1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/* Copyright (c) 2020-2021 The Khronos Group Inc.
* Copyright (c) 2020-2021 Valve Corporation
* Copyright (c) 2020-2021 LunarG, Inc.
* Copyright (C) 2020-2021 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#ifndef SPARSE_CONTAINERS_H_
#define SPARSE_CONTAINERS_H_
#include <cassert>
#include <memory>
#include <vector>
namespace sparse_container {
// SparseVector:
//
// Defines a sparse single-dimensional container which is targeted for three distinct use cases
// 1) Large range of indices sparsely populated ("Sparse access" below)
// 2) Large range of indices where all values are the same ("Sparse access" below)
// 3) Large range of values densely populated (more that 1/4 full) ("Dense access" below)
// 4) Small range of values where direct access is most efficient ("Dense access" below)
//
// To update semantics are supported bases on kSetReplaces:
// true -- updates to already set (valid) indices replace current value
// false -- updates to already set (valid) indicies are ignored.
//
// Theory of operation:
//
// When created, a sparse vector is created (based on size relative to
// the kSparseThreshold) in either Sparse or Dense access mode.
//
// In "Sparse access" mode individual values are stored in a map keyed
// by the index. A "full range" value (if set) defines the value of all
// entries not present in the map. Setting a full range value via
//
// SetRange(range_min, range_max, full_range_value )
//
// either clears the map (kSetReplaces==true) or prevents further
// updates to the vector (kSetReplaces==false). If the map becomes
// more than 1/kConversionThreshold (=4) full, the SparseVector is
// converted into "Dense access" mode. Entries are copied from map,
// with non-present indices set to the default value (kDefaultValue)
// or the full range value (if present).
//
// In "Dense access" mode, values are stored in a vector the size of
// the valid range indexed by the incoming index value minus range_min_.
// The same upate semantic applies bases on kSetReplaces.
//
// Note that when kSparseThreshold is zero, the map is always in "Dense access" mode.
//
// Access:
//
// NOTE all "end" indices (in construction or access) are *exclusive*.
//
// Given the variable semantics and effective compression of Sparse
// access mode, all access is through Get, Set, and SetRange functions
// and a constant iterator. Get return either the value found (using
// the current access mode) or the kDefaultValue. Set and SetRange
// return whether or not state was updated, in order to support dirty
// bit updates for any dependent state.
//
// The iterator ConstIterator provides basic, "by value" access. The
// "by value" nature of the access reflect the compressed nature
// operators *, ++, ==, and != are provided, with the latter two only
// suitable for comparisons vs. cend. The iterator skips all
// kDefaultValue entries in either access mode, returning a std::pair
// containing {IndexType, ValueType}. The multiple access modes give
// the iterator a bit more complexity than is optimal, but hides the
// underlying complexity from the callers.
//
// TODO: Update iterator to use a reference (likely using
// reference_wrapper...)
template <typename IndexType_, typename T, bool kSetReplaces, T kDefaultValue = T(), size_t kSparseThreshold = 16>
class SparseVector {
public:
typedef IndexType_ IndexType;
typedef T value_type;
typedef value_type ValueType;
typedef layer_data::unordered_map<IndexType, ValueType> SparseType;
typedef std::vector<ValueType> DenseType;
SparseVector(IndexType start, IndexType end)
: range_min_(start), range_max_(end), threshold_((end - start) / kConversionThreshold) {
assert(end > start);
Reset();
}
// Initial access mode is set based on range size vs. kSparseThreshold. Either sparse_ or dense_ is always set, but only
// ever one at a time
void Reset() {
has_full_range_value_ = false;
full_range_value_ = kDefaultValue;
size_t count = range_max_ - range_min_;
if (kSparseThreshold > 0 && (count > kSparseThreshold)) {
sparse_.reset(new SparseType());
dense_.reset();
} else {
sparse_.reset();
dense_.reset(new DenseType(count, kDefaultValue));
}
}
const ValueType &Get(const IndexType index) const {
// Note that here (and similarly below, the 'IsSparse' clause is
// eliminated as dead code in release builds if kSparseThreshold==0
if (IsSparse()) {
if (!sparse_->empty()) { // Don't attempt lookup in empty map
auto it = sparse_->find(index);
if (it != sparse_->cend()) {
return it->second;
}
}
// If there is a full_range_value, return it, but there isn't a full_range_value_, it's set to kDefaultValue
// so it's still the correct this to return
return full_range_value_;
} else {
// Direct access
assert(dense_.get());
const ValueType &value = (*dense_)[index - range_min_];
return value;
}
}
// Set a indexes value, based on the access mode, update semantics are enforced within the access mode specific function
bool Set(const IndexType index, const ValueType &value) {
bool updated = false;
if (IsSparse()) {
updated = SetSparse(index, value);
} else {
assert(dense_.get());
updated = SetDense(index, value);
}
return updated;
}
// Set a range of values based on access mode, with some update semantics applied a the range level
bool SetRange(const IndexType start, IndexType end, ValueType value) {
bool updated = false;
if (IsSparse()) {
if (!kSetReplaces && HasFullRange()) return false; // We have full coverage, we can change this no more
bool is_full_range = IsFullRange(start, end);
if (kSetReplaces && is_full_range) {
updated = value != full_range_value_;
full_range_value_ = value;
if (HasSparseSubranges()) {
updated = true;
sparse_->clear(); // full range replaces all subranges
}
// has_full_range_value_ state of the full_range_value_ to avoid ValueType comparisons
has_full_range_value_ = value != kDefaultValue;
} else if (!kSetReplaces && (value != kDefaultValue) && is_full_range && !HasFullRange()) {
// With the update only invalid semantics, the value becomes the fallback, and will prevent other updates
full_range_value_ = value;
has_full_range_value_ = true;
updated = true;
// Clean up the sparse map a bit
for (auto it = sparse_->begin(); it != sparse_->end();) { // no increment clause because of erase below
if (it->second == value) {
it = sparse_->erase(it); // remove redundant entries
} else {
++it;
}
}
} else {
for (IndexType index = start; index < end; ++index) {
// NOTE: We can't use SetSparse here, because this may be converted to dense access mid update
updated |= Set(index, value);
}
}
} else {
// Note that "Dense Access" does away with the full_range_value_ logic, storing empty entries using kDefaultValue
assert(dense_);
for (IndexType index = start; index < end; ++index) {
updated = SetDense(index, value);
}
}
return updated;
}
// Set only the non-default values from another sparse vector
bool Merge(const SparseVector &from) {
// Must not set from Sparse arracy with larger bounds...
assert((range_min_ <= from.range_min_) && (range_max_ >= from.range_max_));
bool updated = false;
if (from.IsSparse()) {
if (from.HasFullRange() && !from.HasSparseSubranges()) {
// Short cut to copy a full range if that's all we have
updated |= SetRange(from.range_min_, from.range_max_, from.full_range_value_);
} else {
// Have to do it the complete (potentially) slow way
// TODO add sorted keys to iterator to reduce hash lookups
for (auto it = from.cbegin(); it != from.cend(); ++it) {
const IndexType index = (*it).first;
const ValueType &value = (*it).second;
Set(index, value);
}
}
} else {
assert(from.dense_);
DenseType &ray = *from.dense_;
for (IndexType entry = from.range_min_; entry < from.range_max_; ++entry) {
IndexType index = entry - from.range_min_;
if (ray[index] != kDefaultValue) {
updated |= Set(entry, ray[index]);
}
}
}
return updated;
}
friend class ConstIterator;
class ConstIterator {
public:
using SparseType = typename SparseVector::SparseType;
using SparseIterator = typename SparseType::const_iterator;
using IndexType = typename SparseVector::IndexType;
using ValueType = typename SparseVector::ValueType;
using IteratorValueType = std::pair<IndexType, ValueType>;
const IteratorValueType &operator*() const { return current_value_; }
ConstIterator &operator++() {
if (delegated_) { // implies sparse
++it_sparse_;
if (it_sparse_ == vec_->sparse_->cend()) {
the_end_ = true;
current_value_.first = vec_->range_max_;
current_value_.second = SparseVector::DefaultValue();
} else {
current_value_.first = it_sparse_->first;
current_value_.second = it_sparse_->second;
}
} else {
index_++;
SetCurrentValue();
}
return *this;
}
bool operator!=(const ConstIterator &rhs) const {
return (the_end_ != rhs.the_end_); // Just good enough for cend checks
}
bool operator==(const ConstIterator &rhs) const {
return (the_end_ == rhs.the_end_); // Just good enough for cend checks
}
// The iterator has two modes:
// delegated:
// where we are in sparse access mode and have no full_range_value
// and thus can delegate our iteration to underlying map
// non-delegated:
// either dense mode or we have a full range value and thus
// must iterate over the whole range
ConstIterator(const SparseVector &vec) : vec_(&vec) {
if (!vec_->IsSparse() || vec_->HasFullRange()) {
// Must iterated over entire ranges skipping (in the case of dense access), invalid entries
delegated_ = false;
index_ = vec_->range_min_;
SetCurrentValue(); // Skips invalid and sets the_end_
} else if (vec_->HasSparseSubranges()) {
// The subranges store the non-default values... and their is no full range value
delegated_ = true;
it_sparse_ = vec_->sparse_->cbegin();
current_value_.first = it_sparse_->first;
current_value_.second = it_sparse_->second;
the_end_ = false; // the sparse map is non-empty (per HasSparseSubranges() above)
} else {
// Sparse, but with no subranges
the_end_ = true;
}
}
ConstIterator() : vec_(nullptr), the_end_(true) {}
protected:
const SparseVector *vec_;
bool the_end_;
SparseIterator it_sparse_;
bool delegated_;
IndexType index_;
ValueType value_;
IteratorValueType current_value_;
// in the non-delegated case we use normal accessors and skip default values.
void SetCurrentValue() {
the_end_ = true;
while (index_ < vec_->range_max_) {
value_ = vec_->Get(index_);
if (value_ != SparseVector::DefaultValue()) {
the_end_ = false;
current_value_ = IteratorValueType(index_, value_);
break;
}
index_++;
}
}
};
typedef ConstIterator const_iterator;
ConstIterator cbegin() const { return ConstIterator(*this); }
ConstIterator cend() const { return ConstIterator(); }
IndexType RangeMax() const { return range_max_; }
IndexType RangeMin() const { return range_min_; }
static const unsigned kConversionThreshold = 4;
const IndexType range_min_; // exclusive
const IndexType range_max_; // exclusive
const IndexType threshold_; // exclusive
// Data for sparse mode
// We have a short cut for full range values when in sparse mode
bool has_full_range_value_;
ValueType full_range_value_;
std::unique_ptr<SparseType> sparse_;
// Data for dense mode
std::unique_ptr<DenseType> dense_;
static const ValueType &DefaultValue() {
static ValueType value = kDefaultValue;
return value;
}
// Note that IsSparse is compile-time reducible if kSparseThreshold is zero...
inline bool IsSparse() const { return kSparseThreshold > 0 && sparse_.get(); }
bool IsFullRange(IndexType start, IndexType end) const { return (start == range_min_) && (end == range_max_); }
bool IsFullRangeValue(const ValueType &value) const { return has_full_range_value_ && (value == full_range_value_); }
bool HasFullRange() const { return IsSparse() && has_full_range_value_; }
bool HasSparseSubranges() const { return IsSparse() && !sparse_->empty(); }
// This is called unconditionally, to encapsulate the conversion criteria and logic here
void SparseToDenseConversion() {
// If we're using more threshold of the sparse range, convert to dense_
if (IsSparse() && (sparse_->size() > threshold_)) {
ValueType default_value = HasFullRange() ? full_range_value_ : kDefaultValue;
dense_.reset(new DenseType((range_max_ - range_min_), default_value));
DenseType &ray = *dense_;
for (const auto &item : *sparse_) {
ray[item.first - range_min_] = item.second;
}
sparse_.reset();
has_full_range_value_ = false;
}
}
// Dense access mode setter with update semantics implemented
bool SetDense(IndexType index, const ValueType &value) {
bool updated = false;
ValueType ¤t_value = (*dense_)[index - range_min_];
if ((kSetReplaces || current_value == kDefaultValue) && (value != current_value)) {
current_value = value;
updated = true;
}
return updated;
}
// Sparse access mode setter with update full range and update semantics implemented
bool SetSparse(IndexType index, const ValueType &value) {
if (!kSetReplaces && HasFullRange()) {
return false; // We have full coverage, we can change this no more
}
if (kSetReplaces && IsFullRangeValue(value) && HasSparseSubranges()) {
auto erasure = sparse_->erase(index); // Remove duplicate record from map
return erasure > 0;
}
// Use insert to reduce the number of hash lookups
auto map_pair = std::make_pair(index, value);
auto insert_pair = sparse_->insert(map_pair);
auto &it = insert_pair.first; // use references to avoid nested pair accesses
const bool inserted = insert_pair.second;
bool updated = false;
if (inserted) {
updated = true;
SparseToDenseConversion();
} else if (kSetReplaces && value != it->second) {
// Only replace value if semantics allow it and it has changed.
it->second = value;
updated = true;
}
return updated;
}
};
} // namespace sparse_container
#endif
|