>
using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin());
template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) {
if (key.valid()) {
// ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key,
// not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin
// with the operator > in range, we can safely use an empty range for comparison
auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin));
// If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin
// or lower is at end
if (!that.at_impl_begin(lower)) {
auto prev = lower;
--prev;
// If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower
if (key.begin < prev->first.end) {
lower = prev;
}
}
return lower;
}
// Key is ill-formed
return that.impl_end(); // Point safely to nothing.
}
ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); }
ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); }
template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) {
if (key.valid()) {
// the upper bound is the first range that is full greater (upper.begin >= key.end
// we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is
// exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound
auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end));
if (!that.at_impl_end(upper) && (upper != that.impl_begin())) {
auto prev = upper;
--prev;
// We know key.end is >= prev.begin, the only question is whether it's ==
if (prev->first.begin == key.end) {
upper = prev;
}
}
return upper;
}
return that.impl_end(); // Point safely to nothing.
}
ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); }
ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); }
ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); }
ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); }
bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); }
ImplIterator impl_end() { return impl_map_.end(); }
ImplConstIterator impl_end() const { return impl_map_.end(); }
ImplIterator impl_begin() { return impl_map_.begin(); }
ImplConstIterator impl_begin() const { return impl_map_.begin(); }
inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); }
inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); }
inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); }
inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); }
ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); }
template <typename Value>
ImplIterator impl_insert(const ImplIterator &hint, Value &&value) {
RANGE_ASSERT(impl_not_found(value.first));
RANGE_ASSERT(value.first.non_empty());
return impl_map_.emplace_hint(hint, std::forward<Value>(value));
}
ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) {
return impl_insert(hint, std::make_pair(key, value));
}
ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) {
return impl_insert(hint, key_type(begin, end), value);
}
template <typename SplitOp>
ImplIterator split_impl(const ImplIterator &split_it, const index_type &index, const SplitOp &) {
// Make sure contains the split point
if (!split_it->first.includes(index)) return split_it; // If we don't have a valid split point, just return the iterator
const auto range = split_it->first;
key_type lower_range(range.begin, index);
if (lower_range.empty() && SplitOp::keep_upper()) {
return split_it; // this is a noop we're keeping the upper half which is the same as split_it;
}
// Save the contents of it and erase it
auto value = split_it->second;
auto next_it = impl_map_.erase(split_it); // Keep this, just in case the split point results in an empty "keep" set
if (lower_range.empty() && !SplitOp::keep_upper()) {
// This effectively an erase...
return next_it;
}
// Upper range cannot be empty
key_type upper_range(index, range.end);
key_type move_range;
key_type copy_range;
// Were either going to keep one or both of the split pieces. If we keep both, we'll copy value to the upper,
// and move to the lower, and return the lower, else move to, and return the kept one.
if (SplitOp::keep_lower() && !lower_range.empty()) {
move_range = lower_range;
if (SplitOp::keep_upper()) {
copy_range = upper_range; // only need a valid copy range if we keep both.
}
} else if (SplitOp::keep_upper()) { // We're not keeping the lower split because it's either empty or not wanted
move_range = upper_range; // this will be non_empty as index is included ( < end) in the original range)
}
// we insert from upper to lower because that's what emplace_hint can do in constant time. (not log time in C++11)
if (!copy_range.empty()) {
// We have a second range to create, so do it by copy
RANGE_ASSERT(impl_map_.find(copy_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(copy_range, value));
}
if (!move_range.empty()) {
// Whether we keep one or both, the one we return gets value moved to it, as the other one already has a copy
RANGE_ASSERT(impl_map_.find(move_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(move_range, std::move(value)));
}
// point to the beginning of the inserted elements (or the next from the erase
return next_it;
}
// do an ranged insert that splits existing ranges at the boundaries, and writes value to any non-initialized sub-ranges
range<ImplIterator> infill_and_split(const key_type &bounds, const mapped_type &value, ImplIterator lower, bool split_bounds) {
auto pos = lower;
if (at_impl_end(pos)) return range<ImplIterator>(pos, pos); // defensive...
// Logic assumes we are starting at lower bound
RANGE_ASSERT(lower == lower_bound_impl(bounds));
// Trim/infil the beginning if needed
const auto first_begin = pos->first.begin;
if (bounds.begin > first_begin && split_bounds) {
pos = split_impl(pos, bounds.begin, split_op_keep_both());
lower = pos;
++lower;
RANGE_ASSERT(lower == lower_bound_impl(bounds));
} else if (bounds.begin < first_begin) {
pos = impl_insert(pos, bounds.begin, first_begin, value);
lower = pos;
RANGE_ASSERT(lower == lower_bound_impl(bounds));
}
// in the trim case pos starts one before lower_bound, but that allows trimming a single entry range in loop.
// NOTE that the loop is trimming and infilling at pos + 1
while (!at_impl_end(pos) && pos->first.begin < bounds.end) {
auto last_end = pos->first.end;
// check for in-fill
++pos;
if (at_impl_end(pos)) {
if (last_end < bounds.end) {
// Gap after last entry in impl_map and before end,
pos = impl_insert(pos, last_end, bounds.end, value);
++pos; // advances to impl_end, as we're at upper boundary
RANGE_ASSERT(at_impl_end(pos));
}
} else if (pos->first.begin != last_end) {
// we have a gap between last entry and current... fill, but not beyond bounds
if (bounds.includes(pos->first.begin)) {
pos = impl_insert(pos, last_end, pos->first.begin, value);
// don't further advance pos, because we may need to split the next entry and thus can't skip it.
} else if (last_end < bounds.end) {
// Non-zero length final gap in-bounds
pos = impl_insert(pos, last_end, bounds.end, value);
++pos; // advances back to the out of bounds entry which we inserted just before
RANGE_ASSERT(!bounds.includes(pos->first.begin));
}
} else if (pos->first.includes(bounds.end)) {
if (split_bounds) {
// extends past the end of the bounds range, snip to only include the bounded section
// NOTE: this splits pos, but the upper half of the split should now be considered upper_bound
// for the range
pos = split_impl(pos, bounds.end, split_op_keep_both());
}
// advance to the upper half of the split which will be upper_bound or to next which will both be out of bounds
++pos;
RANGE_ASSERT(!bounds.includes(pos->first.begin));
}
}
// Return the current position which should be the upper_bound for bounds
RANGE_ASSERT(pos == upper_bound_impl(bounds));
return range<ImplIterator>(lower, pos);
}
template <typename TouchOp>
ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower, const TouchOp &touch_mapped_value) {
// Logic assumes we are starting at a valid lower bound
RANGE_ASSERT(!at_impl_end(lower));
RANGE_ASSERT(lower == lower_bound_impl(bounds));
// Trim/infill the beginning if needed
auto current = lower;
const auto first_begin = current->first.begin;
if (bounds.begin > first_begin) {
// Preserve the portion of lower bound excluded from bounds
if (current->first.end <= bounds.end) {
// If current ends within the erased bound we can discard the the upper portion of current
current = split_impl(current, bounds.begin, split_op_keep_lower());
} else {
// Keep the upper portion of current for the later split below
current = split_impl(current, bounds.begin, split_op_keep_both());
}
// Exclude the preserved portion
++current;
RANGE_ASSERT(current == lower_bound_impl(bounds));
}
// Loop over completely contained entries and erase them
while (!at_impl_end(current) && (current->first.end <= bounds.end)) {
if (touch_mapped_value(current->second)) {
current = impl_erase(current);
} else {
++current;
}
}
if (!at_impl_end(current) && current->first.includes(bounds.end)) {
// last entry extends past the end of the bounds range, snip to only erase the bounded section
current = split_impl(current, bounds.end, split_op_keep_both());
// test if lower_bound (eventually) computed in split_impl is not empty.
// If it is not empty, then it contains values inside the bounds range,
// they need to be touched
if ((current->first & bounds).non_empty()) {
if (touch_mapped_value(current->second)) {
current = impl_erase(current);
} else {
// make current point to upper bound
++current;
}
}
}
RANGE_ASSERT(current == upper_bound_impl(bounds));
return current;
}
template <typename ValueType, typename WrappedIterator_>
struct iterator_impl {
public:
friend class range_map;
using WrappedIterator = WrappedIterator_;
private:
WrappedIterator pos_;
// Create an iterator at a specific internal state -- only from the parent container
iterator_impl(const WrappedIterator &pos) : pos_(pos) {}
public:
iterator_impl() : iterator_impl(WrappedIterator()){};
iterator_impl(const iterator_impl &other) : pos_(other.pos_){};
iterator_impl &operator=(const iterator_impl &rhs) {
pos_ = rhs.pos_;
return *this;
}
inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; }
inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; }
ValueType &operator*() const { return *pos_; }
ValueType *operator->() const { return &*pos_; }
iterator_impl &operator++() {
++pos_;
return *this;
}
iterator_impl &operator--() {
--pos_;
return *this;
}
// To allow for iterator -> const_iterator construction
// NOTE: while it breaks strict encapsulation, it does so less than friend
const WrappedIterator &get_pos() const { return pos_; };
};
public:
using iterator = iterator_impl<value_type, ImplIterator>;
// The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
class const_iterator : public iterator_impl<const value_type, ImplConstIterator> {
using Base = iterator_impl<const value_type, ImplConstIterator>;
friend range_map;
public:
const_iterator &operator=(const const_iterator &other) {
Base::operator=(other);
return *this;
}
const_iterator(const const_iterator &other) : Base(other){};
const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {}
const_iterator() : Base() {}
private:
const_iterator(const ImplConstIterator &pos) : Base(pos) {}
};
protected:
inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); }
inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); }
inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); }
template <typename That, typename Iterator>
static bool is_contiguous_impl(That *const that, const key_type &range, const Iterator &lower) {
// Search range or intersection is empty
if (lower == that->impl_end() || lower->first.excludes(range)) return false;
if (lower->first.includes(range)) {
return true; // there is one entry that contains the whole key range
}
bool contiguous = true;
for (auto pos = lower; contiguous && pos != that->impl_end() && range.includes(pos->first.begin); ++pos) {
// if current doesn't cover the rest of the key range, check to see that the next is extant and abuts
if (pos->first.end < range.end) {
auto next = pos;
++next;
contiguous = (next != that->impl_end()) && pos->first.is_prior_to(next->first);
}
}
return contiguous;
}
public:
iterator end() { return iterator(impl_map_.end()); } // policy and bounds don't matter for end
const_iterator end() const { return const_iterator(impl_map_.end()); } // policy and bounds don't matter for end
iterator begin() { return iterator(impl_map_.begin()); } // with default policy, and thus no bounds
const_iterator begin() const { return const_iterator(impl_map_.begin()); } // with default policy, and thus no bounds
const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); } // with default policy, and thus no bounds
const_iterator cend() const { return const_iterator(impl_map_.cend()); } // with default policy, and thus no bounds
iterator erase(const iterator &pos) {
RANGE_ASSERT(!at_end(pos));
return iterator(impl_erase(pos.pos_));
}
iterator erase(range<iterator> bounds) {
auto current = bounds.begin.pos_;
while (current != bounds.end.pos_) {
RANGE_ASSERT(!at_impl_end(current));
current = impl_map_.erase(current);
}
RANGE_ASSERT(current == bounds.end.pos_);
return current;
}
iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); }
// Before trying to erase a range, function touch_mapped_value is called on the mapped value.
// touch_mapped_value is allowed to have it's parameter type to be non const reference.
// If it returns true, regular erase will occur.
// Else, range is kept.
template <typename TouchOp>
iterator erase_range_or_touch(const key_type &bounds, const TouchOp &touch_mapped_value) {
auto lower = lower_bound_impl(bounds);
if (at_impl_end(lower) || !bounds.intersects(lower->first)) {
// There is nothing in this range lower bound is above bound
return iterator(lower);
}
auto next = impl_erase_range(bounds, lower, touch_mapped_value);
return iterator(next);
}
iterator erase_range(const key_type &bounds) {
return erase_range_or_touch(bounds, [](const auto &) { return true; });
}
void clear() { impl_map_.clear(); }
iterator find(const key_type &key) { return iterator(impl_map_.find(key)); }
const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); }
iterator find(const index_type &index) {
auto lower = lower_bound(range<index_type>(index, index + 1));
if (!at_end(lower) && lower->first.includes(index)) {
return lower;
}
return end();
}
const_iterator find(const index_type &index) const {
auto lower = lower_bound(key_type(index, index + 1));
if (!at_end(lower) && lower->first.includes(index)) {
return lower;
}
return end();
}
iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); }
const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); }
iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); }
const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); }
range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; }
range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; }
range<const_iterator> bounds(const key_type &key) const { return cbounds(key); }
using insert_pair = std::pair<iterator, bool>;
// This is traditional no replacement insert.
insert_pair insert(const value_type &value) {
const auto &key = value.first;
if (!key.non_empty()) {
// It's an invalid key, early bail pointing to end
return std::make_pair(end(), false);
}
// Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
// we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
auto lower = lower_bound_impl(key);
if (at_impl_end(lower) || !lower->first.intersects(key)) {
// range is not even partially overlapped, and lower is strictly > than key
auto impl_insert = impl_map_.emplace_hint(lower, value);
// auto impl_insert = impl_map_.emplace(value);
iterator wrap_it(impl_insert);
return std::make_pair(wrap_it, true);
}
// We don't replace
return std::make_pair(iterator(lower), false);
};
iterator insert(const_iterator hint, const value_type &value) {
bool hint_open;
ImplConstIterator impl_next = hint.pos_;
if (impl_map_.empty()) {
hint_open = true;
} else if (impl_next == impl_map_.cbegin()) {
hint_open = value.first.strictly_less(impl_next->first);
} else if (impl_next == impl_map_.cend()) {
auto impl_prev = impl_next;
--impl_prev;
hint_open = value.first.strictly_greater(impl_prev->first);
} else {
auto impl_prev = impl_next;
--impl_prev;
hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first);
}
if (!hint_open) {
// Hint was unhelpful, fall back to the non-hinted version
auto plain_insert = insert(value);
return plain_insert.first;
}
auto impl_insert = impl_map_.insert(impl_next, value);
return iterator(impl_insert);
}
// Try to insert value. If insertion failed, recursively split union of retrieved stored range with inserted range.
// Split at intersection of stored range and inserted range.
// Range intersection is merged using merge_op.
// Ranges before and after this intersection are recursively inserted.
// merge_pos should have this signature: (mapped_type& current_value, const mapped_type& new_value) -> void
template <typename MergeOp>
iterator split_and_merge_insert(const value_type &value, const MergeOp &merge_op) {
if (!value.first.non_empty()) {
return end();
}
if (auto [it, was_inserted] = insert(value); !was_inserted) {
// insert failed, so at least one stored range intersects with new range
const RangeKey it_range = it->first;
const auto &[inserted_range, insert_mapped_value] = value;
const RangeKey intersection = it_range & inserted_range;
// if intersection is empty or invalid, insertion should have succeeded
assert(intersection.non_empty());
const iterator split_point_it = sparse_container::split(it, *this, intersection);
// given it->first and instersection do intersect, split should have succeeded
RANGE_ASSERT(split_point_it != end());
// merge values at inserted range and retrieved range intersection
merge_op(split_point_it->second, insert_mapped_value);
// Recursively insert ranges before and after intersection
const RangeKey range_after_intersection(intersection.end, std::max(it_range.end, inserted_range.end));
const RangeKey range_before_intersection(std::min(it_range.begin, inserted_range.begin), intersection.begin);
split_and_merge_insert({range_after_intersection, insert_mapped_value}, merge_op);
if (range_before_intersection.non_empty()) {
return split_and_merge_insert({range_before_intersection, insert_mapped_value}, merge_op);
} else {
return split_point_it;
}
} else {
return it;
}
}
template <typename SplitOp>
iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
auto split_it = split_impl(whole_it.pos_, index, split_op);
return iterator(split_it);
}
// The overwrite hint here is lower.... and if it's not right... this fails
template <typename Value>
iterator overwrite_range(const iterator &lower, Value &&value) {
// We're not robust to a bad hint, so detect it with extreme prejudice
// TODO: Add bad hint test to make this robust...
auto lower_impl = lower.pos_;
auto insert_hint = lower_impl;
if (!at_impl_end(lower_impl)) {
// If we're at end (and the hint is good, there's nothing to erase
RANGE_ASSERT(lower == lower_bound(value.first));
insert_hint = impl_erase_range(value.first, lower_impl, [](const auto &) { return true; });
}
auto inserted = impl_insert(insert_hint, std::forward<Value>(value));
return iterator(inserted);
}
template <typename Value>
iterator overwrite_range(Value &&value) {
auto lower = lower_bound(value.first);
return overwrite_range(lower, value);
}
bool empty() const { return impl_map_.empty(); }
size_type size() const { return impl_map_.size(); }
// For configuration/debug use // Use with caution...
ImplMap &get_implementation_map() { return impl_map_; }
const ImplMap &get_implementation_map() const { return impl_map_; }
};
template <typename Container>
using const_correct_iterator = decltype(std::declval<Container>().begin());
// The an array based small ordered map for range keys for use as the range map "ImplMap" as an alternate to std::map
//
// Assumes RangeKey::index_type is unsigned (TBD is it useful to generalize to unsigned?)
// Assumes RangeKey implements begin, end, < and (TBD) from template range above
template <typename Key, typename T, typename RangeKey = range<Key>, size_t N = 64, typename SmallIndex = uint8_t>
class small_range_map {
using SmallRange = range<SmallIndex>;
public:
using mapped_type = T;
using key_type = RangeKey;
using value_type = std::pair<const key_type, mapped_type>;
using index_type = typename key_type::index_type;
using size_type = SmallIndex;
template <typename Map_, typename Value_>
struct IteratorImpl {
public:
using Map = Map_;
using Value = Value_;
friend Map;
Value *operator->() const { return map_->get_value(pos_); }
Value &operator*() const { return *(map_->get_value(pos_)); }
IteratorImpl &operator++() {
pos_ = map_->next_range(pos_);
return *this;
}
IteratorImpl &operator--() {
pos_ = map_->prev_range(pos_);
return *this;
}
IteratorImpl &operator=(const IteratorImpl &other) {
map_ = other.map_;
pos_ = other.pos_;
return *this;
}
bool operator==(const IteratorImpl &other) const {
if (at_end() && other.at_end()) {
return true; // all ends are equal
}
return (map_ == other.map_) && (pos_ == other.pos_);
}
bool operator!=(const IteratorImpl &other) const { return !(*this == other); }
// At end()
IteratorImpl() : map_(nullptr), pos_(N) {}
IteratorImpl(const IteratorImpl &other) : map_(other.map_), pos_(other.pos_) {}
// Raw getters to allow for const_iterator conversion below
Map *get_map() const { return map_; }
SmallIndex get_pos() const { return pos_; }
bool at_end() const { return (map_ == nullptr) || (pos_ >= map_->get_limit()); }
protected:
IteratorImpl(Map *map, SmallIndex pos) : map_(map), pos_(pos) {}
private:
Map *map_;
SmallIndex pos_; // the begin of the current small_range
};
using iterator = IteratorImpl<small_range_map, value_type>;
// The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
class const_iterator : public IteratorImpl<const small_range_map, const value_type> {
using Base = IteratorImpl<const small_range_map, const value_type>;
friend small_range_map;
public:
const_iterator(const iterator &it) : Base(it.get_map(), it.get_pos()) {}
const_iterator() : Base() {}
private:
const_iterator(const small_range_map *map, SmallIndex pos) : Base(map, pos) {}
};
iterator begin() {
// Either ranges of 0 is valid and begin is 0 and begin *or* it's invalid an points to the first valid range (or end)
return iterator(this, ranges_[0].begin);
}
const_iterator cbegin() const { return const_iterator(this, ranges_[0].begin); }
const_iterator begin() const { return cbegin(); }
iterator end() { return iterator(); }
const_iterator cend() const { return const_iterator(); }
const_iterator end() const { return cend(); }
void clear() {
const SmallRange clear_range(limit_, 0);
for (SmallIndex i = 0; i < limit_; ++i) {
auto &range = ranges_[i];
if (range.begin == i) {
// Clean up the backing store
destruct_value(i);
}
range = clear_range;
}
size_ = 0;
}
// Find entry with an exact key match (uncommon use case)
iterator find(const key_type &key) {
RANGE_ASSERT(in_bounds(key));
if (key.begin < limit_) {
const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
const auto &range = ranges_[small_begin];
if (range.begin == small_begin) {
const auto small_end = static_cast<SmallIndex>(key.end);
if (range.end == small_end) return iterator(this, small_begin);
}
}
return end();
}
const_iterator find(const key_type &key) const {
RANGE_ASSERT(in_bounds(key));
if (key.begin < limit_) {
const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
const auto &range = ranges_[small_begin];
if (range.begin == small_begin) {
const auto small_end = static_cast<SmallIndex>(key.end);
if (range.end == small_end) return const_iterator(this, small_begin);
}
}
return end();
}
iterator find(const index_type &index) {
if (index < get_limit()) {
const SmallIndex small_index = static_cast<SmallIndex>(index);
const auto &range = ranges_[small_index];
if (range.valid()) {
return iterator(this, range.begin);
}
}
return end();
}
const_iterator find(const index_type &index) const {
if (index < get_limit()) {
const SmallIndex small_index = static_cast<SmallIndex>(index);
const auto &range = ranges_[small_index];
if (range.valid()) {
return const_iterator(this, range.begin);
}
}
return end();
}
size_type size() const { return size_; }
bool empty() const { return 0 == size_; }
iterator erase(const_iterator pos) {
RANGE_ASSERT(pos.map_ == this);
return erase_impl(pos.get_pos());
}
iterator erase(iterator pos) {
RANGE_ASSERT(pos.map_ == this);
return erase_impl(pos.get_pos());
}
// Must be called with rvalue or lvalue of value_type
template <typename Value>
iterator emplace(Value &&value) {
const auto &key = value.first;
RANGE_ASSERT(in_bounds(key));
if (key.begin >= limit_) return end(); // Invalid key (end is checked in "is_open")
const SmallRange range(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
if (is_open(key)) {
// This needs to be the fast path, but I don't see how we can avoid the sanity checks above
for (auto i = range.begin; i < range.end; ++i) {
ranges_[i] = range;
}
// Update the next information for the previous unused slots (as stored in begin invalidly)
auto prev = range.begin;
while (prev > 0) {
--prev;
if (ranges_[prev].valid()) break;
ranges_[prev].begin = range.begin;
}
// Placement new into the storage interpreted as Value
construct_value(range.begin, value_type(std::forward<Value>(value)));
auto next = range.end;
// update the previous range information for the next unsed slots (as stored in end invalidly)
while (next < limit_) {
// End is exclusive... increment *after* update
if (ranges_[next].valid()) break;
ranges_[next].end = range.end;
++next;
}
return iterator(this, range.begin);
} else {
// Can't insert into occupied ranges.
// if ranges_[key.begin] is valid then this is the collision (starting at .begin
// if it's invalid .begin points to the overlapping entry from is_open (or end if key was out of range)
return iterator(this, ranges_[range.begin].begin);
}
}
// As hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
template <typename Value>
iterator emplace_hint(const const_iterator &hint, Value &&value) {
// We have direct access so we can drop the hint
return emplace(std::forward<Value>(value));
}
template <typename Value>
iterator emplace_hint(const iterator &hint, Value &&value) {
// We have direct access so we can drop the hint
return emplace(std::forward<Value>(value));
}
// Again, hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
iterator insert(const const_iterator &hint, const value_type &value) { return emplace(value); }
iterator insert(const iterator &hint, const value_type &value) { return emplace(value); }
std::pair<iterator, bool> insert(const value_type &value) {
const auto &key = value.first;
RANGE_ASSERT(in_bounds(key));
if (key.begin >= limit_) return std::make_pair(end(), false); // Invalid key, not inserted.
if (is_open(key)) {
return std::make_pair(emplace(value), true);
}
// If invalid we point to the subsequent range that collided, if valid begin is the start of the valid range
const auto &collision_begin = ranges_[key.begin].begin;
RANGE_ASSERT(ranges_[collision_begin].valid());
return std::make_pair(iterator(this, collision_begin), false);
}
template <typename SplitOp>
iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
if (!whole_it->first.includes(index)) return whole_it; // If we don't have a valid split point, just return the iterator
const auto &key = whole_it->first;
const auto small_key = make_small_range(key);
key_type lower_key(key.begin, index);
if (lower_key.empty() && SplitOp::keep_upper()) {
return whole_it; // this is a noop we're keeping the upper half which is the same as whole_it;
}
if ((lower_key.empty() && !SplitOp::keep_upper()) || !(SplitOp::keep_lower() || SplitOp::keep_upper())) {
// This effectively an erase... so erase.
return erase(whole_it);
}
// Upper range cannot be empty (because the split point would be included...
const auto small_lower_key = make_small_range(lower_key);
const SmallRange small_upper_key{small_lower_key.end, small_key.end};
if (SplitOp::keep_upper()) {
// Note: create the upper section before the lower, as processing the lower may erase it
RANGE_ASSERT(!small_upper_key.empty());
const key_type upper_key{lower_key.end, key.end};
if (SplitOp::keep_lower()) {
construct_value(small_upper_key.begin, std::make_pair(upper_key, get_value(small_key.begin)->second));
} else {
// If we aren't keeping the lower, move instead of copy
construct_value(small_upper_key.begin, std::make_pair(upper_key, std::move(get_value(small_key.begin)->second)));
}
for (auto i = small_upper_key.begin; i < small_upper_key.end; ++i) {
ranges_[i] = small_upper_key;
}
} else {
// rewrite "end" to the next valid range (or end)
RANGE_ASSERT(SplitOp::keep_lower());
auto next = next_range(small_key.begin);
rerange(small_upper_key, SmallRange(next, small_lower_key.end));
// for any already invalid, we just rewrite the end.
rerange_end(small_upper_key.end, next, small_lower_key.end);
}
SmallIndex split_index;
if (SplitOp::keep_lower()) {
resize_value(small_key.begin, lower_key.end);
rerange_end(small_lower_key.begin, small_lower_key.end, small_lower_key.end);
split_index = small_lower_key.begin;
} else {
// Remove lower and rewrite empty space
RANGE_ASSERT(SplitOp::keep_upper());
destruct_value(small_key.begin);
// Rewrite prior empty space (if any)
auto prev = prev_range(small_key.begin);
SmallIndex limit = small_lower_key.end;
SmallIndex start = 0;
if (small_key.begin != 0) {
const auto &prev_start = ranges_[prev];
if (prev_start.valid()) {
// If there is a previous used range, the empty space starts after it.
start = prev_start.end;
} else {
RANGE_ASSERT(prev == 0); // prev_range only returns invalid ranges "off the front"
start = prev;
}
// for the section *prior* to key begin only need to rewrite the "invalid" begin (i.e. next "in use" begin)
rerange_begin(start, small_lower_key.begin, limit);
}
// for the section being erased rewrite the invalid range reflecting the empty space
rerange(small_lower_key, SmallRange(limit, start));
split_index = small_lower_key.end;
}
return iterator(this, split_index);
}
// For the value.first range rewrite the range...
template <typename Value>
iterator overwrite_range(Value &&value) {
const auto &key = value.first;
// Small map only has a restricted range supported
RANGE_ASSERT(in_bounds(key));
if (key.end > get_limit()) {
return end();
}
const auto small_key = make_small_range(key);
clear_out_range(small_key, /* valid clear range */ true);
construct_value(small_key.begin, std::forward<Value>(value));
return iterator(this, small_key.begin);
}
// We don't need a hint...
template <typename Value>
iterator overwrite_range(const iterator &hint, Value &&value) {
return overwrite_range(std::forward<Value>(value));
}
// For the range erase all contents within range, trimming any overlapping ranges
iterator erase_range(const key_type &range) {
// Small map only has a restricted range supported
RANGE_ASSERT(in_bounds(range));
if (range.end > get_limit() || range.empty()) {
return end();
}
const auto empty = clear_out_range(make_small_range(range), /* valid clear range */ false);
return iterator(this, empty.end);
}
template <typename Iterator>
iterator erase(const Iterator &first, const Iterator &last) {
RANGE_ASSERT(this == first.map_);
RANGE_ASSERT(this == last.map_);
auto first_pos = !first.at_end() ? first.pos_ : limit_;
auto last_pos = !last.at_end() ? last.pos_ : limit_;
RANGE_ASSERT(first_pos <= last_pos);
const SmallRange clear_me(first_pos, last_pos);
if (!clear_me.empty()) {
const SmallRange empty_range(find_empty_left(clear_me), last_pos);
clear_and_set_range(empty_range.begin, empty_range.end, make_invalid_range(empty_range));
}
return iterator(this, last_pos);
}
iterator lower_bound(const key_type &key) { return iterator(this, lower_bound_impl(this, key)); }
const_iterator lower_bound(const key_type &key) const { return const_iterator(this, lower_bound_impl(this, key)); }
iterator upper_bound(const key_type &key) { return iterator(this, upper_bound_impl(this, key)); }
const_iterator upper_bound(const key_type &key) const { return const_iterator(this, upper_bound_impl(this, key)); }
small_range_map(index_type limit = N) : size_(0), limit_(static_cast<SmallIndex>(limit)) {
RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
init_range();
}
// Only valid for empty maps
void set_limit(size_t limit) {
RANGE_ASSERT(size_ == 0);
RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
limit_ = static_cast<SmallIndex>(limit);
init_range();
}
inline index_type get_limit() const { return static_cast<index_type>(limit_); }
private:
inline bool in_bounds(index_type index) const { return index < get_limit(); }
inline bool in_bounds(const RangeKey &key) const { return key.begin < get_limit() && key.end <= get_limit(); }
inline SmallRange make_small_range(const RangeKey &key) const {
RANGE_ASSERT(in_bounds(key));
return SmallRange(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
}
inline SmallRange make_invalid_range(const SmallRange &key) const { return SmallRange(key.end, key.begin); }
bool is_open(const key_type &key) const {
// Remebering that invalid range.begin is the beginning the next used range.
const auto small_key = make_small_range(key);
const auto &range = ranges_[small_key.begin];
return range.invalid() && small_key.end <= range.begin;
}
// Only call this with a valid beginning index
iterator erase_impl(SmallIndex erase_index) {
RANGE_ASSERT(erase_index == ranges_[erase_index].begin);
auto &range = ranges_[erase_index];
destruct_value(erase_index);
// Need to update the ranges to accommodate the erasure
SmallIndex prev = 0; // This is correct for the case erase_index is 0....
if (erase_index != 0) {
prev = prev_range(erase_index);
// This works if prev is valid or invalid, because the invalid end will be either 0 (and correct) or the end of the
// prior valid range and the valid end will be the end of the previous range (and thus correct)
prev = ranges_[prev].end;
}
auto next = next_range(erase_index);
// We have to be careful of next == limit_...
if (next < limit_) {
next = ranges_[next].begin;
}
// Rewrite both adjoining and newly empty entries
SmallRange infill(next, prev);
for (auto i = prev; i < next; ++i) {
ranges_[i] = infill;
}
return iterator(this, next);
}
// This implements the "range lower bound logic" directly on the ranges
template <typename Map>
static SmallIndex lower_bound_impl(Map *const that, const key_type &key) {
if (!that->in_bounds(key.begin)) return that->limit_;
// If range is invalid, then begin points to the next valid (or end) with must be the lower bound
// If range is valid, the begin points to a the lowest range that interects key
const auto lb = that->ranges_[static_cast<SmallIndex>(key.begin)].begin;
return lb;
}
template <typename Map>
static SmallIndex upper_bound_impl(Map *that, const key_type &key) {
const auto limit = that->get_limit();
if (key.end >= limit) return that->limit_; // at end
const auto &end_range = that->ranges_[key.end];
// If range is invalid, then begin points to the next valid (or end) with must be the upper bound (key < range because
auto ub = end_range.begin;
// If range is valid, the begin points to a range that may interects key, which is be upper iff range.begin == key.end
if (end_range.valid() && (key.end > end_range.begin)) {
// the ub candidate *intersects* the key, so we have to go to the next range.
ub = that->next_range(end_range.begin);
}
return ub;
}
// This is and inclusive "inuse", the entry itself
SmallIndex find_inuse_right(const SmallRange &range) const {
if (range.end >= limit_) return limit_;
// if range is valid, begin is the first use (== range.end), else it's the first used after the invalid range
return ranges_[range.end].begin;
}
// This is an exclusive "inuse", the end of the previous range
SmallIndex find_inuse_left(const SmallRange &range) const {
if (range.begin == 0) return 0;
// if range is valid, end is the end of the first use (== range.begin), else it's the end of the in use range before the
// invalid range
return ranges_[range.begin - 1].end;
}
SmallRange find_empty(const SmallRange &range) const { return SmallRange(find_inuse_left(range), find_inuse_right(range)); }
// Clear out the given range, trimming as needed. The clear_range can be set as valid or invalid
SmallRange clear_out_range(const SmallRange &clear_range, bool valid_clear_range) {
// By copy to avoid reranging side affect
auto first_range = ranges_[clear_range.begin];
// fast path for matching ranges...
if (first_range == clear_range) {
// clobber the existing value
destruct_value(clear_range.begin);
if (valid_clear_range) {
return clear_range; // This is the overwrite fastpath for matching range
} else {
const auto empty_range = find_empty(clear_range);
rerange(empty_range, make_invalid_range(empty_range));
return empty_range;
}
}
SmallRange empty_left(clear_range.begin, clear_range.begin);
SmallRange empty_right(clear_range.end, clear_range.end);
// The clearout is entirely within a single extant range, trim and set.
if (first_range.valid() && first_range.includes(clear_range)) {
// Shuffle around first_range, three cases...
if (first_range.begin < clear_range.begin) {
// We have a lower trimmed area to preserve.
resize_value(first_range.begin, clear_range.begin);
rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
if (first_range.end > clear_range.end) {
// And an upper portion of first that needs to copy from the lower
construct_value(clear_range.end, std::make_pair(key_type(clear_range.end, first_range.end),
get_value(first_range.begin)->second));
rerange_begin(clear_range.end, first_range.end, clear_range.end);
} else {
RANGE_ASSERT(first_range.end == clear_range.end);
empty_right.end = find_inuse_right(clear_range);
}
} else {
RANGE_ASSERT(first_range.end > clear_range.end);
RANGE_ASSERT(first_range.begin == clear_range.begin);
// Only an upper trimmed area to preserve, so move the first range value to the upper trim zone.
resize_value_right(first_range, clear_range.end);
rerange_begin(clear_range.end, first_range.end, clear_range.end);
empty_left.begin = find_inuse_left(clear_range);
}
} else {
if (first_range.valid()) {
if (first_range.begin < clear_range.begin) {
// Trim left.
RANGE_ASSERT(first_range.end < clear_range.end); // we handled the "includes" case above
resize_value(first_range.begin, clear_range.begin);
rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
}
} else {
empty_left.begin = find_inuse_left(clear_range);
}
// rewrite excluded portion of final range
if (clear_range.end < limit_) {
const auto &last_range = ranges_[clear_range.end];
if (last_range.valid()) {
// for a valid adjoining range we don't have to change empty_right, but we may have to trim
if (last_range.begin < clear_range.end) {
resize_value_right(last_range, clear_range.end);
rerange_begin(clear_range.end, last_range.end, clear_range.end);
}
} else {
// Note: invalid ranges "begin" and the next inuse range (or end)
empty_right.end = last_range.begin;
}
}
}
const SmallRange empty(empty_left.begin, empty_right.end);
// Clear out the contents
for (auto i = empty.begin; i < empty.end; ++i) {
const auto &range = ranges_[i];
if (range.begin == i) {
RANGE_ASSERT(range.valid());
// Clean up the backing store
destruct_value(i);
}
}
// Rewrite the ranges
if (valid_clear_range) {
rerange_begin(empty_left.begin, empty_left.end, clear_range.begin);
rerange(clear_range, clear_range);
rerange_end(empty_right.begin, empty_right.end, clear_range.end);
} else {
rerange(empty, make_invalid_range(empty));
}
RANGE_ASSERT(empty.end == limit_ || ranges_[empty.end].valid());
RANGE_ASSERT(empty.begin == 0 || ranges_[empty.begin - 1].valid());
return empty;
}
void init_range() {
const SmallRange init_val(limit_, 0);
for (SmallIndex i = 0; i < limit_; ++i) {
ranges_[i] = init_val;
in_use_[i] = false;
}
}
value_type *get_value(SmallIndex index) {
RANGE_ASSERT(index < limit_); // Must be inbounds
return reinterpret_cast<value_type *>(&(backing_store_[index]));
}
const value_type *get_value(SmallIndex index) const {
RANGE_ASSERT(index < limit_); // Must be inbounds
RANGE_ASSERT(index == ranges_[index].begin); // Must be the record at begin
return reinterpret_cast<const value_type *>(&(backing_store_[index]));
}
template <typename Value>
void construct_value(SmallIndex index, Value &&value) {
RANGE_ASSERT(!in_use_[index]);
new (get_value(index)) value_type(std::forward<Value>(value));
in_use_[index] = true;
++size_;
}
void destruct_value(SmallIndex index) {
// there are times when the range and destruct logic clash... allow for double attempted deletes
if (in_use_[index]) {
RANGE_ASSERT(size_ > 0);
--size_;
get_value(index)->~value_type();
in_use_[index] = false;
}
}
// No need to move around the value, when just the key is moving
// Use the destructor/placement new just in case of a complex key with range's semantics
// Note: Call resize before rewriting ranges_
void resize_value(SmallIndex current_begin, index_type new_end) {
// Destroy and rewrite the key in place
RANGE_ASSERT(ranges_[current_begin].end != new_end);
key_type new_key(current_begin, new_end);
key_type *key = const_cast<key_type *>(&get_value(current_begin)->first);
key->~key_type();
new (key) key_type(new_key);
}
inline void rerange_end(SmallIndex old_begin, SmallIndex new_end, SmallIndex new_end_value) {
for (auto i = old_begin; i < new_end; ++i) {
ranges_[i].end = new_end_value;
}
}
inline void rerange_begin(SmallIndex new_begin, SmallIndex old_end, SmallIndex new_begin_value) {
for (auto i = new_begin; i < old_end; ++i) {
ranges_[i].begin = new_begin_value;
}
}
inline void rerange(const SmallRange &range, const SmallRange &range_value) {
for (auto i = range.begin; i < range.end; ++i) {
ranges_[i] = range_value;
}
}
// for resize right need both begin and end...
void resize_value_right(const SmallRange ¤t_range, index_type new_begin) {
// Use move semantics for (potentially) heavyweight mapped_type's
RANGE_ASSERT(current_range.begin != new_begin);
// Move second from it's current location and update the first at the same time
construct_value(static_cast<SmallIndex>(new_begin),
std::make_pair(key_type(new_begin, current_range.end), std::move(get_value(current_range.begin)->second)));
destruct_value(current_range.begin);
}
// Now we can walk a range and rewrite it cleaning up any live contents
void clear_and_set_range(SmallIndex rewrite_begin, SmallIndex rewrite_end, const SmallRange &new_range) {
for (auto i = rewrite_begin; i < rewrite_end; ++i) {
auto &range = ranges_[i];
if (i == range.begin) {
destruct_value(i);
}
range = new_range;
}
}
SmallIndex next_range(SmallIndex current) const {
SmallIndex next = ranges_[current].end;
// If the next range is invalid, skip to the next range, which *must* be (or be end)
if ((next < limit_) && ranges_[next].invalid()) {
// For invalid ranges, begin is the beginning of the next range
next = ranges_[next].begin;
RANGE_ASSERT(next == limit_ || ranges_[next].valid());
}
return next;
}
SmallIndex prev_range(SmallIndex current) const {
if (current == 0) {
return 0;
}
auto prev = current - 1;
if (ranges_[prev].valid()) {
// For valid ranges, the range denoted by begin (as that's where the backing store keeps values
prev = ranges_[prev].begin;
} else if (prev != 0) {
// Invalid but not off the front, we can recur (only once) from the end of the prev range to get the answer
// For invalid ranges this is the end of the previous range
prev = prev_range(ranges_[prev].end);
}
return prev;
}
friend iterator;
friend const_iterator;
// Stores range boundaries only
// open ranges, stored as inverted, invalid range (begining of next, end of prev]
// inuse(begin, end) for all entries on (begin, end]
// Used for placement new of T for each range begin.
struct alignas(alignof(value_type)) BackingStore {
uint8_t data[sizeof(value_type)];
};
SmallIndex size_;
SmallIndex limit_;
std::array<SmallRange, N> ranges_;
std::array<BackingStore, N> backing_store_;
std::array<bool, N> in_use_;
};
// Forward index iterator, tracking an index value and the appropos lower bound
// returns an index_type, lower_bound pair. Supports ++, offset, and seek affecting the index,
// lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced
// iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1)
//
// Must be explicitly invalidated when the underlying map is changed.
template <typename Map>
class cached_lower_bound_impl {
using plain_map_type = typename std::remove_const<Map>::type; // Allow instatiation with const or non-const Map
public:
using iterator = const_correct_iterator<Map>;
using key_type = typename plain_map_type::key_type;
using mapped_type = typename plain_map_type::mapped_type;
// Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state
// and we don't want and caller altering internal state.
using index_type = typename Map::index_type;
struct value_type {
const index_type &index;
const iterator &lower_bound;
const bool &valid;
value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_)
: index(index_), lower_bound(lower_bound_), valid(valid_) {}
};
private:
Map *const map_;
const iterator end_;
value_type pos_;
index_type index_;
iterator lower_bound_;
bool valid_;
bool is_valid() const { return includes(index_); }
// Allow reuse of a type with const semantics
void set_value(const index_type &index, const iterator &it) {
RANGE_ASSERT(it == lower_bound(index));
index_ = index;
lower_bound_ = it;
valid_ = is_valid();
}
void update(const index_type &index) {
RANGE_ASSERT(lower_bound_ == lower_bound(index));
index_ = index;
valid_ = is_valid();
}
inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); }
inline bool at_end(const iterator &it) const { return it == end_; }
bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); }
public:
// The cached lower bound knows the parent map, and thus can tell us this...
inline bool at_end() const { return at_end(lower_bound_); }
// includes(index) is a convenience function to test if the index would be in the currently cached lower bound
bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); }
// The return is const because we are sharing the internal state directly.
const value_type &operator*() const { return pos_; }
const value_type *operator->() const { return &pos_; }
// Advance the cached location by 1
cached_lower_bound_impl &operator++() {
const index_type next = index_ + 1;
if (is_lower_than(next, lower_bound_)) {
update(next);
} else {
// if we're past pos_->second, next *must* be the new lower bound.
// NOTE: that next can't be past end, so lower_bound_ isn't end.
auto next_it = lower_bound_;
++next_it;
set_value(next, next_it);
// However we *must* not be past next.
RANGE_ASSERT(is_lower_than(next, next_it));
}
return *this;
}
// seek(index) updates lower_bound for index, updating lower_bound_ as needed.
cached_lower_bound_impl &seek(const index_type &seek_to) {
// Optimize seeking to forward
if (index_ == seek_to) {
// seek to self is a NOOP. To reset lower bound after a map change, use invalidate
} else if (index_ < seek_to) {
// See if the current or next ranges are the appropriate lower_bound... should be a common use case
if (is_lower_than(seek_to, lower_bound_)) {
// lower_bound_ is still the correct lower bound
update(seek_to);
} else {
// Look to see if the next range is the new lower_bound (and we aren't at end)
auto next_it = lower_bound_;
++next_it;
if (is_lower_than(seek_to, next_it)) {
// next_it is the correct new lower bound
set_value(seek_to, next_it);
} else {
// We don't know where we are... and we aren't going to walk the tree looking for seek_to.
set_value(seek_to, lower_bound(seek_to));
}
}
} else {
// General case... this is += so we're not implmenting optimized negative offset logic
set_value(seek_to, lower_bound(seek_to));
}
return *this;
}
// Advance the cached location by offset.
cached_lower_bound_impl &offset(const index_type &offset) {
const index_type next = index_ + offset;
return seek(next);
}
// invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations
// Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_
cached_lower_bound_impl &invalidate(index_type index) {
set_value(index, lower_bound(index));
return *this;
}
// For times when the application knows what it's done to the underlying map... (with assert in set_value)
cached_lower_bound_impl &invalidate(const iterator &hint, index_type index) {
set_value(index, hint);
return *this;
}
cached_lower_bound_impl &invalidate() { return invalidate(index_); }
// Allow a hint for a *valid* lower bound for current index
// TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...)
cached_lower_bound_impl &invalidate(const iterator &hint) {
if ((hint != end_) && hint->first.includes(index_)) {
auto index = index_; // by copy set modifies in place
set_value(index, hint);
} else {
invalidate();
}
return *this;
}
// The offset in index type to the next change (the end of the current range, or the transition from invalid to
// valid. If invalid and at_end, returns index_type(0)
index_type distance_to_edge() {
if (valid_) {
// Distance to edge of
return lower_bound_->first.end - index_;
} else if (at_end()) {
return index_type(0);
} else {
return lower_bound_->first.begin - index_;
}
}
Map &map() { return *map_; }
const Map &map() const { return *map_; }
// Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use.
cached_lower_bound_impl()
: map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {}
cached_lower_bound_impl(Map &map, const index_type &index)
: map_(&map),
end_(map.end()),
pos_(index_, lower_bound_, valid_),
index_(index),
lower_bound_(lower_bound(index)),
valid_(is_valid()) {}
};
template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type>
const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) {
if (clb->valid) {
return clb->lower_bound->second;
}
return default_value;
}
// Split a range into pieces bound by the intersection of the iterator's range and the supplied range
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range) {
assert(in != map.end()); // Not designed for use with invalid iterators...
const auto in_range = in->first;
const auto split_range = in_range & range;
if (split_range.empty()) return map.end();
auto pos = in;
if (split_range.begin != in_range.begin) {
pos = map.split(pos, split_range.begin, sparse_container::split_op_keep_both());
++pos;
}
if (split_range.end != in_range.end) {
pos = map.split(pos, split_range.end, sparse_container::split_op_keep_both());
}
return pos;
}
// Parallel iterator
// Traverse to range maps over the the same range, but without assumptions of aligned ranges.
// ++ increments to the next point where on of the two maps changes range, giving a range over which the two
// maps do not transition ranges
template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type>
class parallel_iterator {
public:
using key_type = KeyType;
using index_type = typename key_type::index_type;
// The traits keep the iterator/const_interator consistent with the constness of the map.
using map_type_A = MapA;
using plain_map_type_A = typename std::remove_const<MapA>::type; // Allow instatiation with const or non-const Map
using key_type_A = typename plain_map_type_A::key_type;
using index_type_A = typename plain_map_type_A::index_type;
using iterator_A = const_correct_iterator<map_type_A>;
using lower_bound_A = cached_lower_bound_impl<map_type_A>;
using map_type_B = MapB;
using plain_map_type_B = typename std::remove_const<MapB>::type;
using key_type_B = typename plain_map_type_B::key_type;
using index_type_B = typename plain_map_type_B::index_type;
using iterator_B = const_correct_iterator<map_type_B>;
using lower_bound_B = cached_lower_bound_impl<map_type_B>;
// This is the value we'll always be returning, but the referenced object will be updated by the operations
struct value_type {
const key_type ⦥
const lower_bound_A &pos_A;
const lower_bound_B &pos_B;
value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_)
: range(range_), pos_A(pos_A_), pos_B(pos_B_) {}
};
private:
lower_bound_A pos_A_;
lower_bound_B pos_B_;
key_type range_;
value_type pos_;
index_type compute_delta() {
auto delta_A = pos_A_.distance_to_edge();
auto delta_B = pos_B_.distance_to_edge();
index_type delta_min;
// If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
if (delta_A == 0) { // lower A is at end
delta_min = static_cast<index_type>(delta_B);
} else if (delta_B == 0) { // lower B is at end
delta_min = static_cast<index_type>(delta_A);
} else {
// Neither are at end, use the nearest edge, s.t. over this range A and B are both constant
delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B));
}
return delta_min;
}
public:
// Default constructed object will report range empty (for end checks), but otherwise is unsafe to use
parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {}
parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index)
: pos_A_(map_A, static_cast<index_type_A>(index)),
pos_B_(map_B, static_cast<index_type_B>(index)),
range_(index, index + compute_delta()),
pos_(range_, pos_A_, pos_B_) {}
// Advance to the next spot one of the two maps changes
parallel_iterator &operator++() {
const auto start = range_.end; // we computed this the last time we set range
const auto delta = range_.distance(); // we computed this the last time we set range
RANGE_ASSERT(delta != 0); // Trying to increment past end
pos_A_.offset(static_cast<index_type_A>(delta));
pos_B_.offset(static_cast<index_type_B>(delta));
range_ = key_type(start, start + compute_delta()); // find the next boundary (must be after offset)
RANGE_ASSERT(pos_A_->index == start);
RANGE_ASSERT(pos_B_->index == start);
return *this;
}
// Seeks to a specific index in both maps reseting range. Cannot guarantee range.begin is on edge boundary,
/// but range.end will be. Lower bound objects assumed to invalidate their cached lower bounds on seek.
parallel_iterator &seek(const index_type &index) {
pos_A_.seek(static_cast<index_type_A>(index));
pos_B_.seek(static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
RANGE_ASSERT(pos_A_->index == index);
RANGE_ASSERT(pos_A_->index == pos_B_->index);
return *this;
}
// Invalidates the lower_bound caches, reseting range. Cannot guarantee range.begin is on edge boundary,
// but range.end will be.
parallel_iterator &invalidate() {
const index_type start = range_.begin;
seek(start);
return *this;
}
parallel_iterator &invalidate_A() {
const index_type index = range_.begin;
pos_A_.invalidate(static_cast<index_type_A>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_A(const iterator_A &hint) {
const index_type index = range_.begin;
pos_A_.invalidate(hint, static_cast<index_type_A>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_B() {
const index_type index = range_.begin;
pos_B_.invalidate(static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_B(const iterator_B &hint) {
const index_type index = range_.begin;
pos_B_.invalidate(hint, static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &trim_A() {
if (pos_A_->valid && (range_ != pos_A_->lower_bound->first)) {
split(pos_A_->lower_bound, pos_A_.map(), range_);
invalidate_A();
}
return *this;
}
// The return is const because we are sharing the internal state directly.
const value_type &operator*() const { return pos_; }
const value_type *operator->() const { return &pos_; }
};
template <typename DstRangeMap, typename SrcRangeMap, typename Updater,
typename SourceIterator = typename SrcRangeMap::const_iterator>
bool splice(DstRangeMap &to, const SrcRangeMap &from, SourceIterator begin, SourceIterator end, const Updater &updater) {
if (from.empty() || (begin == end) || (begin == from.cend())) return false; // nothing to merge.
using ParallelIterator = parallel_iterator<DstRangeMap, const SrcRangeMap>;
using Key = typename SrcRangeMap::key_type;
using CachedLowerBound = cached_lower_bound_impl<DstRangeMap>;
using ConstCachedLowerBound = cached_lower_bound_impl<const SrcRangeMap>;
ParallelIterator par_it(to, from, begin->first.begin);
bool updated = false;
while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) {
const Key &range = par_it->range;
const CachedLowerBound &to_lb = par_it->pos_A;
const ConstCachedLowerBound &from_lb = par_it->pos_B;
if (from_lb->valid) {
auto read_it = from_lb->lower_bound;
auto write_it = to_lb->lower_bound;
// Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span
// transitions between map entries or between valid and invalid ranges)
if (to_lb->valid) {
if (write_it->first == range) {
// if the source and destination ranges match we can overwrite everything
updated |= updater.update(write_it->second, read_it->second);
} else {
// otherwise we need to split the destination range.
auto value_to_update = write_it->second; // intentional copy
updated |= updater.update(value_to_update, read_it->second);
auto intersected_range = write_it->first & range;
to.overwrite_range(to_lb->lower_bound, std::make_pair(intersected_range, value_to_update));
par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know.
}
} else {
// Insert into the gap.
auto opt = updater.insert(read_it->second);
if (opt) {
to.insert(write_it, std::make_pair(range, std::move(*opt)));
updated = true;
par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know.
}
}
}
++par_it; // next range over which both 'to' and 'from' stay constant
}
return updated;
}
// And short hand for "from begin to end"
template <typename DstRangeMap, typename SrcRangeMap, typename Updater>
bool splice(DstRangeMap &to, const SrcRangeMap &from, const Updater &updater) {
return splice(to, from, from.cbegin(), from.cend(), updater);
}
template <typename T>
struct update_prefer_source {
bool update(T &dst, const T &src) const {
if (dst != src) {
dst = src;
return true;
}
return false;
}
std::optional<T> insert(const T &src) const { return std::optional<T>(layer_data::in_place, src); }
};
template <typename T>
struct update_prefer_dest {
bool update(T &dst, const T &src) const { return false; }
std::optional<T> insert(const T &src) const { return std::optional<T>(layer_data::in_place, src); }
};
template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter, SourceIterator begin, SourceIterator end) {
if (arbiter == value_precedence::prefer_source) {
return splice(to, from, from.cbegin(), from.cend(), update_prefer_source<typename RangeMap::mapped_type>());
} else {
return splice(to, from, from.cbegin(), from.cend(), update_prefer_dest<typename RangeMap::mapped_type>());
}
}
// And short hand for "from begin to end"
template <typename RangeMap>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter) {
return splice(to, from, arbiter, from.cbegin(), from.cend());
}
template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type>
bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) {
using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<Map>;
CachedLowerBound pos(map, range.begin);
bool updated = false;
while (range.includes(pos->index)) {
if (!pos->valid) {
if (precedence == value_precedence::prefer_source) {
// We can convert this into and overwrite...
map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
return true;
}
// Fill in the leading space (or in the case of pos at end the trailing space
const auto start = pos->index;
auto it = pos->lower_bound;
const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
map.insert(it, std::make_pair(Range(start, limit), value));
// We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
// will fix this (and move the state to valid)
pos.seek(limit);
updated = true;
}
// Note that after the "fill" operation pos may have become valid so we check again
if (pos->valid) {
if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) {
// We've found a place where we're changing the value, at this point might as well simply over write the range
// and be done with it. (save on later merge operations....)
pos.seek(range.begin);
map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
return true;
} else {
// "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
// Point just past the end of this section, if it's within the given range, it will get filled next iteration
// ++pos could move us past the end of range (which would exit the loop) so we don't use it.
pos.seek(pos->lower_bound->first.end);
}
}
}
return updated;
}
// combines directly adjacent ranges with equal RangeMap::mapped_type .
template <typename RangeMap>
void consolidate(RangeMap &map) {
using Value = typename RangeMap::value_type;
using Key = typename RangeMap::key_type;
using It = typename RangeMap::iterator;
It current = map.begin();
const It map_end = map.end();
// To be included in a merge range there must be no gap in the Key space, and the mapped_type values must match
auto can_merge = [](const It &last, const It &cur) {
return cur->first.begin == last->first.end && cur->second == last->second;
};
while (current != map_end) {
// Establish a trival merge range at the current location, advancing current. Merge range is inclusive of merge_last
const It merge_first = current;
It merge_last = current;
++current;
// Expand the merge range as much as possible
while (current != map_end && can_merge(merge_last, current)) {
merge_last = current;
++current;
}
// Current isn't in the active merge range. If there is a non-trivial merge range, we resolve it here.
if (merge_first != merge_last) {
// IFF there is more than one range in (merge_first, merge_last) <- again noting the *inclusive* last
// Create a new Val spanning (first, last), substitute it for the multiple entries.
Value merged_value = std::make_pair(Key(merge_first->first.begin, merge_last->first.end), merge_last->second);
// Note that current points to merge_last + 1, and is valid even if at map_end for these operations
map.erase(merge_first, current);
map.insert(current, std::move(merged_value));
}
}
}
} // namespace sparse_container
|