1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
|
/* Copyright (c) 2021-2023 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Spencer Fricke <s.fricke@samsung.com>
*/
#include "shader_module.h"
#include <sstream>
#include <string>
#include "vk_layer_data.h"
#include "vk_layer_utils.h"
#include "pipeline_state.h"
#include "descriptor_sets.h"
#include "spirv_grammar_helper.h"
void DecorationSet::Add(uint32_t decoration, uint32_t value) {
switch (decoration) {
case spv::DecorationLocation:
location = value;
break;
case spv::DecorationPatch:
flags |= patch_bit;
break;
case spv::DecorationBlock:
flags |= block_bit;
break;
case spv::DecorationBufferBlock:
flags |= buffer_block_bit;
break;
case spv::DecorationComponent:
component = value;
break;
case spv::DecorationInputAttachmentIndex:
input_attachment_index = value;
break;
case spv::DecorationDescriptorSet:
set = value;
break;
case spv::DecorationBinding:
binding = value;
break;
case spv::DecorationNonWritable:
flags |= nonwritable_bit;
break;
case spv::DecorationBuiltIn:
flags |= builtin_bit;
builtin = value;
break;
case spv::DecorationNonReadable:
flags |= nonreadable_bit;
break;
case spv::DecorationPerVertexNV:
flags |= per_vertex_bit;
break;
case spv::DecorationPassthroughNV:
flags |= passthrough_bit;
break;
case spv::DecorationAliased:
flags |= aliased_bit;
break;
}
}
static uint32_t ExecutionModelToShaderStageFlagBits(uint32_t mode) {
switch (mode) {
case spv::ExecutionModelVertex:
return VK_SHADER_STAGE_VERTEX_BIT;
case spv::ExecutionModelTessellationControl:
return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
case spv::ExecutionModelTessellationEvaluation:
return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
case spv::ExecutionModelGeometry:
return VK_SHADER_STAGE_GEOMETRY_BIT;
case spv::ExecutionModelFragment:
return VK_SHADER_STAGE_FRAGMENT_BIT;
case spv::ExecutionModelGLCompute:
return VK_SHADER_STAGE_COMPUTE_BIT;
case spv::ExecutionModelRayGenerationKHR:
return VK_SHADER_STAGE_RAYGEN_BIT_KHR;
case spv::ExecutionModelAnyHitKHR:
return VK_SHADER_STAGE_ANY_HIT_BIT_KHR;
case spv::ExecutionModelClosestHitKHR:
return VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
case spv::ExecutionModelMissKHR:
return VK_SHADER_STAGE_MISS_BIT_KHR;
case spv::ExecutionModelIntersectionKHR:
return VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
case spv::ExecutionModelCallableKHR:
return VK_SHADER_STAGE_CALLABLE_BIT_KHR;
case spv::ExecutionModelTaskNV:
return VK_SHADER_STAGE_TASK_BIT_NV;
case spv::ExecutionModelMeshNV:
return VK_SHADER_STAGE_MESH_BIT_NV;
case spv::ExecutionModelTaskEXT:
return VK_SHADER_STAGE_TASK_BIT_EXT;
case spv::ExecutionModelMeshEXT:
return VK_SHADER_STAGE_MESH_BIT_EXT;
default:
return 0;
}
}
SHADER_MODULE_STATE::EntryPoint::EntryPoint(const SHADER_MODULE_STATE& module_state, const Instruction& entrypoint)
: entrypoint_insn(entrypoint),
stage(static_cast<VkShaderStageFlagBits>(ExecutionModelToShaderStageFlagBits(entrypoint.Word(1)))),
name(entrypoint.GetAsString(3)) {
if (module_state.has_valid_spirv) {
// For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is
// important for identifying the set of shader resources actually used by an entrypoint, for example.
// Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
// - NOT the shader input/output interfaces.
//
// TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
// converting parts of this to be generated from the machine-readable spec instead.
layer_data::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint_insn.Word(2));
while (!worklist.empty()) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
const Instruction* insn = module_state.FindDef(id);
if (!insn) {
// ID is something we didn't collect in SpirvStaticData. that's OK -- we'll stumble across all kinds of things here
// that we may not care about.
continue;
}
// Try to add to the output set
if (!accessible_ids.insert(id).second) {
continue; // If we already saw this id, we don't want to walk it again.
}
switch (insn->Opcode()) {
case spv::OpFunction:
// Scan whole body of the function, enlisting anything interesting
while (++insn, insn->Opcode() != spv::OpFunctionEnd) {
switch (insn->Opcode()) {
case spv::OpLoad:
worklist.insert(insn->Word(3)); // ptr
break;
case spv::OpStore:
worklist.insert(insn->Word(1)); // ptr
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
worklist.insert(insn->Word(3)); // base ptr
break;
case spv::OpSampledImage:
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageDrefGather:
case spv::OpImageRead:
case spv::OpImage:
case spv::OpImageQueryFormat:
case spv::OpImageQueryOrder:
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLod:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageTexelPointer:
worklist.insert(insn->Word(3)); // Image or sampled image
break;
case spv::OpImageWrite:
worklist.insert(insn->Word(1)); // Image -- different operand order to above
break;
case spv::OpFunctionCall:
for (uint32_t i = 3; i < insn->Length(); i++) {
worklist.insert(insn->Word(i)); // fn itself, and all args
}
break;
case spv::OpExtInst:
for (uint32_t i = 5; i < insn->Length(); i++) {
worklist.insert(insn->Word(i)); // Operands to ext inst
}
break;
default: {
if (AtomicOperation(insn->Opcode())) {
if (insn->Opcode() == spv::OpAtomicStore) {
worklist.insert(insn->Word(1)); // ptr
} else {
worklist.insert(insn->Word(3)); // ptr
}
}
break;
}
}
}
break;
}
}
// Now that the accessible_ids list is known, fill in any information that can be statically known per EntryPoint
for (const Instruction* insn : module_state.GetDecorationInstructions()) {
if (insn->Word(2) == spv::DecorationInputAttachmentIndex) {
const uint32_t attachment_index = insn->Word(3);
const uint32_t id = insn->Word(1);
if (accessible_ids.count(id)) {
const Instruction* def = module_state.FindDef(id);
if (def->Opcode() == spv::OpVariable && def->StorageClass() == spv::StorageClassUniformConstant) {
const uint32_t num_locations = module_state.GetLocationsConsumedByType(def->Word(1), false);
for (uint32_t offset = 0; offset < num_locations; offset++) {
attachment_indexes.insert(attachment_index + offset);
}
}
}
}
}
for (const auto& id : accessible_ids) {
const Instruction* insn = module_state.FindDef(id);
if (insn->Opcode() != spv::OpVariable) {
continue;
}
const uint32_t storage_class = insn->StorageClass();
// These are the only storage classes that interface with a descriptor
// see vkspec.html#interfaces-resources-descset
if (storage_class == spv::StorageClassUniform || storage_class == spv::StorageClassUniformConstant ||
storage_class == spv::StorageClassStorageBuffer) {
resource_interface_variables.emplace_back(module_state, insn, stage);
}
}
}
}
std::optional<VkPrimitiveTopology> SHADER_MODULE_STATE::GetTopology(const Instruction& entrypoint) const {
std::optional<VkPrimitiveTopology> result;
auto entrypoint_id = entrypoint.Word(2);
bool is_point_mode = false;
auto it = static_data_.execution_mode_inst.find(entrypoint_id);
if (it != static_data_.execution_mode_inst.end()) {
for (const Instruction* insn : it->second) {
switch (insn->Word(2)) {
case spv::ExecutionModePointMode:
// In tessellation shaders, PointMode is separate and trumps the tessellation topology.
is_point_mode = true;
break;
case spv::ExecutionModeOutputPoints:
result.emplace(VK_PRIMITIVE_TOPOLOGY_POINT_LIST);
break;
case spv::ExecutionModeIsolines:
case spv::ExecutionModeOutputLineStrip:
case spv::ExecutionModeOutputLinesNV:
result.emplace(VK_PRIMITIVE_TOPOLOGY_LINE_STRIP);
break;
case spv::ExecutionModeTriangles:
case spv::ExecutionModeQuads:
case spv::ExecutionModeOutputTriangleStrip:
case spv::ExecutionModeOutputTrianglesNV:
result.emplace(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP);
break;
}
}
}
if (is_point_mode) {
result.emplace(VK_PRIMITIVE_TOPOLOGY_POINT_LIST);
}
return result;
}
std::optional<VkPrimitiveTopology> SHADER_MODULE_STATE::GetTopology() const {
if (static_data_.entry_points.size() > 0) {
return GetTopology(static_data_.entry_points[0].entrypoint_insn);
}
return {};
}
static inline bool IsImageOperandsBiasOffset(uint32_t type) {
return (type & (spv::ImageOperandsBiasMask | spv::ImageOperandsConstOffsetMask | spv::ImageOperandsOffsetMask |
spv::ImageOperandsConstOffsetsMask)) != 0;
}
SHADER_MODULE_STATE::StaticData::StaticData(const SHADER_MODULE_STATE& module_state) {
// Parse the words first so we have instruction class objects to use
{
std::vector<uint32_t>::const_iterator it = module_state.words_.cbegin();
it += 5; // skip first 5 word of header
while (it != module_state.words_.cend()) {
Instruction insn(it);
const uint32_t opcode = insn.Opcode();
// Check for opcodes that would require reparsing of the words
if (opcode == spv::OpGroupDecorate || opcode == spv::OpDecorationGroup || opcode == spv::OpGroupMemberDecorate) {
assert(has_group_decoration == false); // if assert, spirv-opt didn't flatten it
has_group_decoration = true;
break; // no need to continue parsing
}
instructions.push_back(insn);
it += insn.Length();
}
instructions.shrink_to_fit();
}
std::vector<const Instruction*> entry_point_instructions;
// Loop through once and build up the static data
// Also process the entry points
for (const Instruction& insn : instructions) {
// Build definition list
if (insn.ResultId() != 0) {
definitions[insn.Word(insn.ResultId())] = &insn;
}
switch (insn.Opcode()) {
// Specialization constants
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
has_specialization_constants = true;
break;
// Decorations
case spv::OpDecorate: {
auto target_id = insn.Word(1);
decorations[target_id].Add(insn.Word(2), insn.Length() > 3u ? insn.Word(3) : 0u);
decoration_inst.push_back(&insn);
if (insn.Word(2) == spv::DecorationBuiltIn) {
builtin_decoration_inst.push_back(&insn);
} else if (insn.Word(2) == spv::DecorationSpecId) {
spec_const_map[insn.Word(3)] = target_id;
}
} break;
case spv::OpMemberDecorate: {
member_decoration_inst.push_back(&insn);
if (insn.Word(3) == spv::DecorationBuiltIn) {
builtin_decoration_inst.push_back(&insn);
}
} break;
case spv::OpCapability:
capability_list.push_back(static_cast<spv::Capability>(insn.Word(1)));
break;
case spv::OpVariable:
variable_inst.push_back(&insn);
break;
// Execution Mode
case spv::OpExecutionMode:
case spv::OpExecutionModeId: {
execution_mode_inst[insn.Word(1)].push_back(&insn);
} break;
// Listed from vkspec.html#ray-tracing-repack
case spv::OpTraceRayKHR:
case spv::OpTraceRayMotionNV:
case spv::OpReportIntersectionKHR:
case spv::OpExecuteCallableKHR:
has_invocation_repack_instruction = true;
break;
// Entry points
case spv::OpEntryPoint: {
entry_point_instructions.push_back(&insn);
break;
}
// Access operations
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod: {
// combined image samples are just OpLoad, but also can be separate image and sampler
const Instruction* id = module_state.FindDef(insn.Word(3)); // <id> Sampled Image
auto load_id = (id->Opcode() == spv::OpSampledImage) ? id->Word(4) : insn.Word(3);
sampler_load_ids.emplace_back(load_id);
sampler_implicitLod_dref_proj_load_ids.emplace_back(load_id);
// ImageOperands in index: 5
if (insn.Length() > 5 && IsImageOperandsBiasOffset(insn.Word(5))) {
sampler_bias_offset_load_ids.emplace_back(load_id);
}
break;
}
case spv::OpImageDrefGather:
case spv::OpImageSparseDrefGather: {
// combined image samples are just OpLoad, but also can be separate image and sampler
const Instruction* id = module_state.FindDef(insn.Word(3)); // <id> Sampled Image
auto load_id = (id->Opcode() == spv::OpSampledImage) ? id->Word(3) : insn.Word(3);
image_dref_load_ids.emplace_back(load_id);
break;
}
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod: {
// combined image samples are just OpLoad, but also can be separate image and sampler
const Instruction* id = module_state.FindDef(insn.Word(3)); // <id> Sampled Image
auto sampler_load_id = (id->Opcode() == spv::OpSampledImage) ? id->Word(4) : insn.Word(3);
auto image_load_id = (id->Opcode() == spv::OpSampledImage) ? id->Word(3) : insn.Word(3);
image_dref_load_ids.emplace_back(image_load_id);
sampler_load_ids.emplace_back(sampler_load_id);
sampler_implicitLod_dref_proj_load_ids.emplace_back(sampler_load_id);
// ImageOperands in index: 6
if (insn.Length() > 6 && IsImageOperandsBiasOffset(insn.Word(6))) {
sampler_bias_offset_load_ids.emplace_back(sampler_load_id);
}
break;
}
case spv::OpImageSampleExplicitLod:
case spv::OpImageSparseSampleExplicitLod: {
// ImageOperands in index: 5
if (insn.Length() > 5 && IsImageOperandsBiasOffset(insn.Word(5))) {
// combined image samples are just OpLoad, but also can be separate image and sampler
const Instruction* id = module_state.FindDef(insn.Word(3)); // <id> Sampled Image
auto load_id = (id->Opcode() == spv::OpSampledImage) ? id->Word(4) : insn.Word(3);
sampler_load_ids.emplace_back(load_id);
sampler_bias_offset_load_ids.emplace_back(load_id);
}
break;
}
case spv::OpStore: {
store_pointer_ids.emplace_back(insn.Word(1)); // object id or AccessChain id
break;
}
case spv::OpImageRead:
case spv::OpImageSparseRead: {
image_read_load_ids.emplace_back(insn.Word(3));
break;
}
case spv::OpImageWrite: {
image_write_load_ids.emplace_back(insn.Word(1));
image_write_load_id_map.emplace(&insn, insn.Word(1));
break;
}
case spv::OpSampledImage: {
// 3: image load id, 4: sampler load id
sampled_image_load_ids.emplace_back(std::pair<uint32_t, uint32_t>(insn.Word(3), insn.Word(4)));
break;
}
case spv::OpLoad: {
// 2: Load id, 3: object id or AccessChain id
load_members.emplace(insn.Word(2), insn.Word(3));
break;
}
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain: {
if (insn.Length() == 4) {
// If it is for struct, the length is only 4.
// 2: AccessChain id, 3: object id
accesschain_members.emplace(insn.Word(2), std::pair<uint32_t, uint32_t>(insn.Word(3), 0));
} else {
// 2: AccessChain id, 3: object id, 4: object id of array index
accesschain_members.emplace(insn.Word(2), std::pair<uint32_t, uint32_t>(insn.Word(3), insn.Word(4)));
}
break;
}
case spv::OpImageTexelPointer: {
// 2: ImageTexelPointer id, 3: object id
image_texel_pointer_members.emplace(insn.Word(2), insn.Word(3));
break;
}
default:
if (AtomicOperation(insn.Opcode()) == true) {
atomic_inst.push_back(&insn);
if (insn.Opcode() == spv::OpAtomicStore) {
atomic_store_pointer_ids.emplace_back(insn.Word(1));
atomic_pointer_ids.emplace_back(insn.Word(1));
} else {
atomic_pointer_ids.emplace_back(insn.Word(3));
}
}
// We don't care about any other defs for now.
break;
}
}
// Need to build the definitions table for FindDef before looking for which instructions each entry point uses
for (const auto& insn : entry_point_instructions) {
entry_points.emplace_back(EntryPoint{module_state, *insn});
}
SHADER_MODULE_STATE::SetPushConstantUsedInShader(module_state, entry_points);
}
void SHADER_MODULE_STATE::PreprocessShaderBinary(const spv_target_env env) {
if (static_data_.has_group_decoration) {
spvtools::Optimizer optimizer(env);
optimizer.RegisterPass(spvtools::CreateFlattenDecorationPass());
std::vector<uint32_t> optimized_binary;
// Run optimizer to flatten decorations only, set skip_validation so as to not re-run validator
auto result = optimizer.Run(words_.data(), words_.size(), &optimized_binary, spvtools::ValidatorOptions(), true);
if (result) {
// NOTE: We need to update words with the result from the spirv-tools optimizer.
// **THIS ONLY HAPPENS ON INITIALIZATION**. words should remain const for the lifetime
// of the SHADER_MODULE_STATE instance.
*const_cast<std::vector<uint32_t>*>(&words_) = std::move(optimized_binary);
// Will need to update static data now the words have changed or else the def_index will not align
// It is really rare this will get here as Group Decorations have been deprecated and before this was added no one ever
// raised an issue for a bug that would crash the layers that was around for many releases
StaticData new_static_data(*this);
*const_cast<StaticData*>(&static_data_) = std::move(new_static_data);
}
}
}
void SHADER_MODULE_STATE::DescribeTypeInner(std::ostringstream &ss, uint32_t type) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypeBool:
ss << "bool";
break;
case spv::OpTypeInt:
ss << (insn->Word(3) ? 's' : 'u') << "int" << insn->Word(2);
break;
case spv::OpTypeFloat:
ss << "float" << insn->Word(2);
break;
case spv::OpTypeVector:
ss << "vec" << insn->Word(3) << " of ";
DescribeTypeInner(ss, insn->Word(2));
break;
case spv::OpTypeMatrix:
ss << "mat" << insn->Word(3) << " of ";
DescribeTypeInner(ss, insn->Word(2));
break;
case spv::OpTypeArray:
ss << "arr[" << GetConstantValueById(insn->Word(3)) << "] of ";
DescribeTypeInner(ss, insn->Word(2));
break;
case spv::OpTypeRuntimeArray:
ss << "runtime arr[] of ";
DescribeTypeInner(ss, insn->Word(2));
break;
case spv::OpTypePointer:
ss << "ptr to " << string_SpvStorageClass(insn->Word(2)) << " ";
DescribeTypeInner(ss, insn->Word(3));
break;
case spv::OpTypeStruct: {
ss << "struct of (";
for (uint32_t i = 2; i < insn->Length(); i++) {
DescribeTypeInner(ss, insn->Word(i));
if (i == insn->Length() - 1) {
ss << ")";
} else {
ss << ", ";
}
}
break;
}
case spv::OpTypeSampler:
ss << "sampler";
break;
case spv::OpTypeSampledImage:
ss << "sampler+";
DescribeTypeInner(ss, insn->Word(2));
break;
case spv::OpTypeImage:
ss << "image(dim=" << insn->Word(3) << ", sampled=" << insn->Word(7) << ")";
break;
case spv::OpTypeAccelerationStructureNV:
ss << "accelerationStruture";
break;
default:
ss << "oddtype";
break;
}
}
std::string SHADER_MODULE_STATE::DescribeType(uint32_t type) const {
std::ostringstream ss;
DescribeTypeInner(ss, type);
return ss.str();
}
const SHADER_MODULE_STATE::StructInfo* SHADER_MODULE_STATE::FindEntrypointPushConstant(char const* name,
VkShaderStageFlagBits stageBits) const {
for (const auto& entry_point : static_data_.entry_points) {
if (entry_point.name.compare(name) == 0 && entry_point.stage == stageBits) {
return &(entry_point.push_constant_used_in_shader);
}
}
return nullptr;
}
std::optional<Instruction> SHADER_MODULE_STATE::FindEntrypoint(char const* name, VkShaderStageFlagBits stageBits) const {
std::optional<Instruction> result;
for (const auto& entry_point : static_data_.entry_points) {
if (entry_point.name.compare(name) == 0 && entry_point.stage == stageBits) {
result.emplace(entry_point.entrypoint_insn);
}
}
return result;
}
// Because the following is legal, need the entry point
// OpEntryPoint GLCompute %main "name_a"
// OpEntryPoint GLCompute %main "name_b"
// Assumes shader module contains no spec constants used to set the local size values
bool SHADER_MODULE_STATE::FindLocalSize(const Instruction& entrypoint, uint32_t& local_size_x, uint32_t& local_size_y,
uint32_t& local_size_z) const {
// "If an object is decorated with the WorkgroupSize decoration, this takes precedence over any LocalSize or LocalSizeId
// execution mode."
for (const Instruction* insn : GetBuiltinDecorationList()) {
if (insn->GetBuiltIn() == spv::BuiltInWorkgroupSize) {
const uint32_t workgroup_size_id = insn->Word(1);
const Instruction* composite_def = FindDef(workgroup_size_id);
if (composite_def->Opcode() == spv::OpConstantComposite) {
// VUID-WorkgroupSize-WorkgroupSize-04427 makes sure this is a OpTypeVector of int32
local_size_x = GetConstantValueById(composite_def->Word(3));
local_size_y = GetConstantValueById(composite_def->Word(4));
local_size_z = GetConstantValueById(composite_def->Word(5));
return true;
}
}
}
auto entrypoint_id = entrypoint.Word(2);
auto it = static_data_.execution_mode_inst.find(entrypoint_id);
if (it != static_data_.execution_mode_inst.end()) {
for (const Instruction* insn : it->second) {
if (insn->Opcode() == spv::OpExecutionMode && insn->Word(2) == spv::ExecutionModeLocalSize) {
local_size_x = insn->Word(3);
local_size_y = insn->Word(4);
local_size_z = insn->Word(5);
return true;
} else if (insn->Opcode() == spv::OpExecutionModeId && insn->Word(2) == spv::ExecutionModeLocalSizeId) {
local_size_x = GetConstantValueById(insn->Word(3));
local_size_y = GetConstantValueById(insn->Word(4));
local_size_z = GetConstantValueById(insn->Word(5));
return true;
}
}
}
return false; // not found
}
// If the instruction at id is a constant or copy of a constant, returns a valid iterator pointing to that instruction.
// Otherwise, returns src->end().
const Instruction* SHADER_MODULE_STATE::GetConstantDef(uint32_t id) const {
const Instruction* value = FindDef(id);
// If id is a copy, see where it was copied from
if (value && ((value->Opcode() == spv::OpCopyObject) || (value->Opcode() == spv::OpCopyLogical))) {
id = value->Word(3);
value = FindDef(id);
}
if (value && (value->Opcode() == spv::OpConstant)) {
return value;
}
return nullptr;
}
// Either returns the constant value described by the instruction at id, or 1
uint32_t SHADER_MODULE_STATE::GetConstantValueById(uint32_t id) const {
const Instruction* value = GetConstantDef(id);
if (!value) {
// TODO: Either ensure that the specialization transform is already performed on a module we're
// considering here, OR -- specialize on the fly now.
return 1;
}
return value->GetConstantValue();
}
// Returns spv::Dim of the given OpVariable
spv::Dim SHADER_MODULE_STATE::GetShaderResourceDimensionality(const ResourceInterfaceVariable& resource) const {
const Instruction* type = FindDef(resource.type_id);
while (true) {
switch (type->Opcode()) {
case spv::OpTypeSampledImage:
type = FindDef(type->Word(2));
break;
case spv::OpTypePointer:
type = FindDef(type->Word(3));
break;
case spv::OpTypeImage:
return spv::Dim(type->Word(3));
default:
return spv::DimMax;
}
}
}
// Returns the number of Location slots used for a given ID reference to a OpType*
uint32_t SHADER_MODULE_STATE::GetLocationsConsumedByType(uint32_t type, bool strip_array_level) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetLocationsConsumedByType(insn->Word(3), strip_array_level);
case spv::OpTypeArray:
if (strip_array_level) {
return GetLocationsConsumedByType(insn->Word(2), false);
} else {
return GetConstantValueById(insn->Word(3)) * GetLocationsConsumedByType(insn->Word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn->Word(3) * GetLocationsConsumedByType(insn->Word(2), false);
case spv::OpTypeVector: {
const Instruction* scalar_type = FindDef(insn->Word(2));
auto bit_width =
(scalar_type->Opcode() == spv::OpTypeInt || scalar_type->Opcode() == spv::OpTypeFloat) ? scalar_type->Word(2) : 32;
// Locations are 128-bit wide; 3- and 4-component vectors of 64 bit types require two.
return (bit_width * insn->Word(3) + 127) / 128;
}
default:
// Everything else is just 1.
return 1;
// TODO: extend to handle 64bit scalar types, whose vectors may need multiple locations.
}
}
// Returns the number of Components slots used for a given ID reference to a OpType*
uint32_t SHADER_MODULE_STATE::GetComponentsConsumedByType(uint32_t type, bool strip_array_level) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetComponentsConsumedByType(insn->Word(3), strip_array_level);
case spv::OpTypeStruct: {
uint32_t sum = 0;
for (uint32_t i = 2; i < insn->Length(); i++) { // i=2 to skip Word(0) and Word(1)=ID of struct
sum += GetComponentsConsumedByType(insn->Word(i), false);
}
return sum;
}
case spv::OpTypeArray:
if (strip_array_level) {
return GetComponentsConsumedByType(insn->Word(2), false);
} else {
return GetConstantValueById(insn->Word(3)) * GetComponentsConsumedByType(insn->Word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn->Word(3) * GetComponentsConsumedByType(insn->Word(2), false);
case spv::OpTypeVector: {
const Instruction* scalar_type = FindDef(insn->Word(2));
auto bit_width =
(scalar_type->Opcode() == spv::OpTypeInt || scalar_type->Opcode() == spv::OpTypeFloat) ? scalar_type->Word(2) : 32;
// One component is 32-bit
return (bit_width * insn->Word(3) + 31) / 32;
}
case spv::OpTypeFloat: {
auto bit_width = insn->Word(2);
return (bit_width + 31) / 32;
}
case spv::OpTypeInt: {
auto bit_width = insn->Word(2);
return (bit_width + 31) / 32;
}
case spv::OpConstant:
return GetComponentsConsumedByType(insn->Word(1), false);
default:
return 0;
}
}
// characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above.
// also used for input attachments, as we statically know their format.
uint32_t SHADER_MODULE_STATE::GetFundamentalType(uint32_t type) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypeInt:
return insn->Word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT;
case spv::OpTypeFloat:
return FORMAT_TYPE_FLOAT;
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeImage:
return GetFundamentalType(insn->Word(2));
case spv::OpTypePointer:
return GetFundamentalType(insn->Word(3));
default:
return 0;
}
}
const Instruction* SHADER_MODULE_STATE::GetStructType(const Instruction* insn, bool is_array_of_verts) const {
while (true) {
if (insn->Opcode() == spv::OpTypePointer) {
insn = FindDef(insn->Word(3));
} else if (insn->Opcode() == spv::OpTypeArray && is_array_of_verts) {
insn = FindDef(insn->Word(2));
} else if (insn->Opcode() == spv::OpTypeStruct) {
return insn;
} else {
return nullptr;
}
}
}
void SHADER_MODULE_STATE::DefineStructMember(const Instruction* insn, std::vector<const Instruction*>& member_decorate_insn,
StructInfo& data) const {
const Instruction* struct_type = GetStructType(insn, false);
data.size = 0;
StructInfo data1;
uint32_t element_index = 2; // offset where first element in OpTypeStruct is
uint32_t local_offset = 0;
// offsets into struct
std::vector<uint32_t> offsets;
offsets.resize(struct_type->Length() - element_index);
// The members of struct in SPRIV_R aren't always sort, so we need to know their order.
for (const Instruction* member_decorate : member_decorate_insn) {
if (member_decorate->Word(1) != struct_type->Word(1)) {
continue;
}
offsets[member_decorate->Word(2)] = member_decorate->Word(4);
}
for (const uint32_t offset : offsets) {
local_offset = offset;
data1 = {};
data1.root = data.root;
data1.offset = local_offset;
const Instruction* def_member = FindDef(struct_type->Word(element_index));
// Array could be multi-dimensional
while (def_member->Opcode() == spv::OpTypeArray) {
const auto len_id = def_member->Word(3);
const Instruction* def_len = FindDef(len_id);
data1.array_length_hierarchy.emplace_back(def_len->Word(3)); // array length
def_member = FindDef(def_member->Word(2));
}
if (def_member->Opcode() == spv::OpTypeStruct) {
DefineStructMember(def_member, member_decorate_insn, data1);
} else if (def_member->Opcode() == spv::OpTypePointer) {
if (def_member->StorageClass() == spv::StorageClassPhysicalStorageBuffer) {
// If it's a pointer with PhysicalStorageBuffer class, this member is essentially a uint64_t containing an address
// that "points to something."
data1.size = 8;
} else {
// If it's OpTypePointer. it means the member is a buffer, the type will be TypePointer, and then struct
DefineStructMember(def_member, member_decorate_insn, data1);
}
} else {
if (def_member->Opcode() == spv::OpTypeMatrix) {
data1.array_length_hierarchy.emplace_back(def_member->Word(3)); // matrix's columns. matrix's row is vector.
def_member = FindDef(def_member->Word(2));
}
if (def_member->Opcode() == spv::OpTypeVector) {
data1.array_length_hierarchy.emplace_back(def_member->Word(3)); // vector length
def_member = FindDef(def_member->Word(2));
}
// Get scalar type size. The value in SPRV-R is bit. It needs to translate to byte.
data1.size = (def_member->Word(2) / 8);
}
const auto array_length_hierarchy_szie = data1.array_length_hierarchy.size();
if (array_length_hierarchy_szie > 0) {
data1.array_block_size.resize(array_length_hierarchy_szie, 1);
for (int i2 = static_cast<int>(array_length_hierarchy_szie - 1); i2 > 0; --i2) {
data1.array_block_size[i2 - 1] = data1.array_length_hierarchy[i2] * data1.array_block_size[i2];
}
}
data.struct_members.emplace_back(data1);
++element_index;
}
uint32_t total_array_length = 1;
for (const auto length : data1.array_length_hierarchy) {
total_array_length *= length;
}
data.size = local_offset + data1.size * total_array_length;
}
uint32_t SHADER_MODULE_STATE::UpdateOffset(uint32_t offset, const std::vector<uint32_t>& array_indices,
const StructInfo& data) const {
int array_indices_size = static_cast<int>(array_indices.size());
if (array_indices_size) {
uint32_t array_index = 0;
uint32_t i = 0;
for (const auto index : array_indices) {
array_index += (data.array_block_size[i] * index);
++i;
}
offset += (array_index * data.size);
}
return offset;
}
void SHADER_MODULE_STATE::SetUsedBytes(uint32_t offset, const std::vector<uint32_t>& array_indices, const StructInfo& data) const {
int array_indices_size = static_cast<int>(array_indices.size());
uint32_t block_memory_size = data.size;
for (uint32_t i = static_cast<int>(array_indices_size); i < data.array_length_hierarchy.size(); ++i) {
block_memory_size *= data.array_length_hierarchy[i];
}
offset = UpdateOffset(offset, array_indices, data);
uint32_t end = offset + block_memory_size;
auto used_bytes = data.GetUsedbytes();
if (used_bytes->size() < end) {
used_bytes->resize(end, 0);
}
std::memset(used_bytes->data() + offset, true, static_cast<std::size_t>(block_memory_size));
}
void SHADER_MODULE_STATE::RunUsedArray(uint32_t offset, std::vector<uint32_t> array_indices, uint32_t access_chain_word_index,
const Instruction* access_chain, const StructInfo& data) const {
if (access_chain_word_index < access_chain->Length()) {
if (data.array_length_hierarchy.size() > array_indices.size()) {
const Instruction* def = FindDef(access_chain->Word(access_chain_word_index));
++access_chain_word_index;
if (def && def->Opcode() == spv::OpConstant) {
array_indices.emplace_back(def->Word(3));
RunUsedArray(offset, array_indices, access_chain_word_index, access_chain, data);
} else {
// If it is a variable, set the all array is used.
if (access_chain_word_index < access_chain->Length()) {
uint32_t array_length = data.array_length_hierarchy[array_indices.size()];
for (uint32_t i = 0; i < array_length; ++i) {
auto array_indices2 = array_indices;
array_indices2.emplace_back(i);
RunUsedArray(offset, array_indices2, access_chain_word_index, access_chain, data);
}
} else {
SetUsedBytes(offset, array_indices, data);
}
}
} else {
offset = UpdateOffset(offset, array_indices, data);
RunUsedStruct(offset, access_chain_word_index, access_chain, data);
}
} else {
SetUsedBytes(offset, array_indices, data);
}
}
void SHADER_MODULE_STATE::RunUsedStruct(uint32_t offset, uint32_t access_chain_word_index, const Instruction* access_chain,
const StructInfo& data) const {
std::vector<uint32_t> array_indices_emptry;
if (access_chain_word_index < access_chain->Length()) {
auto strcut_member_index = GetConstantValueById(access_chain->Word(access_chain_word_index));
++access_chain_word_index;
auto data1 = data.struct_members[strcut_member_index];
RunUsedArray(offset + data1.offset, array_indices_emptry, access_chain_word_index, access_chain, data1);
}
}
void SHADER_MODULE_STATE::SetUsedStructMember(const uint32_t variable_id, layer_data::unordered_set<uint32_t>& accessible_ids,
const StructInfo& data) const {
for (const auto& id : accessible_ids) {
const Instruction* insn = FindDef(id);
if (insn->Opcode() == spv::OpAccessChain) {
if (insn->Word(3) == variable_id) {
RunUsedStruct(0, 4, insn, data);
}
}
}
}
void SHADER_MODULE_STATE::SetPushConstantUsedInShader(const SHADER_MODULE_STATE& module_state,
std::vector<SHADER_MODULE_STATE::EntryPoint>& entry_points) {
for (auto &entrypoint : entry_points) {
for (const Instruction* var_insn : module_state.GetVariableInstructions()) {
if (var_insn->StorageClass() == spv::StorageClassPushConstant) {
const Instruction* type = module_state.FindDef(var_insn->Word(1));
std::vector<const Instruction*> member_decorate_insn;
for (const Instruction* member_decorate : module_state.GetMemberDecorationInstructions()) {
if (member_decorate->Length() == 5 && member_decorate->Word(3) == spv::DecorationOffset) {
member_decorate_insn.emplace_back(member_decorate);
}
}
entrypoint.push_constant_used_in_shader.root = &entrypoint.push_constant_used_in_shader;
module_state.DefineStructMember(type, member_decorate_insn, entrypoint.push_constant_used_in_shader);
module_state.SetUsedStructMember(var_insn->Word(2), entrypoint.accessible_ids,
entrypoint.push_constant_used_in_shader);
}
}
}
}
uint32_t SHADER_MODULE_STATE::DescriptorTypeToReqs(uint32_t type_id) const {
const Instruction* type = FindDef(type_id);
while (true) {
switch (type->Opcode()) {
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeSampledImage:
type = FindDef(type->Word(2));
break;
case spv::OpTypePointer:
type = FindDef(type->Word(3));
break;
case spv::OpTypeImage: {
auto dim = type->Word(3);
auto arrayed = type->Word(5);
auto msaa = type->Word(6);
uint32_t bits = 0;
switch (GetFundamentalType(type->Word(2))) {
case FORMAT_TYPE_FLOAT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_FLOAT;
break;
case FORMAT_TYPE_UINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_UINT;
break;
case FORMAT_TYPE_SINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_SINT;
break;
default:
break;
}
switch (dim) {
case spv::Dim1D:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D;
return bits;
case spv::Dim2D:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D;
return bits;
case spv::Dim3D:
bits |= DESCRIPTOR_REQ_VIEW_TYPE_3D;
return bits;
case spv::DimCube:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE;
return bits;
case spv::DimSubpassData:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
return bits;
default: // buffer, etc.
return bits;
}
}
default:
return 0;
}
}
}
// For some built-in analysis we need to know if the variable decorated with as the built-in was actually written to.
// This function examines instructions in the static call tree for a write to this variable.
bool SHADER_MODULE_STATE::IsBuiltInWritten(const Instruction* builtin_insn, const Instruction& entrypoint) const {
auto type = builtin_insn->Opcode();
uint32_t target_id = builtin_insn->Word(1);
bool init_complete = false;
uint32_t target_member_offset = 0;
if (type == spv::OpMemberDecorate) {
// Built-in is part of a structure -- examine instructions up to first function body to get initial IDs
for (const Instruction& insn : GetInstructions()) {
if (insn.Opcode() == spv::OpFunction) {
break;
}
switch (insn.Opcode()) {
case spv::OpTypePointer:
if (insn.StorageClass() == spv::StorageClassOutput) {
const auto type_id = insn.Word(3);
if (type_id == target_id) {
target_id = insn.Word(1);
} else {
// If the output is an array, check if the element type is what we're looking for
const Instruction* type_def = FindDef(type_id);
if ((type_def->Opcode() == spv::OpTypeArray) && (type_def->Word(2) == target_id)) {
target_id = insn.Word(1);
target_member_offset = 1;
}
}
}
break;
case spv::OpVariable:
if (insn.Word(1) == target_id) {
target_id = insn.Word(2);
init_complete = true;
}
break;
}
}
}
if (!init_complete && (type == spv::OpMemberDecorate)) return false;
bool found_write = false;
layer_data::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.Word(2));
// Follow instructions in call graph looking for writes to target
while (!worklist.empty() && !found_write) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
const Instruction* insn = FindDef(id);
if (!insn) {
continue;
}
if (insn->Opcode() == spv::OpFunction) {
// Scan body of function looking for other function calls or items in our ID chain
while (++insn, (insn->Opcode() != spv::OpFunctionEnd) && !found_write) {
switch (insn->Opcode()) {
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
if (insn->Word(3) == target_id) {
if (type == spv::OpMemberDecorate) {
// Get the target member of the struct
// NOTE: this will only work for structs and arrays of structs. Deeper levels of nesting (e.g.,
// arrays of structs of structs) is not currently supported.
const Instruction* value_def = GetConstantDef(insn->Word(4 + target_member_offset));
if (value_def) {
auto value = value_def->GetConstantValue();
if (value == builtin_insn->Word(2)) {
target_id = insn->Word(2);
}
}
} else {
target_id = insn->Word(2);
}
}
break;
case spv::OpStore:
if (insn->Word(1) == target_id) {
found_write = true;
}
break;
case spv::OpFunctionCall:
worklist.insert(insn->Word(3));
break;
}
}
}
}
return found_write;
}
// Returns the id from load_members that matched the object_id, otherwise returns zero
static uint32_t CheckObjectIDFromOpLoad(
uint32_t object_id, const std::vector<uint32_t>& operator_members,
const layer_data::unordered_map<uint32_t, uint32_t>& load_members,
const layer_data::unordered_map<uint32_t, std::pair<uint32_t, uint32_t>>& accesschain_members) {
for (auto load_id : operator_members) {
if (object_id == load_id) return load_id;
auto load_it = load_members.find(load_id);
if (load_it == load_members.end()) {
continue;
}
if (load_it->second == object_id) {
return load_it->first;
}
auto accesschain_it = accesschain_members.find(load_it->second);
if (accesschain_it == accesschain_members.end()) {
continue;
}
if (accesschain_it->second.first == object_id) {
return accesschain_it->first;
}
}
return 0;
}
ResourceInterfaceVariable::ResourceInterfaceVariable(const SHADER_MODULE_STATE& module_state, const Instruction* insn,
VkShaderStageFlagBits stage)
: id(insn->Word(2)),
type_id(insn->Word(1)),
storage_class(static_cast<spv::StorageClass>(insn->Word(3))),
stage(stage),
decorations(module_state.GetDecorationSet(id)) {
// Takes a OpVariable and looks at the the descriptor type it uses. This will find things such as if the variable is writable,
// image atomic operation, matching images to samplers, etc
const Instruction* type = module_state.FindDef(type_id);
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type->Opcode() == spv::OpTypeArray || type->Opcode() == spv::OpTypePointer ||
type->Opcode() == spv::OpTypeRuntimeArray || type->Opcode() == spv::OpTypeSampledImage) {
if (type->Opcode() == spv::OpTypeArray || type->Opcode() == spv::OpTypeRuntimeArray ||
type->Opcode() == spv::OpTypeSampledImage) {
type = module_state.FindDef(type->Word(2)); // Element type
} else {
type = module_state.FindDef(type->Word(3)); // Pointer type
}
}
const auto& static_data_ = module_state.static_data_;
switch (type->Opcode()) {
case spv::OpTypeImage: {
auto dim = type->Word(3);
if (dim != spv::DimSubpassData) {
// Sampled == 2 indicates used without a sampler (a storage image)
const bool is_image_without_format = ((type->Word(7) == 2) && (type->Word(8) == spv::ImageFormatUnknown));
const uint32_t image_write_load_id = CheckObjectIDFromOpLoad(
id, static_data_.image_write_load_ids, static_data_.load_members, static_data_.accesschain_members);
if (image_write_load_id != 0) {
is_writable = true;
if (is_image_without_format) {
is_write_without_format = true;
for (const auto& entry : static_data_.image_write_load_id_map) {
if (image_write_load_id == entry.second) {
const uint32_t texel_component_count = module_state.GetTexelComponentCount(*entry.first);
write_without_formats_component_count_list.emplace_back(*entry.first, texel_component_count);
}
}
}
}
if (CheckObjectIDFromOpLoad(id, static_data_.image_read_load_ids, static_data_.load_members,
static_data_.accesschain_members) != 0) {
is_readable = true;
if (is_image_without_format) {
is_read_without_format = true;
}
}
if (CheckObjectIDFromOpLoad(id, static_data_.sampler_load_ids, static_data_.load_members,
static_data_.accesschain_members) != 0) {
is_sampler_sampled = true;
}
if (CheckObjectIDFromOpLoad(id, static_data_.sampler_implicitLod_dref_proj_load_ids, static_data_.load_members,
static_data_.accesschain_members) != 0) {
is_sampler_implicitLod_dref_proj = true;
}
if (CheckObjectIDFromOpLoad(id, static_data_.sampler_bias_offset_load_ids, static_data_.load_members,
static_data_.accesschain_members) != 0) {
is_sampler_bias_offset = true;
}
if (CheckObjectIDFromOpLoad(id, static_data_.atomic_pointer_ids, static_data_.image_texel_pointer_members,
static_data_.accesschain_members) != 0) {
is_atomic_operation = true;
}
if (CheckObjectIDFromOpLoad(id, static_data_.image_dref_load_ids, static_data_.load_members,
static_data_.accesschain_members) != 0) {
is_dref_operation = true;
}
for (auto& itp_id : static_data_.sampled_image_load_ids) {
// Find if image id match.
uint32_t image_index = 0;
auto load_it = static_data_.load_members.find(itp_id.first);
if (load_it == static_data_.load_members.end()) {
continue;
} else {
if (load_it->second != id) {
auto accesschain_it = static_data_.accesschain_members.find(load_it->second);
if (accesschain_it == static_data_.accesschain_members.end()) {
continue;
} else {
if (accesschain_it->second.first != id) {
continue;
}
const Instruction* const_def = module_state.GetConstantDef(accesschain_it->second.second);
if (!const_def) {
// access chain index not a constant, skip.
break;
}
image_index = const_def->GetConstantValue();
}
}
}
// Find sampler's set binding.
load_it = static_data_.load_members.find(itp_id.second);
if (load_it == static_data_.load_members.end()) {
continue;
} else {
uint32_t sampler_id = load_it->second;
uint32_t sampler_index = 0;
auto accesschain_it = static_data_.accesschain_members.find(load_it->second);
if (accesschain_it != static_data_.accesschain_members.end()) {
const Instruction* const_def = module_state.GetConstantDef(accesschain_it->second.second);
if (!const_def) {
// access chain index representing sampler index is not a constant, skip.
break;
}
sampler_id = const_def->Word(const_def->ResultId());
sampler_index = const_def->GetConstantValue();
}
auto sampler_dec = module_state.GetDecorationSet(sampler_id);
if (image_index >= samplers_used_by_image.size()) {
samplers_used_by_image.resize(image_index + 1);
}
// Need to check again for these properties in case not using a combined image sampler
if (CheckObjectIDFromOpLoad(sampler_id, static_data_.sampler_load_ids, static_data_.load_members,
static_data_.accesschain_members) != 0) {
is_sampler_sampled = true;
}
if (CheckObjectIDFromOpLoad(sampler_id, static_data_.sampler_implicitLod_dref_proj_load_ids,
static_data_.load_members, static_data_.accesschain_members) != 0) {
is_sampler_implicitLod_dref_proj = true;
}
if (CheckObjectIDFromOpLoad(sampler_id, static_data_.sampler_bias_offset_load_ids,
static_data_.load_members, static_data_.accesschain_members) != 0) {
is_sampler_bias_offset = true;
}
samplers_used_by_image[image_index].emplace(
SamplerUsedByImage{DescriptorSlot{sampler_dec.set, sampler_dec.binding}, sampler_index});
}
}
}
return;
}
case spv::OpTypeStruct: {
layer_data::unordered_set<uint32_t> nonwritable_members;
const bool is_storage_buffer = (storage_class == spv::StorageClassStorageBuffer) ||
(module_state.GetDecorationSet(type->Word(1)).Has(DecorationSet::buffer_block_bit));
for (const Instruction* insn : static_data_.member_decoration_inst) {
if (insn->Word(1) == type->Word(1) && insn->Word(3) == spv::DecorationNonWritable) {
nonwritable_members.insert(insn->Word(2));
}
}
// A buffer is writable if it's either flavor of storage buffer, and has any member not decorated
// as nonwritable.
if (is_storage_buffer && nonwritable_members.size() != type->Length() - 2) {
for (auto oid : static_data_.store_pointer_ids) {
if (id == oid) {
is_writable = true;
return;
}
auto accesschain_it = static_data_.accesschain_members.find(oid);
if (accesschain_it == static_data_.accesschain_members.end()) {
continue;
}
if (accesschain_it->second.first == id) {
is_writable = true;
return;
}
}
if (CheckObjectIDFromOpLoad(id, static_data_.atomic_store_pointer_ids, static_data_.image_texel_pointer_members,
static_data_.accesschain_members) != 0) {
is_writable = true;
return;
}
}
}
}
}
layer_data::unordered_set<uint32_t> SHADER_MODULE_STATE::CollectWritableOutputLocationinFS(const Instruction& entrypoint) const {
layer_data::unordered_set<uint32_t> location_list;
const auto outputs = CollectInterfaceByLocation(entrypoint, spv::StorageClassOutput, false);
layer_data::unordered_set<uint32_t> store_pointer_ids;
layer_data::unordered_map<uint32_t, uint32_t> accesschain_members;
for (const Instruction& insn : GetInstructions()) {
switch (insn.Opcode()) {
case spv::OpStore:
case spv::OpAtomicStore: {
store_pointer_ids.insert(insn.Word(1)); // object id or AccessChain id
break;
}
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain: {
// 2: AccessChain id, 3: object id
if (insn.Word(3)) accesschain_members.emplace(insn.Word(2), insn.Word(3));
break;
}
default:
break;
}
}
if (store_pointer_ids.empty()) {
return location_list;
}
for (const auto& output : outputs) {
auto store_it = store_pointer_ids.find(output.second.id);
if (store_it != store_pointer_ids.end()) {
location_list.insert(output.first.first);
store_pointer_ids.erase(store_it);
continue;
}
store_it = store_pointer_ids.begin();
while (store_it != store_pointer_ids.end()) {
auto accesschain_it = accesschain_members.find(*store_it);
if (accesschain_it == accesschain_members.end()) {
++store_it;
continue;
}
if (accesschain_it->second == output.second.id) {
location_list.insert(output.first.first);
store_pointer_ids.erase(store_it);
accesschain_members.erase(accesschain_it);
break;
}
++store_it;
}
}
return location_list;
}
bool SHADER_MODULE_STATE::CollectInterfaceBlockMembers(std::map<location_t, UserDefinedInterfaceVariable>* out,
bool is_array_of_verts, bool is_patch,
const Instruction* variable_insn) const {
// Walk down the type_id presented, trying to determine whether it's actually an interface block.
const Instruction* struct_type = GetStructType(FindDef(variable_insn->Word(1)), is_array_of_verts && !is_patch);
if (!struct_type || !(GetDecorationSet(struct_type->Word(1)).Has(DecorationSet::block_bit))) {
// This isn't an interface block.
return false;
}
layer_data::unordered_map<uint32_t, uint32_t> member_components;
layer_data::unordered_map<uint32_t, uint32_t> member_patch;
// Walk all the OpMemberDecorate for type's result id -- first pass, collect components.
for (const Instruction* insn : static_data_.member_decoration_inst) {
if (insn->Word(1) == struct_type->Word(1)) {
const uint32_t member_index = insn->Word(2);
const uint32_t decoration = insn->Word(3);
if (decoration == spv::DecorationComponent) {
member_components[member_index] = insn->Word(4);
}
if (decoration == spv::DecorationPatch) {
member_patch[member_index] = 1;
}
}
}
// TODO: correctly handle location assignment from outside
// Second pass -- produce the output, from Location decorations
for (const Instruction* insn : static_data_.member_decoration_inst) {
if (insn->Word(1) == struct_type->Word(1)) {
const uint32_t member_index = insn->Word(2);
const uint32_t member_type_id = struct_type->Word(2 + member_index);
if (insn->Word(3) == spv::DecorationLocation) {
const uint32_t location = insn->Word(4);
const uint32_t num_locations = GetLocationsConsumedByType(member_type_id, false);
const auto component_it = member_components.find(member_index);
const uint32_t component = component_it == member_components.end() ? 0 : component_it->second;
const bool member_is_patch = is_patch || member_patch.count(member_index) > 0;
for (uint32_t offset = 0; offset < num_locations; offset++) {
UserDefinedInterfaceVariable variable = {};
variable.id = variable_insn->Word(2);
// TODO: member index in UserDefinedInterfaceVariable too?
variable.type_id = member_type_id;
variable.offset = offset;
variable.is_patch = member_is_patch;
(*out)[std::make_pair(location + offset, component)] = variable;
}
}
}
}
return true;
}
std::map<location_t, UserDefinedInterfaceVariable> SHADER_MODULE_STATE::CollectInterfaceByLocation(const Instruction& entrypoint,
spv::StorageClass sinterface,
bool is_array_of_verts) const {
// TODO: handle index=1 dual source outputs from FS -- two vars will have the same location, and we DON'T want to clobber.
std::map<location_t, UserDefinedInterfaceVariable> out;
for (uint32_t iid : FindEntrypointInterfaces(entrypoint)) {
const Instruction* insn = FindDef(iid);
assert(insn->Opcode() == spv::OpVariable);
const auto decoration_set = GetDecorationSet(iid);
const bool passthrough = sinterface == spv::StorageClassOutput && insn->Word(3) == spv::StorageClassInput &&
(decoration_set.Has(DecorationSet::passthrough_bit));
if (insn->Word(3) == static_cast<uint32_t>(sinterface) || passthrough) {
const uint32_t builtin = decoration_set.builtin;
const uint32_t component = decoration_set.component;
const uint32_t location = decoration_set.location;
const bool is_patch = decoration_set.Has(DecorationSet::patch_bit);
const bool is_per_vertex = decoration_set.Has(DecorationSet::per_vertex_bit);
if (builtin != DecorationSet::kInvalidValue) {
continue;
} else if (!CollectInterfaceBlockMembers(&out, is_array_of_verts, is_patch, insn) ||
decoration_set.location != DecorationSet::kInvalidValue) {
// A user-defined interface variable, with a location. Where a variable occupied multiple locations, emit
// one result for each.
const uint32_t num_locations = GetLocationsConsumedByType(insn->Word(1), is_array_of_verts || is_per_vertex);
for (uint32_t offset = 0; offset < num_locations; offset++) {
UserDefinedInterfaceVariable variable(insn);
variable.offset = offset;
variable.is_patch = is_patch;
out[std::make_pair(location + offset, component)] = variable;
}
}
}
}
return out;
}
std::vector<uint32_t> SHADER_MODULE_STATE::CollectBuiltinBlockMembers(const Instruction& entrypoint, uint32_t storageClass) const {
// Find all interface variables belonging to the entrypoint and matching the storage class
std::vector<uint32_t> variables;
for (uint32_t id : FindEntrypointInterfaces(entrypoint)) {
const Instruction* def = FindDef(id);
assert(def->Opcode() == spv::OpVariable);
if (def->Word(3) == storageClass) variables.push_back(def->Word(1));
}
// Find all members belonging to the builtin block selected
std::vector<uint32_t> builtin_block_members;
for (auto &var : variables) {
const Instruction* def = FindDef(FindDef(var)->Word(3));
// It could be an array of IO blocks. The element type should be the struct defining the block contents
if (def->Opcode() == spv::OpTypeArray) {
def = FindDef(def->Word(2));
}
// Now find all members belonging to the struct defining the IO block
if (def->Opcode() == spv::OpTypeStruct) {
for (const Instruction* insn : GetBuiltinDecorationList()) {
if ((insn->Opcode() == spv::OpMemberDecorate) && (def->Word(1) == insn->Word(1))) {
// Start with undefined builtin for each struct member.
// But only when confirmed the struct is the built-in inteface block (can only be one per shader)
if (builtin_block_members.size() == 0) {
builtin_block_members.resize(def->Length() - 2, spv::BuiltInMax);
}
auto struct_index = insn->Word(2);
assert(struct_index < builtin_block_members.size());
builtin_block_members[struct_index] = insn->Word(4);
}
}
}
}
return builtin_block_members;
}
uint32_t SHADER_MODULE_STATE::GetNumComponentsInBaseType(const Instruction* insn) const {
const uint32_t opcode = insn->Opcode();
uint32_t component_count = 0;
if (opcode == spv::OpTypeFloat || opcode == spv::OpTypeInt) {
component_count = 1;
} else if (opcode == spv::OpTypeVector) {
component_count = insn->Word(3);
} else if (opcode == spv::OpTypeMatrix) {
const Instruction* column_type = FindDef(insn->Word(2));
// Because we are calculating components for a single location we do not care about column count
component_count = GetNumComponentsInBaseType(column_type); // vector length
} else if (opcode == spv::OpTypeArray) {
const Instruction* element_type = FindDef(insn->Word(2));
component_count = GetNumComponentsInBaseType(element_type); // element length
} else if (opcode == spv::OpTypeStruct) {
for (uint32_t i = 2; i < insn->Length(); ++i) {
component_count += GetNumComponentsInBaseType(FindDef(insn->Word(i)));
}
} else if (opcode == spv::OpTypePointer) {
const Instruction* type = FindDef(insn->Word(3));
component_count = GetNumComponentsInBaseType(type);
}
return component_count;
}
// Returns the total size in 'bits' of any OpType*
uint32_t SHADER_MODULE_STATE::GetTypeBitsSize(const Instruction* insn) const {
const uint32_t opcode = insn->Opcode();
uint32_t bit_size = 0;
if (opcode == spv::OpTypeVector) {
const Instruction* component_type = FindDef(insn->Word(2));
uint32_t scalar_width = GetTypeBitsSize(component_type);
uint32_t component_count = insn->Word(3);
bit_size = scalar_width * component_count;
} else if (opcode == spv::OpTypeMatrix) {
const Instruction* column_type = FindDef(insn->Word(2));
uint32_t vector_width = GetTypeBitsSize(column_type);
uint32_t column_count = insn->Word(3);
bit_size = vector_width * column_count;
} else if (opcode == spv::OpTypeArray) {
const Instruction* element_type = FindDef(insn->Word(2));
uint32_t element_width = GetTypeBitsSize(element_type);
const Instruction* length_type = FindDef(insn->Word(3));
uint32_t length = length_type->GetConstantValue();
bit_size = element_width * length;
} else if (opcode == spv::OpTypeStruct) {
for (uint32_t i = 2; i < insn->Length(); ++i) {
bit_size += GetTypeBitsSize(FindDef(insn->Word(i)));
}
} else if (opcode == spv::OpTypePointer) {
const Instruction* type = FindDef(insn->Word(3));
bit_size = GetTypeBitsSize(type);
} else if (opcode == spv::OpVariable) {
const Instruction* type = FindDef(insn->Word(1));
bit_size = GetTypeBitsSize(type);
} else {
bit_size = insn->GetBitWidth();
}
return bit_size;
}
// Returns the total size in 'bytes' of any OpType*
uint32_t SHADER_MODULE_STATE::GetTypeBytesSize(const Instruction* insn) const { return GetTypeBitsSize(insn) / 8; }
// Returns the base type (float, int or unsigned int) or struct (can have multiple different base types inside)
// Will return 0 if it can not be determined
uint32_t SHADER_MODULE_STATE::GetBaseType(const Instruction* insn) const {
const uint32_t opcode = insn->Opcode();
if (opcode == spv::OpTypeFloat || opcode == spv::OpTypeInt || opcode == spv::OpTypeBool || opcode == spv::OpTypeStruct) {
// point to itself as its the base type (or a struct that needs to be traversed still)
return insn->Word(1);
} else if (opcode == spv::OpTypeVector) {
const Instruction* component_type = FindDef(insn->Word(2));
return GetBaseType(component_type);
} else if (opcode == spv::OpTypeMatrix) {
const Instruction* column_type = FindDef(insn->Word(2));
return GetBaseType(column_type);
} else if (opcode == spv::OpTypeArray || opcode == spv::OpTypeRuntimeArray) {
const Instruction* element_type = FindDef(insn->Word(2));
return GetBaseType(element_type);
} else if (opcode == spv::OpTypePointer) {
const auto& storage_class = insn->StorageClass();
const Instruction* type = FindDef(insn->Word(3));
if (storage_class == spv::StorageClassPhysicalStorageBuffer && type->Opcode() == spv::OpTypeStruct) {
// A physical storage buffer to a struct has a chance to point to itself and can't resolve a baseType
// GLSL example:
// layout(buffer_reference) buffer T1 {
// T1 b[2];
// };
return 0;
}
return GetBaseType(type);
}
// If we assert here, we are missing a valid base type that must be handled. Without this assert, a return value of 0 will
// produce a hard bug to track
assert(false);
return 0;
}
// Returns type_id if id has type or zero otherwise
uint32_t SHADER_MODULE_STATE::GetTypeId(uint32_t id) const {
const Instruction* type = FindDef(id);
return type ? type->Word(type->TypeId()) : 0;
}
// Return zero if nothing is found
uint32_t SHADER_MODULE_STATE::GetTexelComponentCount(const Instruction& insn) const {
uint32_t texel_component_count = 0;
switch (insn.Opcode()) {
case spv::OpImageWrite: {
const Instruction* texel_def = FindDef(insn.Word(3));
const Instruction* texel_type = FindDef(texel_def->Word(1));
texel_component_count = (texel_type->Opcode() == spv::OpTypeVector) ? texel_type->Word(3) : 1;
break;
}
default:
break;
}
return texel_component_count;
}
std::vector<uint32_t> FindEntrypointInterfaces(const Instruction& entrypoint) {
std::vector<uint32_t> interfaces;
// Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out the
// rest of the word - so we only need to look at the last byte in the word to determine which word contains the terminator.
uint32_t word = 3;
while (entrypoint.Word(word) & 0xff000000u) {
++word;
}
++word;
for (; word < entrypoint.Length(); word++) {
interfaces.push_back(entrypoint.Word(word));
}
return interfaces;
}
|