1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813
|
/* Copyright (c) 2019-2023 The Khronos Group Inc.
* Copyright (c) 2019-2023 Valve Corporation
* Copyright (c) 2019-2023 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: John Zulauf <jzulauf@lunarg.com>
* Author: Locke Lin <locke@lunarg.com>
* Author: Jeremy Gebben <jeremyg@lunarg.com>
*/
#include <algorithm>
#include <limits>
#include <memory>
#include <vector>
#include "synchronization_validation.h"
#include "sync_utils.h"
// Utilities to DRY up Get... calls
template <typename Map, typename Key = typename Map::key_type, typename RetVal = std::optional<typename Map::mapped_type>>
RetVal GetMappedOptional(const Map &map, const Key &key) {
RetVal ret_val;
auto it = map.find(key);
if (it != map.cend()) {
ret_val.emplace(it->second);
}
return ret_val;
}
template <typename Map, typename Fn>
typename Map::mapped_type GetMapped(const Map &map, const typename Map::key_type &key, Fn &&default_factory) {
auto value = GetMappedOptional(map, key);
return (value) ? *value : default_factory();
}
template <typename Map, typename Fn>
typename Map::mapped_type GetMappedInsert(Map &map, const typename Map::key_type &key, Fn &&emplace_factory) {
auto value = GetMappedOptional(map, key);
if (value) {
return *value;
}
auto insert_it = map.emplace(std::make_pair(key, emplace_factory()));
assert(insert_it.second);
return insert_it.first->second;
}
template <typename Map, typename Key = typename Map::key_type, typename Mapped = typename Map::mapped_type,
typename Value = typename Mapped::element_type>
Value *GetMappedPlainFromShared(const Map &map, const Key &key) {
auto value = GetMappedOptional<Map, Key>(map, key);
if (value) return value->get();
return nullptr;
}
static bool SimpleBinding(const BINDABLE &bindable) { return !bindable.sparse && bindable.Binding(); }
static bool SimpleBinding(const IMAGE_STATE &image_state) {
bool simple =
SimpleBinding(static_cast<const BINDABLE &>(image_state)) || image_state.IsSwapchainImage() || image_state.bind_swapchain;
// If it's not simple we must have an encoder.
assert(!simple || image_state.fragment_encoder.get());
return simple;
}
static const ResourceAccessRange kFullRange(std::numeric_limits<VkDeviceSize>::min(), std::numeric_limits<VkDeviceSize>::max());
static const std::array<AccessAddressType, static_cast<size_t>(AccessAddressType::kTypeCount)> kAddressTypes = {
AccessAddressType::kLinear, AccessAddressType::kIdealized};
static constexpr AccessAddressType GetAccessAddressType(const BUFFER_STATE &) { return AccessAddressType::kLinear; };
static AccessAddressType GetAccessAddressType(const IMAGE_STATE &image) {
return SimpleBinding(image) ? AccessContext::ImageAddressType(image) : AccessAddressType::kIdealized;
}
static const char *string_SyncHazardVUID(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return "SYNC-HAZARD-NONE";
break;
case SyncHazard::READ_AFTER_WRITE:
return "SYNC-HAZARD-READ-AFTER-WRITE";
break;
case SyncHazard::WRITE_AFTER_READ:
return "SYNC-HAZARD-WRITE-AFTER-READ";
break;
case SyncHazard::WRITE_AFTER_WRITE:
return "SYNC-HAZARD-WRITE-AFTER-WRITE";
break;
case SyncHazard::READ_RACING_WRITE:
return "SYNC-HAZARD-READ-RACING-WRITE";
break;
case SyncHazard::WRITE_RACING_WRITE:
return "SYNC-HAZARD-WRITE-RACING-WRITE";
break;
case SyncHazard::WRITE_RACING_READ:
return "SYNC-HAZARD-WRITE-RACING-READ";
break;
case SyncHazard::READ_AFTER_PRESENT:
return "SYNC-HAZARD-READ-AFTER-PRESENT";
break;
case SyncHazard::WRITE_AFTER_PRESENT:
return "SYNC-HAZARD-WRITE-AFTER-PRESENT";
break;
case SyncHazard::PRESENT_AFTER_WRITE:
return "SYNC-HAZARD-PRESENT-AFTER-WRITE";
break;
case SyncHazard::PRESENT_AFTER_READ:
return "SYNC-HAZARD-PRESENT-AFTER-READ";
break;
default:
assert(0);
}
return "SYNC-HAZARD-INVALID";
}
static bool IsHazardVsRead(SyncHazard hazard) {
bool vs_read = false;
switch (hazard) {
case SyncHazard::WRITE_AFTER_READ:
vs_read = true;
break;
case SyncHazard::WRITE_RACING_READ:
vs_read = true;
break;
case SyncHazard::PRESENT_AFTER_READ:
vs_read = true;
break;
default:
break;
}
return vs_read;
}
static const char *string_SyncHazard(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return "NONE";
break;
case SyncHazard::READ_AFTER_WRITE:
return "READ_AFTER_WRITE";
break;
case SyncHazard::WRITE_AFTER_READ:
return "WRITE_AFTER_READ";
break;
case SyncHazard::WRITE_AFTER_WRITE:
return "WRITE_AFTER_WRITE";
break;
case SyncHazard::READ_RACING_WRITE:
return "READ_RACING_WRITE";
break;
case SyncHazard::WRITE_RACING_WRITE:
return "WRITE_RACING_WRITE";
break;
case SyncHazard::WRITE_RACING_READ:
return "WRITE_RACING_READ";
break;
case SyncHazard::READ_AFTER_PRESENT:
return "READ_AFTER_PRESENT";
break;
case SyncHazard::WRITE_AFTER_PRESENT:
return "WRITE_AFTER_PRESENT";
break;
case SyncHazard::PRESENT_AFTER_WRITE:
return "PRESENT_AFTER_WRITE";
break;
case SyncHazard::PRESENT_AFTER_READ:
return "PRESENT_AFTER_READ";
break;
default:
assert(0);
}
return "INVALID HAZARD";
}
static const SyncStageAccessInfoType *SyncStageAccessInfoFromMask(SyncStageAccessFlags flags) {
// Return the info for the first bit found
const SyncStageAccessInfoType *info = nullptr;
for (size_t i = 0; i < flags.size(); i++) {
if (flags.test(i)) {
info = &syncStageAccessInfoByStageAccessIndex()[i];
break;
}
}
return info;
}
static std::string string_SyncStageAccessFlags(const SyncStageAccessFlags &flags, const char *sep = "|") {
std::string out_str;
if (flags.none()) {
out_str = "0";
} else {
for (size_t i = 0; i < syncStageAccessInfoByStageAccessIndex().size(); i++) {
const auto &info = syncStageAccessInfoByStageAccessIndex()[i];
if ((flags & info.stage_access_bit).any()) {
if (!out_str.empty()) {
out_str.append(sep);
}
out_str.append(info.name);
}
}
if (out_str.length() == 0) {
out_str.append("Unhandled SyncStageAccess");
}
}
return out_str;
}
static std::string string_UsageIndex(SyncStageAccessIndex usage_index) {
const char *stage_access_name = "INVALID_STAGE_ACCESS";
if (usage_index < static_cast<SyncStageAccessIndex>(syncStageAccessInfoByStageAccessIndex().size())) {
stage_access_name = syncStageAccessInfoByStageAccessIndex()[usage_index].name;
}
return std::string(stage_access_name);
}
struct SyncNodeFormatter {
const debug_report_data *report_data;
const BASE_NODE *node;
const char *label;
SyncNodeFormatter(const SyncValidator &sync_state, const CMD_BUFFER_STATE *cb_state)
: report_data(sync_state.report_data), node(cb_state), label("command_buffer") {}
SyncNodeFormatter(const SyncValidator &sync_state, const IMAGE_STATE *image)
: report_data(sync_state.report_data), node(image), label("image") {}
SyncNodeFormatter(const SyncValidator &sync_state, const QUEUE_STATE *q_state)
: report_data(sync_state.report_data), node(q_state), label("queue") {}
SyncNodeFormatter(const SyncValidator &sync_state, const BASE_NODE *base_node, const char *label_ = nullptr)
: report_data(sync_state.report_data), node(base_node), label(label_) {}
};
std::ostream &operator<<(std::ostream &out, const SyncNodeFormatter &formatter) {
if (formatter.label) {
out << formatter.label << ": ";
}
if (formatter.node) {
out << formatter.report_data->FormatHandle(formatter.node->Handle()).c_str();
if (formatter.node->Destroyed()) {
out << " (destroyed)";
}
} else {
out << "null handle";
}
return out;
}
std::ostream &operator<<(std::ostream &out, const NamedHandle::FormatterState &formatter) {
const NamedHandle &handle = formatter.that;
bool labeled = false;
if (!handle.name.empty()) {
out << handle.name;
labeled = true;
}
if (handle.IsIndexed()) {
out << "[" << handle.index << "]";
labeled = true;
}
if (labeled) {
out << ": ";
}
out << formatter.state.report_data->FormatHandle(handle.handle);
return out;
}
std::ostream &operator<<(std::ostream &out, const ResourceUsageRecord::FormatterState &formatter) {
const ResourceUsageRecord &record = formatter.record;
if (record.alt_usage) {
out << record.alt_usage.Formatter(formatter.sync_state);
} else {
out << "command: " << CommandTypeString(record.command);
out << ", seq_no: " << record.seq_num;
if (record.sub_command != 0) {
out << ", subcmd: " << record.sub_command;
}
// Note: ex_cb_state set to null forces output of record.cb_state
if (!formatter.ex_cb_state || (formatter.ex_cb_state != record.cb_state)) {
out << ", " << SyncNodeFormatter(formatter.sync_state, record.cb_state);
}
for (const auto &named_handle : record.handles) {
out << "," << named_handle.Formatter(formatter.sync_state);
}
out << ", reset_no: " << std::to_string(record.reset_count);
}
return out;
}
std::ostream &operator<<(std::ostream &out, const HazardResult &hazard) {
assert(hazard.usage_index < static_cast<SyncStageAccessIndex>(syncStageAccessInfoByStageAccessIndex().size()));
const auto &usage_info = syncStageAccessInfoByStageAccessIndex()[hazard.usage_index];
const auto *info = SyncStageAccessInfoFromMask(hazard.prior_access);
const char *stage_access_name = info ? info->name : "INVALID_STAGE_ACCESS";
out << "(";
if (!hazard.recorded_access.get()) {
// if we have a recorded usage the usage is reported from the recorded contexts point of view
out << "usage: " << usage_info.name << ", ";
}
out << "prior_usage: " << stage_access_name;
if (IsHazardVsRead(hazard.hazard)) {
const auto barriers = hazard.access_state->GetReadBarriers(hazard.prior_access);
out << ", read_barriers: " << string_VkPipelineStageFlags2KHR(barriers);
} else {
SyncStageAccessFlags write_barrier = hazard.access_state->GetWriteBarriers();
out << ", write_barriers: " << string_SyncStageAccessFlags(write_barrier);
}
return out;
}
struct NoopBarrierAction {
explicit NoopBarrierAction() {}
void operator()(ResourceAccessState *access) const {}
const bool layout_transition = false;
};
static void InitSubpassContexts(VkQueueFlags queue_flags, const RENDER_PASS_STATE &rp_state, const AccessContext *external_context,
std::vector<AccessContext> &subpass_contexts) {
const auto &create_info = rp_state.createInfo;
// Add this for all subpasses here so that they exsist during next subpass validation
subpass_contexts.clear();
subpass_contexts.reserve(create_info.subpassCount);
for (uint32_t pass = 0; pass < create_info.subpassCount; pass++) {
subpass_contexts.emplace_back(pass, queue_flags, rp_state.subpass_dependencies, subpass_contexts, external_context);
}
}
// NOTE: Make sure the proxy doesn't outlive from, as the proxy is pointing directly to access contexts owned by from.
CommandBufferAccessContext::CommandBufferAccessContext(const CommandBufferAccessContext &from, AsProxyContext dummy)
: CommandBufferAccessContext(from.sync_state_) {
// Copy only the needed fields out of from for a temporary, proxy command buffer context
cb_state_ = from.cb_state_;
access_log_ = std::make_shared<AccessLog>(*from.access_log_); // potentially large, but no choice given tagging lookup.
command_number_ = from.command_number_;
subcommand_number_ = from.subcommand_number_;
reset_count_ = from.reset_count_;
const auto *from_context = from.GetCurrentAccessContext();
assert(from_context);
// Construct a fully resolved single access context out of from
const NoopBarrierAction noop_barrier;
for (AccessAddressType address_type : kAddressTypes) {
from_context->ResolveAccessRange(address_type, kFullRange, noop_barrier,
&cb_access_context_.GetAccessStateMap(address_type), nullptr);
}
// The proxy has flatten the current render pass context (if any), but the async contexts are needed for hazard detection
cb_access_context_.ImportAsyncContexts(*from_context);
events_context_ = from.events_context_;
// We don't want to copy the full render_pass_context_ history just for the proxy.
}
std::string CommandBufferAccessContext::FormatUsage(const ResourceUsageTag tag) const {
if (tag >= access_log_->size()) return std::string();
std::stringstream out;
assert(tag < access_log_->size());
const auto &record = (*access_log_)[tag];
out << record.Formatter(*sync_state_, cb_state_);
return out.str();
}
std::string CommandBufferAccessContext::FormatUsage(const ResourceFirstAccess &access) const {
std::stringstream out;
out << "(recorded_usage: " << string_UsageIndex(access.usage_index);
out << ", " << FormatUsage(access.tag) << ")";
return out.str();
}
std::string CommandExecutionContext::FormatHazard(const HazardResult &hazard) const {
std::stringstream out;
out << hazard;
out << ", " << FormatUsage(hazard.tag) << ")";
return out.str();
}
bool CommandExecutionContext::ValidForSyncOps() const {
const bool valid = GetCurrentEventsContext() && GetCurrentAccessContext();
assert(valid);
return valid;
}
// NOTE: the attachement read flag is put *only* in the access scope and not in the exect scope, since the ordering
// rules apply only to this specific access for this stage, and not the stage as a whole. The ordering detection
// also reflects this special case for read hazard detection (using access instead of exec scope)
static constexpr VkPipelineStageFlags2KHR kColorAttachmentExecScope = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT_KHR;
static const SyncStageAccessFlags kColorAttachmentAccessScope =
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_BIT |
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE_BIT |
SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT; // Note: this is intentionally not in the exec scope
static constexpr VkPipelineStageFlags2KHR kDepthStencilAttachmentExecScope =
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT_KHR | VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT_KHR;
static const SyncStageAccessFlags kDepthStencilAttachmentAccessScope =
SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT; // Note: this is intentionally not in the exec scope
static constexpr VkPipelineStageFlags2KHR kRasterAttachmentExecScope = kDepthStencilAttachmentExecScope | kColorAttachmentExecScope;
static const SyncStageAccessFlags kRasterAttachmentAccessScope = kDepthStencilAttachmentAccessScope | kColorAttachmentAccessScope;
ResourceAccessState::OrderingBarriers ResourceAccessState::kOrderingRules = {
{{VK_PIPELINE_STAGE_2_NONE_KHR, SyncStageAccessFlags()},
{kColorAttachmentExecScope, kColorAttachmentAccessScope},
{kDepthStencilAttachmentExecScope, kDepthStencilAttachmentAccessScope},
{kRasterAttachmentExecScope, kRasterAttachmentAccessScope}}};
// Sometimes we have an internal access conflict, and we using the kInvalidTag to set and detect in temporary/proxy contexts
static const ResourceUsageTag kInvalidTag(ResourceUsageRecord::kMaxIndex);
static VkDeviceSize ResourceBaseAddress(const BINDABLE &bindable) { return bindable.GetFakeBaseAddress(); }
VkDeviceSize GetRealWholeSize(VkDeviceSize offset, VkDeviceSize size, VkDeviceSize whole_size) {
if (size == VK_WHOLE_SIZE) {
return (whole_size - offset);
}
return size;
}
static inline VkDeviceSize GetBufferWholeSize(const BUFFER_STATE &buf_state, VkDeviceSize offset, VkDeviceSize size) {
return GetRealWholeSize(offset, size, buf_state.createInfo.size);
}
template <typename T>
static ResourceAccessRange MakeRange(const T &has_offset_and_size) {
return ResourceAccessRange(has_offset_and_size.offset, (has_offset_and_size.offset + has_offset_and_size.size));
}
static ResourceAccessRange MakeRange(VkDeviceSize start, VkDeviceSize size) { return ResourceAccessRange(start, (start + size)); }
static inline ResourceAccessRange MakeRange(const BUFFER_STATE &buffer, VkDeviceSize offset, VkDeviceSize size) {
return MakeRange(offset, GetBufferWholeSize(buffer, offset, size));
}
static inline ResourceAccessRange MakeRange(const BUFFER_VIEW_STATE &buf_view_state) {
return MakeRange(*buf_view_state.buffer_state.get(), buf_view_state.create_info.offset, buf_view_state.create_info.range);
}
// Range generators for to allow event scope filtration to be limited to the top of the resource access traversal pipeline
//
// Note: there is no "begin/end" or reset facility. These are each written as "one time through" generators.
//
// Usage:
// Constructor() -- initializes the generator to point to the begin of the space declared.
// * -- the current range of the generator empty signfies end
// ++ -- advance to the next non-empty range (or end)
// A wrapper for a single range with the same semantics as the actual generators below
template <typename KeyType>
class SingleRangeGenerator {
public:
SingleRangeGenerator(const KeyType &range) : current_(range) {}
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return ¤t_; }
SingleRangeGenerator &operator++() {
current_ = KeyType(); // just one real range
return *this;
}
bool operator==(const SingleRangeGenerator &other) const { return current_ == other.current_; }
private:
SingleRangeGenerator() = default;
const KeyType range_;
KeyType current_;
};
// Generate the ranges that are the intersection of range and the entries in the RangeMap
template <typename RangeMap, typename KeyType = typename RangeMap::key_type>
class MapRangesRangeGenerator {
public:
// Default constructed is safe to dereference for "empty" test, but for no other operation.
MapRangesRangeGenerator() : range_(), map_(nullptr), map_pos_(), current_() {
// Default construction for KeyType *must* be empty range
assert(current_.empty());
}
MapRangesRangeGenerator(const RangeMap &filter, const KeyType &range) : range_(range), map_(&filter), map_pos_(), current_() {
SeekBegin();
}
MapRangesRangeGenerator(const MapRangesRangeGenerator &from) = default;
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return ¤t_; }
MapRangesRangeGenerator &operator++() {
++map_pos_;
UpdateCurrent();
return *this;
}
bool operator==(const MapRangesRangeGenerator &other) const { return current_ == other.current_; }
protected:
void UpdateCurrent() {
if (map_pos_ != map_->cend()) {
current_ = range_ & map_pos_->first;
} else {
current_ = KeyType();
}
}
void SeekBegin() {
map_pos_ = map_->lower_bound(range_);
UpdateCurrent();
}
// Adding this functionality here, to avoid gratuitous Base:: qualifiers in the derived class
// Note: Not exposed in this classes public interface to encourage using a consistent ++/empty generator semantic
template <typename Pred>
MapRangesRangeGenerator &PredicatedIncrement(Pred &pred) {
do {
++map_pos_;
} while (map_pos_ != map_->cend() && map_pos_->first.intersects(range_) && !pred(map_pos_));
UpdateCurrent();
return *this;
}
const KeyType range_;
const RangeMap *map_;
typename RangeMap::const_iterator map_pos_;
KeyType current_;
};
using SingleAccessRangeGenerator = SingleRangeGenerator<ResourceAccessRange>;
using EventSimpleRangeGenerator = MapRangesRangeGenerator<SyncEventState::ScopeMap>;
// Generate the ranges for entries meeting the predicate that are the intersection of range and the entries in the RangeMap
template <typename RangeMap, typename Predicate, typename KeyType = typename RangeMap::key_type>
class PredicatedMapRangesRangeGenerator : public MapRangesRangeGenerator<RangeMap, KeyType> {
public:
using Base = MapRangesRangeGenerator<RangeMap, KeyType>;
// Default constructed is safe to dereference for "empty" test, but for no other operation.
PredicatedMapRangesRangeGenerator() : Base(), pred_() {}
PredicatedMapRangesRangeGenerator(const RangeMap &filter, const KeyType &range, Predicate pred)
: Base(filter, range), pred_(pred) {}
PredicatedMapRangesRangeGenerator(const PredicatedMapRangesRangeGenerator &from) = default;
PredicatedMapRangesRangeGenerator &operator++() {
Base::PredicatedIncrement(pred_);
return *this;
}
protected:
Predicate pred_;
};
// Generate the ranges that are the intersection of the RangeGen ranges and the entries in the FilterMap
// Templated to allow for different Range generators or map sources...
template <typename RangeMap, typename RangeGen, typename KeyType = typename RangeMap::key_type>
class FilteredGeneratorGenerator {
public:
// Default constructed is safe to dereference for "empty" test, but for no other operation.
FilteredGeneratorGenerator() : filter_(nullptr), gen_(), filter_pos_(), current_() {
// Default construction for KeyType *must* be empty range
assert(current_.empty());
}
FilteredGeneratorGenerator(const RangeMap &filter, RangeGen &gen) : filter_(&filter), gen_(gen), filter_pos_(), current_() {
SeekBegin();
}
FilteredGeneratorGenerator(const FilteredGeneratorGenerator &from) = default;
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return ¤t_; }
FilteredGeneratorGenerator &operator++() {
KeyType gen_range = GenRange();
KeyType filter_range = FilterRange();
current_ = KeyType();
while (gen_range.non_empty() && filter_range.non_empty() && current_.empty()) {
if (gen_range.end > filter_range.end) {
// if the generated range is beyond the filter_range, advance the filter range
filter_range = AdvanceFilter();
} else {
gen_range = AdvanceGen();
}
current_ = gen_range & filter_range;
}
return *this;
}
bool operator==(const FilteredGeneratorGenerator &other) const { return current_ == other.current_; }
private:
KeyType AdvanceFilter() {
++filter_pos_;
auto filter_range = FilterRange();
if (filter_range.valid()) {
FastForwardGen(filter_range);
}
return filter_range;
}
KeyType AdvanceGen() {
++gen_;
auto gen_range = GenRange();
if (gen_range.valid()) {
FastForwardFilter(gen_range);
}
return gen_range;
}
KeyType FilterRange() const { return (filter_pos_ != filter_->cend()) ? filter_pos_->first : KeyType(); }
KeyType GenRange() const { return *gen_; }
KeyType FastForwardFilter(const KeyType &range) {
auto filter_range = FilterRange();
int retry_count = 0;
const static int kRetryLimit = 2; // TODO -- determine whether this limit is optimal
while (!filter_range.empty() && (filter_range.end <= range.begin)) {
if (retry_count < kRetryLimit) {
++filter_pos_;
filter_range = FilterRange();
retry_count++;
} else {
// Okay we've tried walking, do a seek.
filter_pos_ = filter_->lower_bound(range);
break;
}
}
return FilterRange();
}
// TODO: Consider adding "seek" (or an absolute bound "get" to range generators to make this walk
// faster.
KeyType FastForwardGen(const KeyType &range) {
auto gen_range = GenRange();
while (!gen_range.empty() && (gen_range.end <= range.begin)) {
++gen_;
gen_range = GenRange();
}
return gen_range;
}
void SeekBegin() {
auto gen_range = GenRange();
if (gen_range.empty()) {
current_ = KeyType();
filter_pos_ = filter_->cend();
} else {
filter_pos_ = filter_->lower_bound(gen_range);
current_ = gen_range & FilterRange();
}
}
const RangeMap *filter_;
RangeGen gen_;
typename RangeMap::const_iterator filter_pos_;
KeyType current_;
};
using EventImageRangeGenerator = FilteredGeneratorGenerator<SyncEventState::ScopeMap, subresource_adapter::ImageRangeGenerator>;
ResourceAccessRange GetBufferRange(VkDeviceSize offset, VkDeviceSize buf_whole_size, uint32_t first_index, uint32_t count,
uint32_t stride) {
VkDeviceSize range_start = offset + (first_index * stride);
VkDeviceSize range_size = 0;
if (count == UINT32_MAX) {
range_size = buf_whole_size - range_start;
} else {
range_size = count * stride;
}
return MakeRange(range_start, range_size);
}
SyncStageAccessIndex GetSyncStageAccessIndexsByDescriptorSet(VkDescriptorType descriptor_type,
const ResourceInterfaceVariable &variable,
VkShaderStageFlagBits stage_flag) {
if (descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) {
assert(stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT);
return SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ;
}
auto stage_access = syncStageAccessMaskByShaderStage().find(stage_flag);
if (stage_access == syncStageAccessMaskByShaderStage().end()) {
assert(0);
}
if (descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
return stage_access->second.uniform_read;
}
// If the desriptorSet is writable, we don't need to care SHADER_READ. SHADER_WRITE is enough.
// Because if write hazard happens, read hazard might or might not happen.
// But if write hazard doesn't happen, read hazard is impossible to happen.
if (variable.is_writable) {
return stage_access->second.storage_write;
} else if (descriptor_type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ||
descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) {
return stage_access->second.sampled_read;
} else {
return stage_access->second.storage_read;
}
}
bool IsImageLayoutDepthWritable(VkImageLayout image_layout) {
return (image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL)
? true
: false;
}
bool IsImageLayoutStencilWritable(VkImageLayout image_layout) {
return (image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL)
? true
: false;
}
// Class AccessContext stores the state of accesses specific to a Command, Subpass, or Queue
template <typename Action>
static void ApplyOverImageRange(const IMAGE_STATE &image_state, const VkImageSubresourceRange &subresource_range_arg,
Action &action) {
// At this point the "apply over range" logic only supports a single memory binding
if (!SimpleBinding(image_state)) return;
auto subresource_range = NormalizeSubresourceRange(image_state.createInfo, subresource_range_arg);
const auto base_address = ResourceBaseAddress(image_state);
subresource_adapter::ImageRangeGenerator range_gen(*image_state.fragment_encoder.get(), subresource_range, {0, 0, 0},
image_state.createInfo.extent, base_address, false);
for (; range_gen->non_empty(); ++range_gen) {
action(*range_gen);
}
}
// Tranverse the attachment resolves for this a specific subpass, and do action() to them.
// Used by both validation and record operations
//
// The signature for Action() reflect the needs of both uses.
template <typename Action>
void ResolveOperation(Action &action, const RENDER_PASS_STATE &rp_state, const AttachmentViewGenVector &attachment_views,
uint32_t subpass) {
const auto &rp_ci = rp_state.createInfo;
const auto *attachment_ci = rp_ci.pAttachments;
const auto &subpass_ci = rp_ci.pSubpasses[subpass];
// Color resolves -- require an inuse color attachment and a matching inuse resolve attachment
const auto *color_attachments = subpass_ci.pColorAttachments;
const auto *color_resolve = subpass_ci.pResolveAttachments;
if (color_resolve && color_attachments) {
for (uint32_t i = 0; i < subpass_ci.colorAttachmentCount; i++) {
const auto &color_attach = color_attachments[i].attachment;
const auto &resolve_attach = subpass_ci.pResolveAttachments[i].attachment;
if ((color_attach != VK_ATTACHMENT_UNUSED) && (resolve_attach != VK_ATTACHMENT_UNUSED)) {
action("color", "resolve read", color_attach, resolve_attach, attachment_views[color_attach],
AttachmentViewGen::Gen::kRenderArea, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ,
SyncOrdering::kColorAttachment);
action("color", "resolve write", color_attach, resolve_attach, attachment_views[resolve_attach],
AttachmentViewGen::Gen::kRenderArea, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE,
SyncOrdering::kColorAttachment);
}
}
}
// Depth stencil resolve only if the extension is present
const auto ds_resolve = LvlFindInChain<VkSubpassDescriptionDepthStencilResolve>(subpass_ci.pNext);
if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment &&
(ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) && subpass_ci.pDepthStencilAttachment &&
(subpass_ci.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED)) {
const auto src_at = subpass_ci.pDepthStencilAttachment->attachment;
const auto src_ci = attachment_ci[src_at];
// The formats are required to match so we can pick either
const bool resolve_depth = (ds_resolve->depthResolveMode != VK_RESOLVE_MODE_NONE) && FormatHasDepth(src_ci.format);
const bool resolve_stencil = (ds_resolve->stencilResolveMode != VK_RESOLVE_MODE_NONE) && FormatHasStencil(src_ci.format);
const auto dst_at = ds_resolve->pDepthStencilResolveAttachment->attachment;
// Figure out which aspects are actually touched during resolve operations
const char *aspect_string = nullptr;
AttachmentViewGen::Gen gen_type = AttachmentViewGen::Gen::kRenderArea;
if (resolve_depth && resolve_stencil) {
aspect_string = "depth/stencil";
} else if (resolve_depth) {
// Validate depth only
gen_type = AttachmentViewGen::Gen::kDepthOnlyRenderArea;
aspect_string = "depth";
} else if (resolve_stencil) {
// Validate all stencil only
gen_type = AttachmentViewGen::Gen::kStencilOnlyRenderArea;
aspect_string = "stencil";
}
if (aspect_string) {
action(aspect_string, "resolve read", src_at, dst_at, attachment_views[src_at], gen_type,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ, SyncOrdering::kRaster);
action(aspect_string, "resolve write", src_at, dst_at, attachment_views[dst_at], gen_type,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster);
}
}
}
// Action for validating resolve operations
class ValidateResolveAction {
public:
ValidateResolveAction(VkRenderPass render_pass, uint32_t subpass, const AccessContext &context,
const CommandExecutionContext &exec_context, CMD_TYPE cmd_type)
: render_pass_(render_pass),
subpass_(subpass),
context_(context),
exec_context_(exec_context),
cmd_type_(cmd_type),
skip_(false) {}
void operator()(const char *aspect_name, const char *attachment_name, uint32_t src_at, uint32_t dst_at,
const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, SyncStageAccessIndex current_usage,
SyncOrdering ordering_rule) {
HazardResult hazard;
hazard = context_.DetectHazard(view_gen, gen_type, current_usage, ordering_rule);
if (hazard.hazard) {
skip_ |= exec_context_.GetSyncState().LogError(
render_pass_, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 "during %s %s, from attachment %" PRIu32 " to resolve attachment %" PRIu32
". Access info %s.",
CommandTypeString(cmd_type_), string_SyncHazard(hazard.hazard), subpass_, aspect_name, attachment_name, src_at,
dst_at, exec_context_.FormatHazard(hazard).c_str());
}
}
// Providing a mechanism for the constructing caller to get the result of the validation
bool GetSkip() const { return skip_; }
private:
VkRenderPass render_pass_;
const uint32_t subpass_;
const AccessContext &context_;
const CommandExecutionContext &exec_context_;
CMD_TYPE cmd_type_;
bool skip_;
};
// Update action for resolve operations
class UpdateStateResolveAction {
public:
UpdateStateResolveAction(AccessContext &context, ResourceUsageTag tag) : context_(context), tag_(tag) {}
void operator()(const char *, const char *, uint32_t, uint32_t, const AttachmentViewGen &view_gen,
AttachmentViewGen::Gen gen_type, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule) {
// Ignores validation only arguments...
context_.UpdateAccessState(view_gen, gen_type, current_usage, ordering_rule, tag_);
}
private:
AccessContext &context_;
const ResourceUsageTag tag_;
};
void HazardResult::Set(const ResourceAccessState *access_state_, SyncStageAccessIndex usage_index_, SyncHazard hazard_,
const SyncStageAccessFlags &prior_, const ResourceUsageTag tag_) {
access_state = std::make_unique<const ResourceAccessState>(*access_state_);
usage_index = usage_index_;
hazard = hazard_;
prior_access = prior_;
tag = tag_;
// Touchup the hazard to reflect "present as release" semantics
// NOTE: For implementing QFO release/acquire semantics... touch up here as well
if (access_state->LastWriteOp() == SYNC_PRESENT_ENGINE_BIT_SYNCVAL_PRESENT_PRESENTED_BIT_SYNCVAL) {
if (hazard == SyncHazard::READ_AFTER_WRITE) {
hazard = SyncHazard::READ_AFTER_PRESENT;
} else if (hazard == SyncHazard::WRITE_AFTER_WRITE) {
hazard = SyncHazard::WRITE_AFTER_PRESENT;
}
} else if (usage_index_ == SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_PRESENTED_SYNCVAL) {
if (hazard == SyncHazard::WRITE_AFTER_READ) {
hazard = SyncHazard::PRESENT_AFTER_READ;
} else if (hazard == SyncHazard::WRITE_AFTER_WRITE) {
hazard = SyncHazard::PRESENT_AFTER_WRITE;
}
}
}
void HazardResult::AddRecordedAccess(const ResourceFirstAccess &first_access) {
recorded_access = std::make_unique<const ResourceFirstAccess>(first_access);
}
void AccessContext::DeleteAccess(const AddressRange &address) { GetAccessStateMap(address.type).erase_range(address.range); }
void AccessContext::RecordRenderpassAsyncContextTags() {
// The tags are unknown at Access Context creation
for (auto &async_ref : async_) {
async_ref.tag = async_ref.context->start_tag_;
}
}
AccessContext::AccessContext(uint32_t subpass, VkQueueFlags queue_flags,
const std::vector<SubpassDependencyGraphNode> &dependencies,
const std::vector<AccessContext> &contexts, const AccessContext *external_context) {
Reset();
const auto &subpass_dep = dependencies[subpass];
const bool has_barrier_from_external = subpass_dep.barrier_from_external.size() > 0U;
prev_.reserve(subpass_dep.prev.size() + (has_barrier_from_external ? 1U : 0U));
prev_by_subpass_.resize(subpass, nullptr); // Can't be more prevs than the subpass we're on
for (const auto &prev_dep : subpass_dep.prev) {
const auto prev_pass = prev_dep.first->pass;
const auto &prev_barriers = prev_dep.second;
assert(prev_dep.second.size());
prev_.emplace_back(&contexts[prev_pass], queue_flags, prev_barriers);
prev_by_subpass_[prev_pass] = &prev_.back();
}
async_.reserve(subpass_dep.async.size());
for (const auto async_subpass : subpass_dep.async) {
// Start tags are not known at creation time (as it's done at BeginRenderpass)
async_.emplace_back(contexts[async_subpass], kInvalidTag);
}
if (has_barrier_from_external) {
// Store the barrier from external with the reat, but save pointer for "by subpass" lookups.
prev_.emplace_back(external_context, queue_flags, subpass_dep.barrier_from_external);
src_external_ = &prev_.back();
}
if (subpass_dep.barrier_to_external.size()) {
dst_external_ = TrackBack(this, queue_flags, subpass_dep.barrier_to_external);
}
}
void AccessContext::Trim() {
auto normalize = [](AccessAddressType address_type, ResourceAccessRangeMap::value_type &access) { access.second.Normalize(); };
ForAll(normalize);
// Consolidate map after normalization, combines directly adjacent ranges with common values.
for (auto& map : access_state_maps_) {
sparse_container::consolidate(map);
}
}
void AccessContext::AddReferencedTags(ResourceUsageTagSet &used) const {
auto gather = [&used](AccessAddressType address_type, const ResourceAccessRangeMap::value_type &access) {
access.second.GatherReferencedTags(used);
};
ConstForAll(gather);
}
template <typename Detector>
HazardResult AccessContext::DetectPreviousHazard(AccessAddressType type, Detector &detector,
const ResourceAccessRange &range) const {
ResourceAccessRangeMap descent_map;
ResolvePreviousAccess(type, range, &descent_map, nullptr);
HazardResult hazard;
for (auto prev = descent_map.begin(); prev != descent_map.end() && !hazard.hazard; ++prev) {
hazard = detector.Detect(prev);
}
return hazard;
}
template <typename Action>
void AccessContext::ForAll(Action &&action) {
for (const auto address_type : kAddressTypes) {
auto &accesses = GetAccessStateMap(address_type);
for (auto &access : accesses) {
action(address_type, access);
}
}
}
template <typename Action>
void AccessContext::ConstForAll(Action &&action) const {
for (const auto address_type : kAddressTypes) {
auto &accesses = GetAccessStateMap(address_type);
for (auto &access : accesses) {
action(address_type, access);
}
}
}
template <typename Predicate>
void AccessContext::EraseIf(Predicate &&pred) {
for (const auto address_type : kAddressTypes) {
auto &accesses = GetAccessStateMap(address_type);
// Note: Don't forward, we don't want r-values moved, since we're going to make multiple calls.
layer_data::EraseIf(accesses, pred);
}
}
template <typename Detector, typename RangeGen>
HazardResult AccessContext::DetectHazard(AccessAddressType address_type, Detector &detector, RangeGen &range_gen,
DetectOptions options) const {
for (; range_gen->non_empty(); ++range_gen) {
HazardResult hazard = DetectHazard(address_type, detector, *range_gen, options);
if (hazard.hazard) return hazard;
}
return HazardResult();
}
// A recursive range walker for hazard detection, first for the current context and the (DetectHazardRecur) to walk
// the DAG of the contexts (for example subpasses)
template <typename Detector>
HazardResult AccessContext::DetectHazard(AccessAddressType type, Detector &detector, const ResourceAccessRange &range,
DetectOptions options) const {
HazardResult hazard;
if (static_cast<uint32_t>(options) & DetectOptions::kDetectAsync) {
// Async checks don't require recursive lookups, as the async lists are exhaustive for the top-level context
// so we'll check these first
for (const auto &async_ref : async_) {
hazard = async_ref.context->DetectAsyncHazard(type, detector, range, async_ref.tag);
if (hazard.hazard) return hazard;
}
}
const bool detect_prev = (static_cast<uint32_t>(options) & DetectOptions::kDetectPrevious) != 0;
const auto &accesses = GetAccessStateMap(type);
const auto the_end = accesses.cend(); // End is not invalidated
auto pos = accesses.lower_bound(range);
ResourceAccessRange gap = {range.begin, range.begin};
while (pos != the_end && pos->first.begin < range.end) {
// Cover any leading gap, or gap between entries
if (detect_prev) {
// TODO: After profiling we may want to change the descent logic such that we don't recur per gap...
// Cover any leading gap, or gap between entries
gap.end = pos->first.begin; // We know this begin is < range.end
if (gap.non_empty()) {
// Recur on all gaps
hazard = DetectPreviousHazard(type, detector, gap);
if (hazard.hazard) return hazard;
}
// Set up for the next gap. If pos..end is >= range.end, loop will exit, and trailing gap will be empty
gap.begin = pos->first.end;
}
hazard = detector.Detect(pos);
if (hazard.hazard) return hazard;
++pos;
}
if (detect_prev) {
// Detect in the trailing empty as needed
gap.end = range.end;
if (gap.non_empty()) {
hazard = DetectPreviousHazard(type, detector, gap);
}
}
return hazard;
}
// A non recursive range walker for the asynchronous contexts (those we have no barriers with)
template <typename Detector>
HazardResult AccessContext::DetectAsyncHazard(AccessAddressType type, const Detector &detector, const ResourceAccessRange &range,
ResourceUsageTag async_tag) const {
auto &accesses = GetAccessStateMap(type);
auto pos = accesses.lower_bound(range);
const auto the_end = accesses.end();
HazardResult hazard;
while (pos != the_end && pos->first.begin < range.end) {
hazard = detector.DetectAsync(pos, async_tag);
if (hazard.hazard) break;
++pos;
}
return hazard;
}
struct ApplySubpassTransitionBarriersAction {
explicit ApplySubpassTransitionBarriersAction(const std::vector<SyncBarrier> &barriers_) : barriers(barriers_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
access->ApplyBarriers(barriers, true);
}
const std::vector<SyncBarrier> &barriers;
};
struct QueueTagOffsetBarrierAction {
QueueTagOffsetBarrierAction(QueueId qid, ResourceUsageTag offset) : queue_id(qid), tag_offset(offset) {}
void operator()(ResourceAccessState *access) const {
access->OffsetTag(tag_offset);
access->SetQueueId(queue_id);
};
QueueId queue_id;
ResourceUsageTag tag_offset;
};
struct ApplyTrackbackStackAction {
explicit ApplyTrackbackStackAction(const std::vector<SyncBarrier> &barriers_,
const ResourceAccessStateFunction *previous_barrier_ = nullptr)
: barriers(barriers_), previous_barrier(previous_barrier_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
assert(!access->HasPendingState());
access->ApplyBarriers(barriers, false);
// NOTE: We can use invalid tag, as these barriers do no include layout transitions (would assert in SetWrite)
access->ApplyPendingBarriers(kInvalidTag);
if (previous_barrier) {
assert(bool(*previous_barrier));
(*previous_barrier)(access);
}
}
const std::vector<SyncBarrier> &barriers;
const ResourceAccessStateFunction *previous_barrier;
};
// Splits a single map entry into piece matching the entries in [first, last) the total range over [first, last) must be
// contained with entry. Entry must be an iterator pointing to dest, first and last must be iterators pointing to a
// *different* map from dest.
// Returns the position past the last resolved range -- the entry covering the remainder of entry->first not included in the
// range [first, last)
template <typename BarrierAction>
static void ResolveMapToEntry(ResourceAccessRangeMap *dest, const ResourceAccessRangeMap::iterator &entry,
const ResourceAccessRangeMap::const_iterator &first,
const ResourceAccessRangeMap::const_iterator &last, BarrierAction &barrier_action) {
auto at = entry;
for (auto pos = first; pos != last; ++pos) {
// Every member of the input iterator range must fit within the remaining portion of entry
assert(at->first.includes(pos->first));
assert(at != dest->end());
// Trim up at to the same size as the entry to resolve
at = sparse_container::split(at, *dest, pos->first);
auto access = pos->second; // intentional copy
barrier_action(&access);
at->second.Resolve(access);
++at; // Go to the remaining unused section of entry
}
}
static SyncBarrier MergeBarriers(const std::vector<SyncBarrier> &barriers) {
SyncBarrier merged = {};
for (const auto &barrier : barriers) {
merged.Merge(barrier);
}
return merged;
}
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(AccessAddressType type, const ResourceAccessRange &range, BarrierAction &barrier_action,
ResourceAccessRangeMap *resolve_map, const ResourceAccessState *infill_state,
bool recur_to_infill) const {
if (!range.non_empty()) return;
ResourceRangeMergeIterator current(*resolve_map, GetAccessStateMap(type), range.begin);
while (current->range.non_empty() && range.includes(current->range.begin)) {
const auto current_range = current->range & range;
if (current->pos_B->valid) {
const auto &src_pos = current->pos_B->lower_bound;
auto access = src_pos->second; // intentional copy
barrier_action(&access);
if (current->pos_A->valid) {
const auto trimmed = sparse_container::split(current->pos_A->lower_bound, *resolve_map, current_range);
trimmed->second.Resolve(access);
current.invalidate_A(trimmed);
} else {
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current_range, access));
current.invalidate_A(inserted); // Update the parallel iterator to point at the insert segment
}
} else {
// we have to descend to fill this gap
if (recur_to_infill) {
ResourceAccessRange recurrence_range = current_range;
// The current context is empty for the current range, so recur to fill the gap.
// Since we will be recurring back up the DAG, expand the gap descent to cover the full range for which B
// is not valid, to minimize that recurrence
if (current->pos_B.at_end()) {
// Do the remainder here....
recurrence_range.end = range.end;
} else {
// Recur only over the range until B becomes valid (within the limits of range).
recurrence_range.end = std::min(range.end, current->pos_B->lower_bound->first.begin);
}
ResolvePreviousAccessStack(type, recurrence_range, resolve_map, infill_state, barrier_action);
// Given that there could be gaps we need to seek carefully to not repeatedly search the same gaps in the next
// iterator of the outer while.
// Set the parallel iterator to the end of this range s.t. ++ will move us to the next range whether or
// not the end of the range is a gap. For the seek to work, first we need to warn the parallel iterator
// we stepped on the dest map
const auto seek_to = recurrence_range.end - 1; // The subtraction is safe as range can't be empty (loop condition)
current.invalidate_A(); // Changes current->range
current.seek(seek_to);
} else if (!current->pos_A->valid && infill_state) {
// If we didn't find anything in the current range, and we aren't reccuring... we infill if required
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current->range, *infill_state));
current.invalidate_A(inserted); // Update the parallel iterator to point at the correct segment after insert
}
}
if (current->range.non_empty()) {
++current;
}
}
// Infill if range goes passed both the current and resolve map prior contents
if (recur_to_infill && (current->range.end < range.end)) {
ResourceAccessRange trailing_fill_range = {current->range.end, range.end};
ResolvePreviousAccessStack<BarrierAction>(type, trailing_fill_range, resolve_map, infill_state, barrier_action);
}
}
template <typename BarrierAction>
void AccessContext::ResolvePreviousAccessStack(AccessAddressType type, const ResourceAccessRange &range,
ResourceAccessRangeMap *descent_map, const ResourceAccessState *infill_state,
const BarrierAction &previous_barrier) const {
ResourceAccessStateFunction stacked_barrier(std::ref(previous_barrier));
ResolvePreviousAccess(type, range, descent_map, infill_state, &stacked_barrier);
}
void AccessContext::ResolvePreviousAccess(AccessAddressType type, const ResourceAccessRange &range,
ResourceAccessRangeMap *descent_map, const ResourceAccessState *infill_state,
const ResourceAccessStateFunction *previous_barrier) const {
if (prev_.size() == 0) {
if (range.non_empty() && infill_state) {
// Fill the empty poritions of descent_map with the default_state with the barrier function applied (iff present)
ResourceAccessState state_copy;
if (previous_barrier) {
assert(bool(*previous_barrier));
state_copy = *infill_state;
(*previous_barrier)(&state_copy);
infill_state = &state_copy;
}
sparse_container::update_range_value(*descent_map, range, *infill_state,
sparse_container::value_precedence::prefer_dest);
}
} else {
// Look for something to fill the gap further along.
for (const auto &prev_dep : prev_) {
const ApplyTrackbackStackAction barrier_action(prev_dep.barriers, previous_barrier);
prev_dep.source_subpass->ResolveAccessRange(type, range, barrier_action, descent_map, infill_state);
}
}
}
// Non-lazy import of all accesses, WaitEvents needs this.
void AccessContext::ResolvePreviousAccesses() {
ResourceAccessState default_state;
if (!prev_.size()) return; // If no previous contexts, nothing to do
for (const auto address_type : kAddressTypes) {
ResolvePreviousAccess(address_type, kFullRange, &GetAccessStateMap(address_type), &default_state);
}
}
AccessAddressType AccessContext::ImageAddressType(const IMAGE_STATE &image) {
return (image.fragment_encoder->IsLinearImage()) ? AccessAddressType::kLinear : AccessAddressType::kIdealized;
}
static SyncStageAccessIndex ColorLoadUsage(VkAttachmentLoadOp load_op) {
const auto stage_access = (load_op == VK_ATTACHMENT_LOAD_OP_NONE_EXT)
? SYNC_ACCESS_INDEX_NONE
: ((load_op == VK_ATTACHMENT_LOAD_OP_LOAD) ? SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ
: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE);
return stage_access;
}
static SyncStageAccessIndex DepthStencilLoadUsage(VkAttachmentLoadOp load_op) {
const auto stage_access =
(load_op == VK_ATTACHMENT_LOAD_OP_NONE_EXT)
? SYNC_ACCESS_INDEX_NONE
: ((load_op == VK_ATTACHMENT_LOAD_OP_LOAD) ? SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ
: SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE);
return stage_access;
}
// Caller must manage returned pointer
static AccessContext *CreateStoreResolveProxyContext(const AccessContext &context, const RENDER_PASS_STATE &rp_state,
uint32_t subpass, const AttachmentViewGenVector &attachment_views) {
auto *proxy = new AccessContext(context);
proxy->UpdateAttachmentResolveAccess(rp_state, attachment_views, subpass, kInvalidTag);
proxy->UpdateAttachmentStoreAccess(rp_state, attachment_views, subpass, kInvalidTag);
return proxy;
}
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
BarrierAction &barrier_action, ResourceAccessRangeMap *descent_map,
const ResourceAccessState *infill_state) const {
const std::optional<ImageRangeGen> &attachment_gen = view_gen.GetRangeGen(gen_type);
if (!attachment_gen) return;
subresource_adapter::ImageRangeGenerator range_gen(*attachment_gen);
const AccessAddressType address_type = view_gen.GetAddressType();
for (; range_gen->non_empty(); ++range_gen) {
ResolveAccessRange(address_type, *range_gen, barrier_action, descent_map, infill_state);
}
}
template <typename ResolveOp>
void AccessContext::ResolveFromContext(ResolveOp &&resolve_op, const AccessContext &from_context,
const ResourceAccessState *infill_state, bool recur_to_infill) {
for (auto address_type : kAddressTypes) {
from_context.ResolveAccessRange(address_type, kFullRange, resolve_op, &GetAccessStateMap(address_type), infill_state,
recur_to_infill);
}
}
template <typename ResolveOp, typename RangeGenerator>
void AccessContext::ResolveFromContext(ResolveOp &&resolve_op, const AccessContext &from_context, AccessAddressType address_type,
RangeGenerator range_gen, const ResourceAccessState *infill_state, bool recur_to_infill) {
ResourceAccessRangeMap &destination_map = GetAccessStateMap(address_type);
for (; range_gen->non_empty(); ++range_gen) {
from_context.ResolveAccessRange(address_type, *range_gen, resolve_op, &destination_map, infill_state, recur_to_infill);
}
}
// Layout transitions are handled as if the were occuring in the beginning of the next subpass
bool AccessContext::ValidateLayoutTransitions(const CommandExecutionContext &exec_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, CMD_TYPE cmd_type) const {
bool skip = false;
// As validation methods are const and precede the record/update phase, for any tranistions from the immediately
// previous subpass, we have to validate them against a copy of the AccessContext, with resolve operations applied, as
// those affects have not been recorded yet.
//
// Note: we could be more efficient by tracking whether or not we actually *have* any changes (e.g. attachment resolve)
// to apply and only copy then, if this proves a hot spot.
std::unique_ptr<AccessContext> proxy_for_prev;
TrackBack proxy_track_back;
const auto &transitions = rp_state.subpass_transitions[subpass];
for (const auto &transition : transitions) {
const bool prev_needs_proxy = transition.prev_pass != VK_SUBPASS_EXTERNAL && (transition.prev_pass + 1 == subpass);
const auto *track_back = GetTrackBackFromSubpass(transition.prev_pass);
assert(track_back);
if (prev_needs_proxy) {
if (!proxy_for_prev) {
proxy_for_prev.reset(
CreateStoreResolveProxyContext(*track_back->source_subpass, rp_state, transition.prev_pass, attachment_views));
proxy_track_back = *track_back;
proxy_track_back.source_subpass = proxy_for_prev.get();
}
track_back = &proxy_track_back;
}
auto hazard = DetectSubpassTransitionHazard(*track_back, attachment_views[transition.attachment]);
if (hazard.hazard) {
const char *func_name = CommandTypeString(cmd_type);
if (hazard.tag == kInvalidTag) {
skip |= exec_context.GetSyncState().LogError(
rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" image layout transition (old_layout: %s, new_layout: %s) after store/resolve operation in subpass %" PRIu32,
func_name, string_SyncHazard(hazard.hazard), subpass, transition.attachment,
string_VkImageLayout(transition.old_layout), string_VkImageLayout(transition.new_layout), transition.prev_pass);
} else {
skip |= exec_context.GetSyncState().LogError(
rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" image layout transition (old_layout: %s, new_layout: %s). Access info %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, transition.attachment,
string_VkImageLayout(transition.old_layout), string_VkImageLayout(transition.new_layout),
exec_context.FormatHazard(hazard).c_str());
}
}
}
return skip;
}
bool AccessContext::ValidateLoadOperation(const CommandExecutionContext &exec_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, CMD_TYPE cmd_type) const {
bool skip = false;
const auto *attachment_ci = rp_state.createInfo.pAttachments;
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (subpass == rp_state.attachment_first_subpass[i]) {
const auto &view_gen = attachment_views[i];
if (!view_gen.IsValid()) continue;
const auto &ci = attachment_ci[i];
// Need check in the following way
// 1) if the usage bit isn't in the dest_access_scope, and there is layout traniition for initial use, report hazard
// vs. transition
// 2) if there isn't a layout transition, we need to look at the external context with a "detect hazard" operation
// for each aspect loaded.
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const SyncStageAccessIndex load_index = has_depth ? DepthStencilLoadUsage(ci.loadOp) : ColorLoadUsage(ci.loadOp);
const SyncStageAccessIndex stencil_load_index = has_stencil ? DepthStencilLoadUsage(ci.stencilLoadOp) : load_index;
HazardResult hazard;
const char *aspect = nullptr;
bool checked_stencil = false;
if (is_color && (load_index != SYNC_ACCESS_INDEX_NONE)) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kRenderArea, load_index, SyncOrdering::kColorAttachment);
aspect = "color";
} else {
if (has_depth && (load_index != SYNC_ACCESS_INDEX_NONE)) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea, load_index,
SyncOrdering::kDepthStencilAttachment);
aspect = "depth";
}
if (!hazard.hazard && has_stencil && (stencil_load_index != SYNC_ACCESS_INDEX_NONE)) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea, stencil_load_index,
SyncOrdering::kDepthStencilAttachment);
aspect = "stencil";
checked_stencil = true;
}
}
if (hazard.hazard) {
const char *func_name = CommandTypeString(cmd_type);
auto load_op_string = string_VkAttachmentLoadOp(checked_stencil ? ci.stencilLoadOp : ci.loadOp);
const auto &sync_state = exec_context.GetSyncState();
if (hazard.tag == kInvalidTag) {
// Hazard vs. ILT
skip |= sync_state.LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s vs. layout transition in subpass %" PRIu32 " for attachment %" PRIu32
" aspect %s during load with loadOp %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect, load_op_string);
} else {
skip |= sync_state.LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" aspect %s during load with loadOp %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect, load_op_string,
exec_context.FormatHazard(hazard).c_str());
}
}
}
}
return skip;
}
// Store operation validation can ignore resolve (before it) and layout tranistions after it. The first is ignored
// because of the ordering guarantees w.r.t. sample access and that the resolve validation hasn't altered the state, because
// store is part of the same Next/End operation.
// The latter is handled in layout transistion validation directly
bool AccessContext::ValidateStoreOperation(const CommandExecutionContext &exec_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, CMD_TYPE cmd_type) const {
bool skip = false;
const auto *attachment_ci = rp_state.createInfo.pAttachments;
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (subpass == rp_state.attachment_last_subpass[i]) {
const AttachmentViewGen &view_gen = attachment_views[i];
if (!view_gen.IsValid()) continue;
const auto &ci = attachment_ci[i];
// The spec states that "don't care" is an operation with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
// so we assume that an implementation is *free* to write in that case, meaning that for correctness
// sake, we treat DONT_CARE as writing.
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const bool store_op_stores = ci.storeOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (!has_stencil && !store_op_stores) continue;
HazardResult hazard;
const char *aspect = nullptr;
bool checked_stencil = false;
if (is_color) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster);
aspect = "color";
} else {
const bool stencil_op_stores = ci.stencilStoreOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (has_depth && store_op_stores) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster);
aspect = "depth";
}
if (!hazard.hazard && has_stencil && stencil_op_stores) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster);
aspect = "stencil";
checked_stencil = true;
}
}
if (hazard.hazard) {
const char *const op_type_string = checked_stencil ? "stencilStoreOp" : "storeOp";
const char *const store_op_string = string_VkAttachmentStoreOp(checked_stencil ? ci.stencilStoreOp : ci.storeOp);
skip |= exec_context.GetSyncState().LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" %s aspect during store with %s %s. Access info %s",
CommandTypeString(cmd_type), string_SyncHazard(hazard.hazard), subpass,
i, aspect, op_type_string, store_op_string,
exec_context.FormatHazard(hazard).c_str());
}
}
}
return skip;
}
bool AccessContext::ValidateResolveOperations(const CommandExecutionContext &exec_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, const AttachmentViewGenVector &attachment_views,
CMD_TYPE cmd_type, uint32_t subpass) const {
ValidateResolveAction validate_action(rp_state.renderPass(), subpass, *this, exec_context, cmd_type);
ResolveOperation(validate_action, rp_state, attachment_views, subpass);
return validate_action.GetSkip();
}
void AccessContext::AddAsyncContext(const AccessContext *context, ResourceUsageTag tag) {
if (context) {
async_.emplace_back(*context, tag);
}
}
class HazardDetector {
SyncStageAccessIndex usage_index_;
public:
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const { return pos->second.DetectHazard(usage_index_); }
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
explicit HazardDetector(SyncStageAccessIndex usage) : usage_index_(usage) {}
};
class HazardDetectorWithOrdering {
const SyncStageAccessIndex usage_index_;
const SyncOrdering ordering_rule_;
public:
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectHazard(usage_index_, ordering_rule_, QueueSyncState::kQueueIdInvalid);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
HazardDetectorWithOrdering(SyncStageAccessIndex usage, SyncOrdering ordering) : usage_index_(usage), ordering_rule_(ordering) {}
};
HazardResult AccessContext::DetectHazard(const BUFFER_STATE &buffer, SyncStageAccessIndex usage_index,
const ResourceAccessRange &range) const {
if (!SimpleBinding(buffer)) return HazardResult();
const auto base_address = ResourceBaseAddress(buffer);
HazardDetector detector(usage_index);
return DetectHazard(AccessAddressType::kLinear, detector, (range + base_address), DetectOptions::kDetectAll);
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
DetectOptions options) const {
const std::optional<ImageRangeGen> &attachment_gen = view_gen.GetRangeGen(gen_type);
if (!attachment_gen) return HazardResult();
subresource_adapter::ImageRangeGenerator range_gen(*attachment_gen);
const auto address_type = view_gen.GetAddressType();
return DetectHazard(address_type, detector, range_gen, options);
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const IMAGE_STATE &image,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, bool is_depth_sliced, DetectOptions options) const {
if (!SimpleBinding(image)) return HazardResult();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, offset, extent,
base_address, is_depth_sliced);
const auto address_type = ImageAddressType(image);
return DetectHazard(address_type, detector, range_gen, options);
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const IMAGE_STATE &image,
const VkImageSubresourceRange &subresource_range, bool is_depth_sliced,
DetectOptions options) const {
if (!SimpleBinding(image)) return HazardResult();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, base_address,
is_depth_sliced);
const auto address_type = ImageAddressType(image);
return DetectHazard(address_type, detector, range_gen, options);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceLayers &subresource, const VkOffset3D &offset,
const VkExtent3D &extent, bool is_depth_sliced) const {
VkImageSubresourceRange subresource_range = {subresource.aspectMask, subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
HazardDetector detector(current_usage);
return DetectHazard(detector, image, subresource_range, offset, extent, is_depth_sliced, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range, bool is_depth_sliced) const {
HazardDetector detector(current_usage);
return DetectHazard(detector, image, subresource_range, is_depth_sliced, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
SyncStageAccessIndex current_usage, SyncOrdering ordering_rule) const {
HazardDetectorWithOrdering detector(current_usage, ordering_rule);
return DetectHazard(detector, view_gen, gen_type, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent, bool is_depth_sliced) const {
HazardDetectorWithOrdering detector(current_usage, ordering_rule);
return DetectHazard(detector, image, subresource_range, offset, extent, is_depth_sliced, DetectOptions::kDetectAll);
}
class BarrierHazardDetector {
public:
BarrierHazardDetector(SyncStageAccessIndex usage_index, VkPipelineStageFlags2KHR src_exec_scope,
SyncStageAccessFlags src_access_scope)
: usage_index_(usage_index), src_exec_scope_(src_exec_scope), src_access_scope_(src_access_scope) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectBarrierHazard(usage_index_, QueueSyncState::kQueueIdInvalid, src_exec_scope_, src_access_scope_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
// Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
private:
SyncStageAccessIndex usage_index_;
VkPipelineStageFlags2KHR src_exec_scope_;
SyncStageAccessFlags src_access_scope_;
};
class EventBarrierHazardDetector {
public:
EventBarrierHazardDetector(SyncStageAccessIndex usage_index, VkPipelineStageFlags2KHR src_exec_scope,
SyncStageAccessFlags src_access_scope, const SyncEventState::ScopeMap &event_scope, QueueId queue_id,
ResourceUsageTag scope_tag)
: usage_index_(usage_index),
src_exec_scope_(src_exec_scope),
src_access_scope_(src_access_scope),
event_scope_(event_scope),
scope_queue_id_(queue_id),
scope_tag_(scope_tag),
scope_pos_(event_scope.cbegin()),
scope_end_(event_scope.cend()) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) {
// Need to piece together coverage of pos->first range:
// Copy the range as we'll be chopping it up as needed
ResourceAccessRange range = pos->first;
const ResourceAccessState &access = pos->second;
HazardResult hazard;
bool in_scope = AdvanceScope(range);
bool unscoped_tested = false;
while (in_scope && !hazard.IsHazard()) {
if (range.begin < ScopeBegin()) {
if (!unscoped_tested) {
unscoped_tested = true;
hazard = access.DetectHazard(usage_index_);
}
// Note: don't need to check for in_scope as AdvanceScope true means range and ScopeRange intersect.
// Thus a [ ScopeBegin, range.end ) will be non-empty.
range.begin = ScopeBegin();
} else { // in_scope implied that ScopeRange and range intersect
hazard = access.DetectBarrierHazard(usage_index_, ScopeState(), src_exec_scope_, src_access_scope_, scope_queue_id_,
scope_tag_);
if (!hazard.IsHazard()) {
range.begin = ScopeEnd();
in_scope = AdvanceScope(range); // contains a non_empty check
}
}
}
if (range.non_empty() && !hazard.IsHazard() && !unscoped_tested) {
hazard = access.DetectHazard(usage_index_);
}
return hazard;
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
// Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
private:
bool ScopeInvalid() const { return scope_pos_ == scope_end_; }
bool ScopeValid() const { return !ScopeInvalid(); }
void ScopeSeek(const ResourceAccessRange &range) { scope_pos_ = event_scope_.lower_bound(range); }
// Hiding away the std::pair grunge...
ResourceAddress ScopeBegin() const { return scope_pos_->first.begin; }
ResourceAddress ScopeEnd() const { return scope_pos_->first.end; }
const ResourceAccessRange &ScopeRange() const { return scope_pos_->first; }
const ResourceAccessState &ScopeState() const { return scope_pos_->second; }
bool AdvanceScope(const ResourceAccessRange &range) {
// Note: non_empty is (valid && !empty), so don't change !non_empty to empty...
if (!range.non_empty()) return false;
if (ScopeInvalid()) return false;
if (ScopeRange().strictly_less(range)) {
ScopeSeek(range);
}
return ScopeValid() && ScopeRange().intersects(range);
}
SyncStageAccessIndex usage_index_;
VkPipelineStageFlags2KHR src_exec_scope_;
SyncStageAccessFlags src_access_scope_;
const SyncEventState::ScopeMap &event_scope_;
QueueId scope_queue_id_;
const ResourceUsageTag scope_tag_;
SyncEventState::ScopeMap::const_iterator scope_pos_;
SyncEventState::ScopeMap::const_iterator scope_end_;
};
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, const VkImageSubresourceRange &subresource_range,
VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope, QueueId queue_id,
const SyncEventState &sync_event, AccessContext::DetectOptions options) const {
// It's not particularly DRY to get the address type in this function as well as lower down, but we have to select the
// first access scope map to use, and there's no easy way to plumb it in below.
const auto address_type = ImageAddressType(image);
const auto &event_scope = sync_event.FirstScope(address_type);
EventBarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope,
event_scope, queue_id, sync_event.first_scope_tag);
return DetectHazard(detector, image, subresource_range, false, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const AttachmentViewGen &view_gen, const SyncBarrier &barrier,
DetectOptions options) const {
BarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, barrier.src_exec_scope.exec_scope,
barrier.src_access_scope);
return DetectHazard(detector, view_gen, AttachmentViewGen::Gen::kViewSubresource, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const VkImageSubresourceRange &subresource_range,
const DetectOptions options) const {
BarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope);
return DetectHazard(detector, image, subresource_range, false, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const SyncImageMemoryBarrier &image_barrier) const {
return DetectImageBarrierHazard(*image_barrier.image.get(), image_barrier.barrier.src_exec_scope.exec_scope,
image_barrier.barrier.src_access_scope, image_barrier.range, kDetectAll);
}
template <typename Flags, typename Map>
SyncStageAccessFlags AccessScopeImpl(Flags flag_mask, const Map &map) {
SyncStageAccessFlags scope = 0;
for (const auto &bit_scope : map) {
if (flag_mask < bit_scope.first) break;
if (flag_mask & bit_scope.first) {
scope |= bit_scope.second;
}
}
return scope;
}
SyncStageAccessFlags SyncStageAccess::AccessScopeByStage(VkPipelineStageFlags2KHR stages) {
return AccessScopeImpl(stages, syncStageAccessMaskByStageBit());
}
SyncStageAccessFlags SyncStageAccess::AccessScopeByAccess(VkAccessFlags2KHR accesses) {
return AccessScopeImpl(sync_utils::ExpandAccessFlags(accesses), syncStageAccessMaskByAccessBit());
}
// Getting from stage mask and access mask to stage/access masks is something we need to be good at...
SyncStageAccessFlags SyncStageAccess::AccessScope(VkPipelineStageFlags2KHR stages, VkAccessFlags2KHR accesses) {
// The access scope is the intersection of all stage/access types possible for the enabled stages and the enables
// accesses (after doing a couple factoring of common terms the union of stage/access intersections is the intersections
// of the union of all stage/access types for all the stages and the same unions for the access mask...
return AccessScopeByStage(stages) & AccessScopeByAccess(accesses);
}
template <typename Action>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const ResourceAccessRange &range, const Action &action) {
// TODO: Optimization for operations that do a pure overwrite (i.e. WRITE usages which rewrite the state, vs READ usages
// that do incrementalupdates
assert(accesses);
auto pos = accesses->lower_bound(range);
if (pos == accesses->end() || !pos->first.intersects(range)) {
// The range is empty, fill it with a default value.
pos = action.Infill(accesses, pos, range);
} else if (range.begin < pos->first.begin) {
// Leading empty space, infill
pos = action.Infill(accesses, pos, ResourceAccessRange(range.begin, pos->first.begin));
} else if (pos->first.begin < range.begin) {
// Trim the beginning if needed
pos = accesses->split(pos, range.begin, sparse_container::split_op_keep_both());
++pos;
}
const auto the_end = accesses->end();
while ((pos != the_end) && pos->first.intersects(range)) {
if (pos->first.end > range.end) {
pos = accesses->split(pos, range.end, sparse_container::split_op_keep_both());
}
pos = action(accesses, pos);
if (pos == the_end) break;
auto next = pos;
++next;
if ((pos->first.end < range.end) && (next != the_end) && !next->first.is_subsequent_to(pos->first)) {
// Need to infill if next is disjoint
VkDeviceSize limit = (next == the_end) ? range.end : std::min(range.end, next->first.begin);
ResourceAccessRange new_range(pos->first.end, limit);
next = action.Infill(accesses, next, new_range);
}
pos = next;
}
}
// Give a comparable interface for range generators and ranges
template <typename Action>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, ResourceAccessRange *range) {
assert(range);
UpdateMemoryAccessState(accesses, *range, action);
}
template <typename Action, typename RangeGen>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, RangeGen *range_gen_arg) {
assert(range_gen_arg);
RangeGen &range_gen = *range_gen_arg; // Non-const references must be * by style requirement but deref-ing * iterator is a pain
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(accesses, *range_gen, action);
}
}
template <typename Action, typename RangeGen>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, const RangeGen &range_gen_prebuilt) {
RangeGen range_gen(range_gen_prebuilt); // RangeGenerators can be expensive to create from scratch... initialize from built
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(accesses, *range_gen, action);
}
}
struct UpdateMemoryAccessStateFunctor {
using Iterator = ResourceAccessRangeMap::iterator;
Iterator Infill(ResourceAccessRangeMap *accesses, const Iterator &pos, const ResourceAccessRange &range) const {
// this is only called on gaps, and never returns a gap.
ResourceAccessState default_state;
context.ResolvePreviousAccess(type, range, accesses, &default_state);
return accesses->lower_bound(range);
}
Iterator operator()(ResourceAccessRangeMap *accesses, const Iterator &pos) const {
auto &access_state = pos->second;
access_state.Update(usage, ordering_rule, tag);
return pos;
}
UpdateMemoryAccessStateFunctor(AccessAddressType type_, const AccessContext &context_, SyncStageAccessIndex usage_,
SyncOrdering ordering_rule_, ResourceUsageTag tag_)
: type(type_), context(context_), usage(usage_), ordering_rule(ordering_rule_), tag(tag_) {}
const AccessAddressType type;
const AccessContext &context;
const SyncStageAccessIndex usage;
const SyncOrdering ordering_rule;
const ResourceUsageTag tag;
};
// The barrier operation for pipeline and subpass dependencies`
struct PipelineBarrierOp {
SyncBarrier barrier;
bool layout_transition;
ResourceAccessState::QueueScopeOps scope;
PipelineBarrierOp(QueueId queue_id, const SyncBarrier &barrier_, bool layout_transition_)
: barrier(barrier_), layout_transition(layout_transition_), scope(queue_id) {
if (queue_id != QueueSyncState::kQueueIdInvalid) {
// This is a submit time application... supress layout transitions to not taint the QueueBatchContext write state
layout_transition = false;
}
}
PipelineBarrierOp(const PipelineBarrierOp &) = default;
void operator()(ResourceAccessState *access_state) const { access_state->ApplyBarrier(scope, barrier, layout_transition); }
};
// Batch barrier ops don't modify in place, and thus don't need to hold pending state, and also are *never* layout transitions.
struct BatchBarrierOp : public PipelineBarrierOp {
void operator()(ResourceAccessState *access_state) const {
access_state->ApplyBarrier(scope, barrier, layout_transition);
access_state->ApplyPendingBarriers(kInvalidTag); // There can't be any need for this tag
}
BatchBarrierOp(QueueId queue_id, const SyncBarrier &barrier_) : PipelineBarrierOp(queue_id, barrier_, false) {}
};
// The barrier operation for wait events
struct WaitEventBarrierOp {
ResourceAccessState::EventScopeOps scope_ops;
SyncBarrier barrier;
bool layout_transition;
WaitEventBarrierOp(const QueueId scope_queue_, const ResourceUsageTag scope_tag_, const SyncBarrier &barrier_,
bool layout_transition_)
: scope_ops(scope_queue_, scope_tag_), barrier(barrier_), layout_transition(layout_transition_) {
if (scope_queue_ != QueueSyncState::kQueueIdInvalid) {
// This is a submit time application... supress layout transitions to not taint the QueueBatchContext write state
layout_transition = false;
}
}
void operator()(ResourceAccessState *access_state) const { access_state->ApplyBarrier(scope_ops, barrier, layout_transition); }
};
// This functor applies a collection of barriers, updating the "pending state" in each touched memory range, and optionally
// resolves the pending state. Suitable for processing Global memory barriers, or Subpass Barriers when the "final" barrier
// of a collection is known/present.
template <typename BarrierOp, typename OpVector = std::vector<BarrierOp>>
class ApplyBarrierOpsFunctor {
public:
using Iterator = ResourceAccessRangeMap::iterator;
// Only called with a gap, and pos at the lower_bound(range)
inline Iterator Infill(ResourceAccessRangeMap *accesses, const Iterator &pos, const ResourceAccessRange &range) const {
if (!infill_default_) {
return pos;
}
ResourceAccessState default_state;
auto inserted = accesses->insert(pos, std::make_pair(range, default_state));
return inserted;
}
Iterator operator()(ResourceAccessRangeMap *accesses, const Iterator &pos) const {
auto &access_state = pos->second;
for (const auto &op : barrier_ops_) {
op(&access_state);
}
if (resolve_) {
// If this is the last (or only) batch, we can do the pending resolve as the last step in this operation to avoid
// another walk
access_state.ApplyPendingBarriers(tag_);
}
return pos;
}
// A valid tag is required IFF layout_transition is true, as transitions are write ops
ApplyBarrierOpsFunctor(bool resolve, typename OpVector::size_type size_hint, ResourceUsageTag tag)
: resolve_(resolve), infill_default_(false), barrier_ops_(), tag_(tag) {
barrier_ops_.reserve(size_hint);
}
void EmplaceBack(const BarrierOp &op) {
barrier_ops_.emplace_back(op);
infill_default_ |= op.layout_transition;
}
private:
bool resolve_;
bool infill_default_;
OpVector barrier_ops_;
const ResourceUsageTag tag_;
};
// This functor applies a single barrier, updating the "pending state" in each touched memory range, but does not
// resolve the pendinging state. Suitable for processing Image and Buffer barriers from PipelineBarriers or Events
template <typename BarrierOp>
class ApplyBarrierFunctor : public ApplyBarrierOpsFunctor<BarrierOp, small_vector<BarrierOp, 1>> {
using Base = ApplyBarrierOpsFunctor<BarrierOp, small_vector<BarrierOp, 1>>;
public:
ApplyBarrierFunctor(const BarrierOp &barrier_op) : Base(false, 1, kInvalidTag) { Base::EmplaceBack(barrier_op); }
};
// This functor resolves the pendinging state.
class ResolvePendingBarrierFunctor : public ApplyBarrierOpsFunctor<NoopBarrierAction, small_vector<NoopBarrierAction, 1>> {
using Base = ApplyBarrierOpsFunctor<NoopBarrierAction, small_vector<NoopBarrierAction, 1>>;
public:
ResolvePendingBarrierFunctor(ResourceUsageTag tag) : Base(true, 0, tag) {}
};
void AccessContext::UpdateAccessState(AccessAddressType type, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, const ResourceUsageTag tag) {
UpdateMemoryAccessStateFunctor action(type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(type), range, action);
}
void AccessContext::UpdateAccessState(const BUFFER_STATE &buffer, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, const ResourceUsageTag tag) {
if (!SimpleBinding(buffer)) return;
const auto base_address = ResourceBaseAddress(buffer);
UpdateAccessState(AccessAddressType::kLinear, current_usage, ordering_rule, range + base_address, tag);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const ResourceUsageTag &tag) {
if (!SimpleBinding(image)) return;
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, base_address, false);
const auto address_type = ImageAddressType(image);
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(address_type), action, &range_gen);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, const ResourceUsageTag tag) {
if (!SimpleBinding(image)) return;
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, offset, extent,
base_address, false);
const auto address_type = ImageAddressType(image);
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(address_type), action, &range_gen);
}
void AccessContext::UpdateAccessState(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
SyncStageAccessIndex current_usage, SyncOrdering ordering_rule, const ResourceUsageTag tag) {
const std::optional<ImageRangeGen> &gen = view_gen.GetRangeGen(gen_type);
if (!gen) return;
subresource_adapter::ImageRangeGenerator range_gen(*gen);
const auto address_type = view_gen.GetAddressType();
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
ApplyUpdateAction(address_type, action, &range_gen);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceLayers &subresource, const VkOffset3D &offset,
const VkExtent3D &extent, const ResourceUsageTag tag) {
VkImageSubresourceRange subresource_range = {subresource.aspectMask, subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
UpdateAccessState(image, current_usage, ordering_rule, subresource_range, offset, extent, tag);
}
template <typename Action, typename RangeGen>
void AccessContext::ApplyUpdateAction(AccessAddressType address_type, const Action &action, RangeGen *range_gen_arg) {
assert(range_gen_arg); // Old Google C++ styleguide require non-const object pass by * not &, but this isn't an optional arg.
UpdateMemoryAccessState(&GetAccessStateMap(address_type), action, range_gen_arg);
}
template <typename Action>
void AccessContext::ApplyUpdateAction(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, const Action &action) {
const std::optional<ImageRangeGen> &gen = view_gen.GetRangeGen(gen_type);
if (!gen) return;
UpdateMemoryAccessState(&GetAccessStateMap(view_gen.GetAddressType()), action, *gen);
}
void AccessContext::UpdateAttachmentResolveAccess(const RENDER_PASS_STATE &rp_state,
const AttachmentViewGenVector &attachment_views, uint32_t subpass,
const ResourceUsageTag tag) {
UpdateStateResolveAction update(*this, tag);
ResolveOperation(update, rp_state, attachment_views, subpass);
}
void AccessContext::UpdateAttachmentStoreAccess(const RENDER_PASS_STATE &rp_state, const AttachmentViewGenVector &attachment_views,
uint32_t subpass, const ResourceUsageTag tag) {
const auto *attachment_ci = rp_state.createInfo.pAttachments;
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (rp_state.attachment_last_subpass[i] == subpass) {
const auto &view_gen = attachment_views[i];
if (!view_gen.IsValid()) continue; // UNUSED
const auto &ci = attachment_ci[i];
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const bool store_op_stores = ci.storeOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (is_color && store_op_stores) {
UpdateAccessState(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster, tag);
} else {
if (has_depth && store_op_stores) {
UpdateAccessState(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster, tag);
}
const bool stencil_op_stores = ci.stencilStoreOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (has_stencil && stencil_op_stores) {
UpdateAccessState(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster, tag);
}
}
}
}
}
template <typename Action>
void AccessContext::ApplyToContext(const Action &barrier_action) {
// Note: Barriers do *not* cross context boundaries, applying to accessess within.... (at least for renderpass subpasses)
for (const auto address_type : kAddressTypes) {
UpdateMemoryAccessState(&GetAccessStateMap(address_type), kFullRange, barrier_action);
}
}
void AccessContext::ResolveChildContexts(const std::vector<AccessContext> &contexts) {
for (uint32_t subpass_index = 0; subpass_index < contexts.size(); subpass_index++) {
auto &context = contexts[subpass_index];
ApplyTrackbackStackAction barrier_action(context.GetDstExternalTrackBack().barriers);
for (const auto address_type : kAddressTypes) {
context.ResolveAccessRange(address_type, kFullRange, barrier_action, &GetAccessStateMap(address_type), nullptr, false);
}
}
}
// Caller must ensure that lifespan of this is less than from
void AccessContext::ImportAsyncContexts(const AccessContext &from) { async_ = from.async_; }
// Suitable only for *subpass* access contexts
HazardResult AccessContext::DetectSubpassTransitionHazard(const TrackBack &track_back, const AttachmentViewGen &attach_view) const {
if (!attach_view.IsValid()) return HazardResult();
// We should never ask for a transition from a context we don't have
assert(track_back.source_subpass);
// Do the detection against the specific prior context independent of other contexts. (Synchronous only)
// Hazard detection for the transition can be against the merged of the barriers (it only uses src_...)
const auto merged_barrier = MergeBarriers(track_back.barriers);
HazardResult hazard = track_back.source_subpass->DetectImageBarrierHazard(attach_view, merged_barrier, kDetectPrevious);
if (!hazard.hazard) {
// The Async hazard check is against the current context's async set.
hazard = DetectImageBarrierHazard(attach_view, merged_barrier, kDetectAsync);
}
return hazard;
}
void AccessContext::RecordLayoutTransitions(const RENDER_PASS_STATE &rp_state, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, const ResourceUsageTag tag) {
const auto &transitions = rp_state.subpass_transitions[subpass];
const ResourceAccessState empty_infill;
for (const auto &transition : transitions) {
const auto prev_pass = transition.prev_pass;
const auto &view_gen = attachment_views[transition.attachment];
if (!view_gen.IsValid()) continue;
const auto *trackback = GetTrackBackFromSubpass(prev_pass);
assert(trackback);
// Import the attachments into the current context
const auto *prev_context = trackback->source_subpass;
assert(prev_context);
const auto address_type = view_gen.GetAddressType();
auto &target_map = GetAccessStateMap(address_type);
ApplySubpassTransitionBarriersAction barrier_action(trackback->barriers);
prev_context->ResolveAccessRange(view_gen, AttachmentViewGen::Gen::kViewSubresource, barrier_action, &target_map,
&empty_infill);
}
// If there were no transitions skip this global map walk
if (transitions.size()) {
ResolvePendingBarrierFunctor apply_pending_action(tag);
ApplyToContext(apply_pending_action);
}
}
bool CommandBufferAccessContext::ValidateDispatchDrawDescriptorSet(VkPipelineBindPoint pipelineBindPoint, CMD_TYPE cmd_type) const {
bool skip = false;
const PIPELINE_STATE *pipe = nullptr;
const std::vector<LAST_BOUND_STATE::PER_SET> *per_sets = nullptr;
cb_state_->GetCurrentPipelineAndDesriptorSets(pipelineBindPoint, &pipe, &per_sets);
if (!pipe || !per_sets) {
return skip;
}
const char *caller_name = CommandTypeString(cmd_type);
using DescriptorClass = cvdescriptorset::DescriptorClass;
using BufferDescriptor = cvdescriptorset::BufferDescriptor;
using ImageDescriptor = cvdescriptorset::ImageDescriptor;
using TexelDescriptor = cvdescriptorset::TexelDescriptor;
for (const auto &stage_state : pipe->stage_state) {
const auto raster_state = pipe->RasterizationState();
if (stage_state.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT && raster_state && raster_state->rasterizerDiscardEnable) {
continue;
} else if (!stage_state.descriptor_variables) {
continue;
}
for (const auto &variable : *stage_state.descriptor_variables) {
const auto *descriptor_set = (*per_sets)[variable.decorations.set].bound_descriptor_set.get();
if (!descriptor_set) continue;
auto binding = descriptor_set->GetBinding(variable.decorations.binding);
const auto descriptor_type = binding->type;
SyncStageAccessIndex sync_index =
GetSyncStageAccessIndexsByDescriptorSet(descriptor_type, variable, stage_state.stage_flag);
for (uint32_t index = 0; index < binding->count; index++) {
const auto *descriptor = binding->GetDescriptor(index);
switch (descriptor->GetClass()) {
case DescriptorClass::ImageSampler:
case DescriptorClass::Image: {
if (descriptor->Invalid()) {
continue;
}
// NOTE: ImageSamplerDescriptor inherits from ImageDescriptor, so this cast works for both types.
const auto *image_descriptor = static_cast<const ImageDescriptor *>(descriptor);
const auto *img_view_state = image_descriptor->GetImageViewState();
VkImageLayout image_layout = image_descriptor->GetImageLayout();
HazardResult hazard;
// NOTE: 2D ImageViews of VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT Images are not allowed in
// Descriptors, so we do not have to worry about depth slicing here.
// See: VUID 00343
assert(!img_view_state->IsDepthSliced());
const IMAGE_STATE *img_state = img_view_state->image_state.get();
const auto &subresource_range = img_view_state->normalized_subresource_range;
if (sync_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ) {
const VkExtent3D extent = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.extent);
const VkOffset3D offset = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.offset);
// Input attachments are subject to raster ordering rules
hazard =
current_context_->DetectHazard(*img_state, sync_index, subresource_range, SyncOrdering::kRaster,
offset, extent, img_view_state->IsDepthSliced());
} else {
hazard = current_context_->DetectHazard(*img_state, sync_index, subresource_range,
img_view_state->IsDepthSliced());
}
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
img_view_state->image_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s, in %s, and %s, %s, type: %s, imageLayout: %s, binding #%" PRIu32
", index %" PRIu32 ". Access info %s.",
caller_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(img_view_state->image_view()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline()).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), string_VkImageLayout(image_layout),
variable.decorations.binding, index, FormatHazard(hazard).c_str());
}
break;
}
case DescriptorClass::TexelBuffer: {
const auto *texel_descriptor = static_cast<const TexelDescriptor *>(descriptor);
if (texel_descriptor->Invalid()) {
continue;
}
const auto *buf_view_state = texel_descriptor->GetBufferViewState();
const auto *buf_state = buf_view_state->buffer_state.get();
const ResourceAccessRange range = MakeRange(*buf_view_state);
auto hazard = current_context_->DetectHazard(*buf_state, sync_index, range);
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
buf_view_state->buffer_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, %s, and %s, type: %s, binding #%d index %d. Access info %s.",
caller_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_view_state->buffer_view()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline()).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), variable.decorations.binding, index,
FormatHazard(hazard).c_str());
}
break;
}
case DescriptorClass::GeneralBuffer: {
const auto *buffer_descriptor = static_cast<const BufferDescriptor *>(descriptor);
if (buffer_descriptor->Invalid()) {
continue;
}
const auto *buf_state = buffer_descriptor->GetBufferState();
const ResourceAccessRange range =
MakeRange(*buf_state, buffer_descriptor->GetOffset(), buffer_descriptor->GetRange());
auto hazard = current_context_->DetectHazard(*buf_state, sync_index, range);
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, %s, and %s, type: %s, binding #%d index %d. Access info %s.",
caller_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_state->buffer()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline()).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), variable.decorations.binding, index,
FormatHazard(hazard).c_str());
}
break;
}
// TODO: INLINE_UNIFORM_BLOCK_EXT, ACCELERATION_STRUCTURE_KHR
default:
break;
}
}
}
}
return skip;
}
void CommandBufferAccessContext::RecordDispatchDrawDescriptorSet(VkPipelineBindPoint pipelineBindPoint,
const ResourceUsageTag tag) {
const PIPELINE_STATE *pipe = nullptr;
const std::vector<LAST_BOUND_STATE::PER_SET> *per_sets = nullptr;
cb_state_->GetCurrentPipelineAndDesriptorSets(pipelineBindPoint, &pipe, &per_sets);
if (!pipe || !per_sets) {
return;
}
using DescriptorClass = cvdescriptorset::DescriptorClass;
using BufferDescriptor = cvdescriptorset::BufferDescriptor;
using ImageDescriptor = cvdescriptorset::ImageDescriptor;
using TexelDescriptor = cvdescriptorset::TexelDescriptor;
for (const auto &stage_state : pipe->stage_state) {
const auto raster_state = pipe->RasterizationState();
if (stage_state.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT && raster_state && raster_state->rasterizerDiscardEnable) {
continue;
} else if (!stage_state.descriptor_variables) {
continue;
}
for (const auto &variable : *stage_state.descriptor_variables) {
const auto *descriptor_set = (*per_sets)[variable.decorations.set].bound_descriptor_set.get();
if (!descriptor_set) continue;
auto binding = descriptor_set->GetBinding(variable.decorations.binding);
const auto descriptor_type = binding->type;
SyncStageAccessIndex sync_index =
GetSyncStageAccessIndexsByDescriptorSet(descriptor_type, variable, stage_state.stage_flag);
for (uint32_t i = 0; i < binding->count; i++) {
const auto *descriptor = binding->GetDescriptor(i);
switch (descriptor->GetClass()) {
case DescriptorClass::ImageSampler:
case DescriptorClass::Image: {
// NOTE: ImageSamplerDescriptor inherits from ImageDescriptor, so this cast works for both types.
const auto *image_descriptor = static_cast<const ImageDescriptor *>(descriptor);
if (image_descriptor->Invalid()) {
continue;
}
const auto *img_view_state = image_descriptor->GetImageViewState();
// NOTE: 2D ImageViews of VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT Images are not allowed in
// Descriptors, so we do not have to worry about depth slicing here.
// See: VUID 00343
assert(!img_view_state->IsDepthSliced());
const IMAGE_STATE *img_state = img_view_state->image_state.get();
if (sync_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ) {
const VkExtent3D extent = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.extent);
const VkOffset3D offset = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.offset);
current_context_->UpdateAccessState(*img_state, sync_index, SyncOrdering::kRaster,
img_view_state->normalized_subresource_range, offset, extent, tag);
} else {
current_context_->UpdateAccessState(*img_state, sync_index, SyncOrdering::kNonAttachment,
img_view_state->normalized_subresource_range, tag);
}
break;
}
case DescriptorClass::TexelBuffer: {
const auto *texel_descriptor = static_cast<const TexelDescriptor *>(descriptor);
if (texel_descriptor->Invalid()) {
continue;
}
const auto *buf_view_state = texel_descriptor->GetBufferViewState();
const auto *buf_state = buf_view_state->buffer_state.get();
const ResourceAccessRange range = MakeRange(*buf_view_state);
current_context_->UpdateAccessState(*buf_state, sync_index, SyncOrdering::kNonAttachment, range, tag);
break;
}
case DescriptorClass::GeneralBuffer: {
const auto *buffer_descriptor = static_cast<const BufferDescriptor *>(descriptor);
if (buffer_descriptor->Invalid()) {
continue;
}
const auto *buf_state = buffer_descriptor->GetBufferState();
const ResourceAccessRange range =
MakeRange(*buf_state, buffer_descriptor->GetOffset(), buffer_descriptor->GetRange());
current_context_->UpdateAccessState(*buf_state, sync_index, SyncOrdering::kNonAttachment, range, tag);
break;
}
// TODO: INLINE_UNIFORM_BLOCK_EXT, ACCELERATION_STRUCTURE_KHR
default:
break;
}
}
}
}
}
bool CommandBufferAccessContext::ValidateDrawVertex(uint32_t vertexCount, uint32_t firstVertex, CMD_TYPE cmd_type) const {
bool skip = false;
const auto *pipe = cb_state_->GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return skip;
}
const auto &binding_buffers = cb_state_->current_vertex_buffer_binding_info.vertex_buffer_bindings;
const auto &binding_buffers_size = binding_buffers.size();
const auto &binding_descriptions_size = pipe->vertex_input_state->binding_descriptions.size();
for (size_t i = 0; i < binding_descriptions_size; ++i) {
const auto &binding_description = pipe->vertex_input_state->binding_descriptions[i];
if (binding_description.binding < binding_buffers_size) {
const auto &binding_buffer = binding_buffers[binding_description.binding];
if (binding_buffer.buffer_state == nullptr || binding_buffer.buffer_state->Destroyed()) continue;
auto *buf_state = binding_buffer.buffer_state.get();
const ResourceAccessRange range = GetBufferRange(binding_buffer.offset, buf_state->createInfo.size, firstVertex,
vertexCount, binding_description.stride);
auto hazard = current_context_->DetectHazard(*buf_state, SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ, range);
if (hazard.hazard) {
skip |= sync_state_->LogError(
buf_state->buffer(), string_SyncHazardVUID(hazard.hazard), "%s: Hazard %s for vertex %s in %s. Access info %s.",
CommandTypeString(cmd_type), string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_state->buffer()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(), FormatHazard(hazard).c_str());
}
}
}
return skip;
}
void CommandBufferAccessContext::RecordDrawVertex(uint32_t vertexCount, uint32_t firstVertex, const ResourceUsageTag tag) {
const auto *pipe = cb_state_->GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return;
}
const auto &binding_buffers = cb_state_->current_vertex_buffer_binding_info.vertex_buffer_bindings;
const auto &binding_buffers_size = binding_buffers.size();
const auto &binding_descriptions_size = pipe->vertex_input_state->binding_descriptions.size();
for (size_t i = 0; i < binding_descriptions_size; ++i) {
const auto &binding_description = pipe->vertex_input_state->binding_descriptions[i];
if (binding_description.binding < binding_buffers_size) {
const auto &binding_buffer = binding_buffers[binding_description.binding];
if (binding_buffer.buffer_state == nullptr || binding_buffer.buffer_state->Destroyed()) continue;
auto *buf_state = binding_buffer.buffer_state.get();
const ResourceAccessRange range = GetBufferRange(binding_buffer.offset, buf_state->createInfo.size, firstVertex,
vertexCount, binding_description.stride);
current_context_->UpdateAccessState(*buf_state, SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ,
SyncOrdering::kNonAttachment, range, tag);
}
}
}
bool CommandBufferAccessContext::ValidateDrawVertexIndex(uint32_t indexCount, uint32_t firstIndex, CMD_TYPE cmd_type) const {
bool skip = false;
if (!cb_state_->index_buffer_binding.bound()) {
return skip;
}
auto *index_buf_state = cb_state_->index_buffer_binding.buffer_state.get();
const auto index_size = GetIndexAlignment(cb_state_->index_buffer_binding.index_type);
const ResourceAccessRange range = GetBufferRange(cb_state_->index_buffer_binding.offset, index_buf_state->createInfo.size,
firstIndex, indexCount, index_size);
auto hazard = current_context_->DetectHazard(*index_buf_state, SYNC_INDEX_INPUT_INDEX_READ, range);
if (hazard.hazard) {
skip |= sync_state_->LogError(
index_buf_state->buffer(), string_SyncHazardVUID(hazard.hazard), "%s: Hazard %s for index %s in %s. Access info %s.",
CommandTypeString(cmd_type), string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(index_buf_state->buffer()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(), FormatHazard(hazard).c_str());
}
// TODO: For now, we detect the whole vertex buffer. Index buffer could be changed until SubmitQueue.
// We will detect more accurate range in the future.
skip |= ValidateDrawVertex(UINT32_MAX, 0, cmd_type);
return skip;
}
void CommandBufferAccessContext::RecordDrawVertexIndex(uint32_t indexCount, uint32_t firstIndex, const ResourceUsageTag tag) {
if (!cb_state_->index_buffer_binding.bound()) return;
auto *index_buf_state = cb_state_->index_buffer_binding.buffer_state.get();
const auto index_size = GetIndexAlignment(cb_state_->index_buffer_binding.index_type);
const ResourceAccessRange range = GetBufferRange(cb_state_->index_buffer_binding.offset, index_buf_state->createInfo.size,
firstIndex, indexCount, index_size);
current_context_->UpdateAccessState(*index_buf_state, SYNC_INDEX_INPUT_INDEX_READ, SyncOrdering::kNonAttachment, range, tag);
// TODO: For now, we detect the whole vertex buffer. Index buffer could be changed until SubmitQueue.
// We will detect more accurate range in the future.
RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool CommandBufferAccessContext::ValidateDrawSubpassAttachment(CMD_TYPE cmd_type) const {
bool skip = false;
if (!current_renderpass_context_) return skip;
skip |= current_renderpass_context_->ValidateDrawSubpassAttachment(GetExecutionContext(), *cb_state_, cmd_type);
return skip;
}
void CommandBufferAccessContext::RecordDrawSubpassAttachment(const ResourceUsageTag tag) {
if (current_renderpass_context_) {
current_renderpass_context_->RecordDrawSubpassAttachment(*cb_state_, tag);
}
}
QueueId CommandBufferAccessContext::GetQueueId() const { return QueueSyncState::kQueueIdInvalid; }
ResourceUsageTag CommandBufferAccessContext::RecordBeginRenderPass(CMD_TYPE cmd_type, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views) {
// Create an access context the current renderpass.
const auto barrier_tag = NextCommandTag(cmd_type, NamedHandle("renderpass", rp_state.Handle()),
ResourceUsageRecord::SubcommandType::kSubpassTransition);
const auto load_tag = NextSubcommandTag(cmd_type, ResourceUsageRecord::SubcommandType::kLoadOp);
render_pass_contexts_.emplace_back(std::make_unique<RenderPassAccessContext>(rp_state, render_area, GetQueueFlags(),
attachment_views, &cb_access_context_));
current_renderpass_context_ = render_pass_contexts_.back().get();
current_renderpass_context_->RecordBeginRenderPass(barrier_tag, load_tag);
current_context_ = ¤t_renderpass_context_->CurrentContext();
return barrier_tag;
}
ResourceUsageTag CommandBufferAccessContext::RecordNextSubpass(const CMD_TYPE cmd_type) {
assert(current_renderpass_context_);
if (!current_renderpass_context_) return NextCommandTag(cmd_type);
auto store_tag =
NextCommandTag(cmd_type, NamedHandle("renderpass", current_renderpass_context_->GetRenderPassState()->Handle()),
ResourceUsageRecord::SubcommandType::kStoreOp);
auto barrier_tag = NextSubcommandTag(cmd_type, ResourceUsageRecord::SubcommandType::kSubpassTransition);
auto load_tag = NextSubcommandTag(cmd_type, ResourceUsageRecord::SubcommandType::kLoadOp);
current_renderpass_context_->RecordNextSubpass(store_tag, barrier_tag, load_tag);
current_context_ = ¤t_renderpass_context_->CurrentContext();
return barrier_tag;
}
ResourceUsageTag CommandBufferAccessContext::RecordEndRenderPass(const CMD_TYPE cmd_type) {
assert(current_renderpass_context_);
if (!current_renderpass_context_) return NextCommandTag(cmd_type);
auto store_tag =
NextCommandTag(cmd_type, NamedHandle("renderpass", current_renderpass_context_->GetRenderPassState()->Handle()),
ResourceUsageRecord::SubcommandType::kStoreOp);
auto barrier_tag = NextSubcommandTag(cmd_type, ResourceUsageRecord::SubcommandType::kSubpassTransition);
current_renderpass_context_->RecordEndRenderPass(&cb_access_context_, store_tag, barrier_tag);
current_context_ = &cb_access_context_;
current_renderpass_context_ = nullptr;
return barrier_tag;
}
void CommandBufferAccessContext::RecordDestroyEvent(EVENT_STATE *event_state) { GetCurrentEventsContext()->Destroy(event_state); }
// The is the recorded cb context
bool CommandBufferAccessContext::ValidateFirstUse(CommandExecutionContext &exec_context, const char *func_name,
uint32_t index) const {
if (!exec_context.ValidForSyncOps()) return false;
const QueueId queue_id = exec_context.GetQueueId();
const ResourceUsageTag base_tag = exec_context.GetTagLimit();
bool skip = false;
ResourceUsageRange tag_range = {0, 0};
const AccessContext *recorded_context = GetCurrentAccessContext();
assert(recorded_context);
HazardResult hazard;
ReplayGuard replay_guard(exec_context, *this);
auto log_msg = [this](const HazardResult &hazard, const CommandExecutionContext &exec_context, const char *func_name,
uint32_t index) {
const auto handle = exec_context.Handle();
const auto recorded_handle = cb_state_->commandBuffer();
const auto *report_data = sync_state_->report_data;
return sync_state_->LogError(handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for entry %" PRIu32 ", %s, Recorded access info %s. Access info %s.", func_name,
string_SyncHazard(hazard.hazard), index, report_data->FormatHandle(recorded_handle).c_str(),
FormatUsage(*hazard.recorded_access).c_str(), exec_context.FormatHazard(hazard).c_str());
};
for (const auto &sync_op : sync_ops_) {
// we update the range to any include layout transition first use writes,
// as they are stored along with the source scope (as effective barrier) when recorded
tag_range.end = sync_op.tag + 1;
skip |= sync_op.sync_op->ReplayValidate(sync_op.tag, *this, base_tag, exec_context);
// We're allowing for the ReplayRecord to modify the exec_context (e.g. for Renderpass operations), so
// we need to fetch the current access context each time
hazard = exec_context.DetectFirstUseHazard(tag_range);
if (hazard.hazard) {
skip |= log_msg(hazard, exec_context, func_name, index);
}
// NOTE: Add call to replay validate here when we add support for syncop with non-trivial replay
// Record the barrier into the proxy context.
sync_op.sync_op->ReplayRecord(exec_context, base_tag + sync_op.tag);
tag_range.begin = tag_range.end;
}
// and anything after the last syncop
tag_range.end = ResourceUsageRecord::kMaxIndex;
hazard = recorded_context->DetectFirstUseHazard(queue_id, tag_range, *exec_context.GetCurrentAccessContext());
if (hazard.hazard) {
skip |= log_msg(hazard, exec_context, func_name, index);
}
return skip;
}
void CommandBufferAccessContext::RecordExecutedCommandBuffer(const CommandBufferAccessContext &recorded_cb_context) {
const AccessContext *recorded_context = recorded_cb_context.GetCurrentAccessContext();
assert(recorded_context);
// Just run through the barriers ignoring the usage from the recorded context, as Resolve will overwrite outdated state
const ResourceUsageTag base_tag = GetTagLimit();
for (const auto &sync_op : recorded_cb_context.GetSyncOps()) {
// we update the range to any include layout transition first use writes,
// as they are stored along with the source scope (as effective barrier) when recorded
sync_op.sync_op->ReplayRecord(*this, base_tag + sync_op.tag);
}
ResourceUsageRange tag_range = ImportRecordedAccessLog(recorded_cb_context);
assert(base_tag == tag_range.begin); // to ensure the to offset calculation agree
ResolveExecutedCommandBuffer(*recorded_context, tag_range.begin);
}
void CommandBufferAccessContext::ResolveExecutedCommandBuffer(const AccessContext &recorded_context, ResourceUsageTag offset) {
auto tag_offset = [offset](ResourceAccessState *access) { access->OffsetTag(offset); };
GetCurrentAccessContext()->ResolveFromContext(tag_offset, recorded_context);
}
HazardResult CommandBufferAccessContext::DetectFirstUseHazard(const ResourceUsageRange &tag_range) {
return current_replay_->GetCurrentAccessContext()->DetectFirstUseHazard(GetQueueId(), tag_range, *GetCurrentAccessContext());
}
ResourceUsageRange CommandExecutionContext::ImportRecordedAccessLog(const CommandBufferAccessContext &recorded_context) {
// The execution references ensure lifespan for the referenced child CB's...
ResourceUsageRange tag_range(GetTagLimit(), 0);
InsertRecordedAccessLogEntries(recorded_context);
tag_range.end = GetTagLimit();
return tag_range;
}
void CommandBufferAccessContext::InsertRecordedAccessLogEntries(const CommandBufferAccessContext &recorded_context) {
cbs_referenced_->emplace(recorded_context.GetCBStateShared());
access_log_->insert(access_log_->end(), recorded_context.access_log_->cbegin(), recorded_context.access_log_->cend());
}
ResourceUsageTag CommandBufferAccessContext::NextSubcommandTag(CMD_TYPE command, ResourceUsageRecord::SubcommandType subcommand) {
return NextSubcommandTag(command, NamedHandle(), subcommand);
}
ResourceUsageTag CommandBufferAccessContext::NextSubcommandTag(CMD_TYPE command, NamedHandle &&handle,
ResourceUsageRecord::SubcommandType subcommand) {
ResourceUsageTag next = access_log_->size();
access_log_->emplace_back(command, command_number_, subcommand, ++subcommand_number_, cb_state_, reset_count_);
if (command_handles_.size()) {
// This is a duplication, but it keeps tags->log information flat (i.e not depending on some "command tag" entry
access_log_->back().handles = command_handles_;
}
if (handle) {
access_log_->back().AddHandle(std::move(handle));
}
return next;
}
ResourceUsageTag CommandBufferAccessContext::NextCommandTag(CMD_TYPE command, ResourceUsageRecord::SubcommandType subcommand) {
return NextCommandTag(command, NamedHandle(), subcommand);
}
ResourceUsageTag CommandBufferAccessContext::NextCommandTag(CMD_TYPE command, NamedHandle &&handle,
ResourceUsageRecord::SubcommandType subcommand) {
command_number_++;
command_handles_.clear();
subcommand_number_ = 0;
ResourceUsageTag next = access_log_->size();
access_log_->emplace_back(command, command_number_, subcommand, subcommand_number_, cb_state_, reset_count_);
if (handle) {
access_log_->back().AddHandle(handle);
command_handles_.emplace_back(std::move(handle));
}
return next;
}
ResourceUsageTag CommandBufferAccessContext::NextIndexedCommandTag(CMD_TYPE command, uint32_t index) {
if (index == 0) {
return NextCommandTag(command, ResourceUsageRecord::SubcommandType::kIndex);
}
return NextSubcommandTag(command, ResourceUsageRecord::SubcommandType::kIndex);
}
void CommandBufferAccessContext::RecordSyncOp(SyncOpPointer &&sync_op) {
auto tag = sync_op->Record(this);
// As renderpass operations can have side effects on the command buffer access context,
// update the sync operation to record these if any.
sync_ops_.emplace_back(tag, std::move(sync_op));
}
class HazardDetectFirstUse {
public:
HazardDetectFirstUse(const ResourceAccessState &recorded_use, QueueId queue_id, const ResourceUsageRange &tag_range)
: recorded_use_(recorded_use), queue_id_(queue_id), tag_range_(tag_range) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectHazard(recorded_use_, queue_id_, tag_range_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
return pos->second.DetectAsyncHazard(recorded_use_, tag_range_, start_tag);
}
private:
const ResourceAccessState &recorded_use_;
const QueueId queue_id_;
const ResourceUsageRange &tag_range_;
};
// This is called with the *recorded* command buffers access context, with the *active* access context pass in, againsts which
// hazards will be detected
HazardResult AccessContext::DetectFirstUseHazard(QueueId queue_id, const ResourceUsageRange &tag_range,
const AccessContext &access_context) const {
HazardResult hazard;
for (const auto address_type : kAddressTypes) {
const auto &recorded_access_map = GetAccessStateMap(address_type);
for (const auto &recorded_access : recorded_access_map) {
// Cull any entries not in the current tag range
if (!recorded_access.second.FirstAccessInTagRange(tag_range)) continue;
HazardDetectFirstUse detector(recorded_access.second, queue_id, tag_range);
hazard = access_context.DetectHazard(address_type, detector, recorded_access.first, DetectOptions::kDetectAll);
if (hazard.hazard) break;
}
}
return hazard;
}
bool RenderPassAccessContext::ValidateDrawSubpassAttachment(const CommandExecutionContext &exec_context,
const CMD_BUFFER_STATE &cmd_buffer, CMD_TYPE cmd_type) const {
bool skip = false;
const auto &sync_state = exec_context.GetSyncState();
const auto *pipe = cmd_buffer.GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return skip;
}
const auto raster_state = pipe->RasterizationState();
if (raster_state && raster_state->rasterizerDiscardEnable) {
return skip;
}
const char *caller_name = CommandTypeString(cmd_type);
const auto &list = pipe->fragmentShader_writable_output_location_list;
const auto &subpass = rp_state_->createInfo.pSubpasses[current_subpass_];
const auto ¤t_context = CurrentContext();
// Subpass's inputAttachment has been done in ValidateDispatchDrawDescriptorSet
if (subpass.pColorAttachments && subpass.colorAttachmentCount && !list.empty()) {
for (const auto location : list) {
if (location >= subpass.colorAttachmentCount ||
subpass.pColorAttachments[location].attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const AttachmentViewGen &view_gen = attachment_views_[subpass.pColorAttachments[location].attachment];
if (!view_gen.IsValid()) continue;
HazardResult hazard =
current_context.DetectHazard(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kColorAttachment);
if (hazard.hazard) {
const VkImageView view_handle = view_gen.GetViewState()->image_view();
skip |= sync_state.LogError(view_handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and pColorAttachments #%d. Access info %s.",
caller_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(view_handle).c_str(),
sync_state.report_data->FormatHandle(cmd_buffer.commandBuffer()).c_str(),
cmd_buffer.activeSubpass, location, exec_context.FormatHazard(hazard).c_str());
}
}
}
// PHASE1 TODO: Add layout based read/vs. write selection.
// PHASE1 TODO: Read operations for both depth and stencil are possible in the future.
const auto ds_state = pipe->DepthStencilState();
const uint32_t depth_stencil_attachment = GetSubpassDepthStencilAttachmentIndex(ds_state, subpass.pDepthStencilAttachment);
if ((depth_stencil_attachment != VK_ATTACHMENT_UNUSED) && attachment_views_[depth_stencil_attachment].IsValid()) {
const AttachmentViewGen &view_gen = attachment_views_[depth_stencil_attachment];
const IMAGE_VIEW_STATE &view_state = *view_gen.GetViewState();
bool depth_write = false, stencil_write = false;
const bool depth_write_enable = pipe->IsDynamic(VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE)
? cmd_buffer.dynamic_state_value.depth_write_enable
: ds_state->depthWriteEnable;
const bool depth_test_enable = pipe->IsDynamic(VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE)
? cmd_buffer.dynamic_state_value.depth_test_enable
: ds_state->depthTestEnable;
const bool stencil_test_enable = pipe->IsDynamic(VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE)
? cmd_buffer.dynamic_state_value.stencil_test_enable
: ds_state->stencilTestEnable;
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsStencilOnly(view_state.create_info.format) && depth_test_enable && depth_write_enable &&
IsImageLayoutDepthWritable(subpass.pDepthStencilAttachment->layout)) {
depth_write = true;
}
// PHASE1 TODO: It needs to check if stencil is writable.
// If failOp, passOp, or depthFailOp are not KEEP, and writeMask isn't 0, it's writable.
// If depth test is disable, it's considered depth test passes, and then depthFailOp doesn't run.
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsDepthOnly(view_state.create_info.format) && stencil_test_enable &&
IsImageLayoutStencilWritable(subpass.pDepthStencilAttachment->layout)) {
stencil_write = true;
}
// PHASE1 TODO: Add EARLY stage detection based on ExecutionMode.
if (depth_write) {
HazardResult hazard = current_context.DetectHazard(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment);
if (hazard.hazard) {
skip |= sync_state.LogError(
view_state.image_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and depth part of pDepthStencilAttachment. Access info %s.",
caller_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(view_state.image_view()).c_str(),
sync_state.report_data->FormatHandle(cmd_buffer.commandBuffer()).c_str(), cmd_buffer.activeSubpass,
exec_context.FormatHazard(hazard).c_str());
}
}
if (stencil_write) {
HazardResult hazard = current_context.DetectHazard(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment);
if (hazard.hazard) {
skip |= sync_state.LogError(
view_state.image_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and stencil part of pDepthStencilAttachment. Access info %s.",
caller_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(view_state.image_view()).c_str(),
sync_state.report_data->FormatHandle(cmd_buffer.commandBuffer()).c_str(), cmd_buffer.activeSubpass,
exec_context.FormatHazard(hazard).c_str());
}
}
}
return skip;
}
void RenderPassAccessContext::RecordDrawSubpassAttachment(const CMD_BUFFER_STATE &cmd_buffer, const ResourceUsageTag tag) {
const auto *pipe = cmd_buffer.GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return;
}
const auto *raster_state = pipe->RasterizationState();
if (raster_state && raster_state->rasterizerDiscardEnable) {
return;
}
const auto &list = pipe->fragmentShader_writable_output_location_list;
const auto &subpass = rp_state_->createInfo.pSubpasses[current_subpass_];
auto ¤t_context = CurrentContext();
// Subpass's inputAttachment has been done in RecordDispatchDrawDescriptorSet
if (subpass.pColorAttachments && subpass.colorAttachmentCount && !list.empty()) {
for (const auto location : list) {
if (location >= subpass.colorAttachmentCount ||
subpass.pColorAttachments[location].attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const AttachmentViewGen &view_gen = attachment_views_[subpass.pColorAttachments[location].attachment];
current_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kColorAttachment,
tag);
}
}
// PHASE1 TODO: Add layout based read/vs. write selection.
// PHASE1 TODO: Read operations for both depth and stencil are possible in the future.
const auto *ds_state = pipe->DepthStencilState();
const uint32_t depth_stencil_attachment = GetSubpassDepthStencilAttachmentIndex(ds_state, subpass.pDepthStencilAttachment);
if ((depth_stencil_attachment != VK_ATTACHMENT_UNUSED) && attachment_views_[depth_stencil_attachment].IsValid()) {
const AttachmentViewGen &view_gen = attachment_views_[depth_stencil_attachment];
const IMAGE_VIEW_STATE &view_state = *view_gen.GetViewState();
bool depth_write = false, stencil_write = false;
const bool has_depth = 0 != (view_state.normalized_subresource_range.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT);
const bool has_stencil = 0 != (view_state.normalized_subresource_range.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT);
const bool depth_write_enable = pipe->IsDynamic(VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE)
? cmd_buffer.dynamic_state_value.depth_write_enable
: ds_state->depthWriteEnable;
const bool depth_test_enable = pipe->IsDynamic(VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE)
? cmd_buffer.dynamic_state_value.depth_test_enable
: ds_state->depthTestEnable;
const bool stencil_test_enable = pipe->IsDynamic(VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE)
? cmd_buffer.dynamic_state_value.stencil_test_enable
: ds_state->stencilTestEnable;
// PHASE1 TODO: These validation should be in core_checks.
if (has_depth && !FormatIsStencilOnly(view_state.create_info.format) && depth_test_enable && depth_write_enable &&
IsImageLayoutDepthWritable(subpass.pDepthStencilAttachment->layout)) {
depth_write = true;
}
// PHASE1 TODO: It needs to check if stencil is writable.
// If failOp, passOp, or depthFailOp are not KEEP, and writeMask isn't 0, it's writable.
// If depth test is disable, it's considered depth test passes, and then depthFailOp doesn't run.
// PHASE1 TODO: These validation should be in core_checks.
if (has_stencil && !FormatIsDepthOnly(view_state.create_info.format) && stencil_test_enable &&
IsImageLayoutStencilWritable(subpass.pDepthStencilAttachment->layout)) {
stencil_write = true;
}
if (depth_write || stencil_write) {
const auto ds_gentype = view_gen.GetDepthStencilRenderAreaGenType(depth_write, stencil_write);
// PHASE1 TODO: Add EARLY stage detection based on ExecutionMode.
current_context.UpdateAccessState(view_gen, ds_gentype, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment, tag);
}
}
}
bool RenderPassAccessContext::ValidateNextSubpass(const CommandExecutionContext &exec_context, CMD_TYPE cmd_type) const {
// PHASE1 TODO: Add Validate Preserve attachments
bool skip = false;
skip |= CurrentContext().ValidateResolveOperations(exec_context, *rp_state_, render_area_, attachment_views_, cmd_type,
current_subpass_);
skip |= CurrentContext().ValidateStoreOperation(exec_context, *rp_state_, render_area_, current_subpass_, attachment_views_,
cmd_type);
const auto next_subpass = current_subpass_ + 1;
if (next_subpass >= subpass_contexts_.size()) {
return skip;
}
const auto &next_context = subpass_contexts_[next_subpass];
skip |=
next_context.ValidateLayoutTransitions(exec_context, *rp_state_, render_area_, next_subpass, attachment_views_, cmd_type);
if (!skip) {
// To avoid complex (and buggy) duplication of the affect of layout transitions on load operations, we'll record them
// on a copy of the (empty) next context.
// Note: The resource access map should be empty so hopefully this copy isn't too horrible from a perf POV.
AccessContext temp_context(next_context);
temp_context.RecordLayoutTransitions(*rp_state_, next_subpass, attachment_views_, kInvalidTag);
skip |=
temp_context.ValidateLoadOperation(exec_context, *rp_state_, render_area_, next_subpass, attachment_views_, cmd_type);
}
return skip;
}
bool RenderPassAccessContext::ValidateEndRenderPass(const CommandExecutionContext &exec_context, CMD_TYPE cmd_type) const {
// PHASE1 TODO: Validate Preserve
bool skip = false;
skip |= CurrentContext().ValidateResolveOperations(exec_context, *rp_state_, render_area_, attachment_views_, cmd_type,
current_subpass_);
skip |= CurrentContext().ValidateStoreOperation(exec_context, *rp_state_, render_area_, current_subpass_, attachment_views_,
cmd_type);
skip |= ValidateFinalSubpassLayoutTransitions(exec_context, cmd_type);
return skip;
}
AccessContext *RenderPassAccessContext::CreateStoreResolveProxy() const {
return CreateStoreResolveProxyContext(CurrentContext(), *rp_state_, current_subpass_, attachment_views_);
}
bool RenderPassAccessContext::ValidateFinalSubpassLayoutTransitions(const CommandExecutionContext &exec_context,
CMD_TYPE cmd_type) const {
bool skip = false;
// As validation methods are const and precede the record/update phase, for any tranistions from the current (last)
// subpass, we have to validate them against a copy of the current AccessContext, with resolve operations applied.
// Note: we could be more efficient by tracking whether or not we actually *have* any changes (e.g. attachment resolve)
// to apply and only copy then, if this proves a hot spot.
std::unique_ptr<AccessContext> proxy_for_current;
// Validate the "finalLayout" transitions to external
// Get them from where there we're hidding in the extra entry.
const auto &final_transitions = rp_state_->subpass_transitions.back();
for (const auto &transition : final_transitions) {
const auto &view_gen = attachment_views_[transition.attachment];
const auto &trackback = subpass_contexts_[transition.prev_pass].GetDstExternalTrackBack();
assert(trackback.source_subpass); // Transitions are given implicit transitions if the StateTracker is working correctly
auto *context = trackback.source_subpass;
if (transition.prev_pass == current_subpass_) {
if (!proxy_for_current) {
// We haven't recorded resolve ofor the current_subpass, so we need to copy current and update it *as if*
proxy_for_current.reset(CreateStoreResolveProxy());
}
context = proxy_for_current.get();
}
// Use the merged barrier for the hazard check (safe since it just considers the src (first) scope.
const auto merged_barrier = MergeBarriers(trackback.barriers);
auto hazard = context->DetectImageBarrierHazard(view_gen, merged_barrier, AccessContext::DetectOptions::kDetectPrevious);
if (hazard.hazard) {
const char *func_name = CommandTypeString(cmd_type);
if (hazard.tag == kInvalidTag) {
// Hazard vs. ILT
skip |= exec_context.GetSyncState().LogError(
rp_state_->renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s vs. store/resolve operations in subpass %" PRIu32 " for attachment %" PRIu32
" final image layout transition (old_layout: %s, new_layout: %s).",
func_name, string_SyncHazard(hazard.hazard), transition.prev_pass, transition.attachment,
string_VkImageLayout(transition.old_layout), string_VkImageLayout(transition.new_layout));
} else {
skip |= exec_context.GetSyncState().LogError(
rp_state_->renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s with last use subpass %" PRIu32 " for attachment %" PRIu32
" final image layout transition (old_layout: %s, new_layout: %s). Access info %s.",
func_name, string_SyncHazard(hazard.hazard), transition.prev_pass, transition.attachment,
string_VkImageLayout(transition.old_layout), string_VkImageLayout(transition.new_layout),
exec_context.FormatHazard(hazard).c_str());
}
}
}
return skip;
}
void RenderPassAccessContext::RecordLayoutTransitions(const ResourceUsageTag tag) {
// Add layout transitions...
subpass_contexts_[current_subpass_].RecordLayoutTransitions(*rp_state_, current_subpass_, attachment_views_, tag);
}
void RenderPassAccessContext::RecordLoadOperations(const ResourceUsageTag tag) {
const auto *attachment_ci = rp_state_->createInfo.pAttachments;
auto &subpass_context = subpass_contexts_[current_subpass_];
for (uint32_t i = 0; i < rp_state_->createInfo.attachmentCount; i++) {
if (rp_state_->attachment_first_subpass[i] == current_subpass_) {
const AttachmentViewGen &view_gen = attachment_views_[i];
if (!view_gen.IsValid()) continue; // UNUSED
const auto &ci = attachment_ci[i];
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
if (is_color) {
const SyncStageAccessIndex load_op = ColorLoadUsage(ci.loadOp);
if (load_op != SYNC_ACCESS_INDEX_NONE) {
subpass_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kRenderArea, load_op,
SyncOrdering::kColorAttachment, tag);
}
} else {
if (has_depth) {
const SyncStageAccessIndex load_op = DepthStencilLoadUsage(ci.loadOp);
if (load_op != SYNC_ACCESS_INDEX_NONE) {
subpass_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea, load_op,
SyncOrdering::kDepthStencilAttachment, tag);
}
}
if (has_stencil) {
const SyncStageAccessIndex load_op = DepthStencilLoadUsage(ci.stencilLoadOp);
if (load_op != SYNC_ACCESS_INDEX_NONE) {
subpass_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea, load_op,
SyncOrdering::kDepthStencilAttachment, tag);
}
}
}
}
}
}
AttachmentViewGenVector RenderPassAccessContext::CreateAttachmentViewGen(
const VkRect2D &render_area, const std::vector<const IMAGE_VIEW_STATE *> &attachment_views) {
AttachmentViewGenVector view_gens;
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
view_gens.reserve(attachment_views.size());
for (const auto *view : attachment_views) {
view_gens.emplace_back(view, offset, extent);
}
return view_gens;
}
RenderPassAccessContext::RenderPassAccessContext(const RENDER_PASS_STATE &rp_state, const VkRect2D &render_area,
VkQueueFlags queue_flags,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const AccessContext *external_context)
: rp_state_(&rp_state), render_area_(render_area), current_subpass_(0U), attachment_views_() {
// Add this for all subpasses here so that they exist during next subpass validation
InitSubpassContexts(queue_flags, rp_state, external_context, subpass_contexts_);
attachment_views_ = CreateAttachmentViewGen(render_area, attachment_views);
}
void RenderPassAccessContext::RecordBeginRenderPass(const ResourceUsageTag barrier_tag, const ResourceUsageTag load_tag) {
assert(0 == current_subpass_);
AccessContext ¤t_context = subpass_contexts_[current_subpass_];
current_context.SetStartTag(barrier_tag);
current_context.RecordRenderpassAsyncContextTags();
RecordLayoutTransitions(barrier_tag);
RecordLoadOperations(load_tag);
}
void RenderPassAccessContext::RecordNextSubpass(const ResourceUsageTag store_tag, const ResourceUsageTag barrier_tag,
const ResourceUsageTag load_tag) {
// Resolves are against *prior* subpass context and thus *before* the subpass increment
CurrentContext().UpdateAttachmentResolveAccess(*rp_state_, attachment_views_, current_subpass_, store_tag);
CurrentContext().UpdateAttachmentStoreAccess(*rp_state_, attachment_views_, current_subpass_, store_tag);
if (current_subpass_ + 1 >= subpass_contexts_.size()) {
return;
}
// Move to the next sub-command for the new subpass. The resolve and store are logically part of the previous
// subpass, so their tag needs to be different from the layout and load operations below.
current_subpass_++;
AccessContext ¤t_context = subpass_contexts_[current_subpass_];
current_context.SetStartTag(barrier_tag);
current_context.RecordRenderpassAsyncContextTags();
RecordLayoutTransitions(barrier_tag);
RecordLoadOperations(load_tag);
}
void RenderPassAccessContext::RecordEndRenderPass(AccessContext *external_context, const ResourceUsageTag store_tag,
const ResourceUsageTag barrier_tag) {
// Add the resolve and store accesses
CurrentContext().UpdateAttachmentResolveAccess(*rp_state_, attachment_views_, current_subpass_, store_tag);
CurrentContext().UpdateAttachmentStoreAccess(*rp_state_, attachment_views_, current_subpass_, store_tag);
// Export the accesses from the renderpass...
external_context->ResolveChildContexts(subpass_contexts_);
// Add the "finalLayout" transitions to external
// Get them from where there we're hidding in the extra entry.
// Not that since *final* always comes from *one* subpass per view, we don't have to accumulate the barriers
// TODO Aliasing we may need to reconsider barrier accumulation... though I don't know that it would be valid for aliasing
// that had mulitple final layout transistions from mulitple final subpasses.
const auto &final_transitions = rp_state_->subpass_transitions.back();
for (const auto &transition : final_transitions) {
const AttachmentViewGen &view_gen = attachment_views_[transition.attachment];
const auto &last_trackback = subpass_contexts_[transition.prev_pass].GetDstExternalTrackBack();
assert(&subpass_contexts_[transition.prev_pass] == last_trackback.source_subpass);
ApplyBarrierOpsFunctor<PipelineBarrierOp> barrier_action(true /* resolve */, last_trackback.barriers.size(), barrier_tag);
for (const auto &barrier : last_trackback.barriers) {
barrier_action.EmplaceBack(PipelineBarrierOp(QueueSyncState::kQueueIdInvalid, barrier, true));
}
external_context->ApplyUpdateAction(view_gen, AttachmentViewGen::Gen::kViewSubresource, barrier_action);
}
}
SyncExecScope SyncExecScope::MakeSrc(VkQueueFlags queue_flags, VkPipelineStageFlags2KHR mask_param,
const VkPipelineStageFlags2KHR disabled_feature_mask) {
SyncExecScope result;
result.mask_param = mask_param;
result.expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags, disabled_feature_mask);
result.exec_scope = sync_utils::WithEarlierPipelineStages(result.expanded_mask);
result.valid_accesses = SyncStageAccess::AccessScopeByStage(result.expanded_mask);
return result;
}
SyncExecScope SyncExecScope::MakeDst(VkQueueFlags queue_flags, VkPipelineStageFlags2KHR mask_param) {
SyncExecScope result;
result.mask_param = mask_param;
result.expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags);
result.exec_scope = sync_utils::WithLaterPipelineStages(result.expanded_mask);
result.valid_accesses = SyncStageAccess::AccessScopeByStage(result.expanded_mask);
return result;
}
SyncBarrier::SyncBarrier(const SyncExecScope &src, const SyncExecScope &dst)
: src_exec_scope(src), src_access_scope(0), dst_exec_scope(dst), dst_access_scope(0) {}
SyncBarrier::SyncBarrier(const SyncExecScope &src, const SyncExecScope &dst, const SyncBarrier::AllAccess &)
: src_exec_scope(src), src_access_scope(src.valid_accesses), dst_exec_scope(dst), dst_access_scope(dst.valid_accesses) {}
template <typename Barrier>
SyncBarrier::SyncBarrier(const Barrier &barrier, const SyncExecScope &src, const SyncExecScope &dst)
: src_exec_scope(src),
src_access_scope(SyncStageAccess::AccessScope(src.valid_accesses, barrier.srcAccessMask)),
dst_exec_scope(dst),
dst_access_scope(SyncStageAccess::AccessScope(dst.valid_accesses, barrier.dstAccessMask)) {}
SyncBarrier::SyncBarrier(VkQueueFlags queue_flags, const VkSubpassDependency2 &subpass) {
const auto barrier = LvlFindInChain<VkMemoryBarrier2KHR>(subpass.pNext);
if (barrier) {
auto src = SyncExecScope::MakeSrc(queue_flags, barrier->srcStageMask);
src_exec_scope = src;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, barrier->srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier->dstStageMask);
dst_exec_scope = dst;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, barrier->dstAccessMask);
} else {
auto src = SyncExecScope::MakeSrc(queue_flags, subpass.srcStageMask);
src_exec_scope = src;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, subpass.srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, subpass.dstStageMask);
dst_exec_scope = dst;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, subpass.dstAccessMask);
}
}
template <typename Barrier>
SyncBarrier::SyncBarrier(VkQueueFlags queue_flags, const Barrier &barrier) {
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
src_exec_scope = src.exec_scope;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, barrier.srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
dst_exec_scope = dst.exec_scope;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, barrier.dstAccessMask);
}
// Apply a list of barriers, without resolving pending state, useful for subpass layout transitions
void ResourceAccessState::ApplyBarriers(const std::vector<SyncBarrier> &barriers, bool layout_transition) {
const UntaggedScopeOps scope;
for (const auto &barrier : barriers) {
ApplyBarrier(scope, barrier, layout_transition);
}
}
// ApplyBarriers is design for *fully* inclusive barrier lists without layout tranistions. Designed use was for
// inter-subpass barriers for lazy-evaluation of parent context memory ranges. Subpass layout transistions are *not* done
// lazily, s.t. no previous access reports should need layout transitions.
void ResourceAccessState::ApplyBarriersImmediate(const std::vector<SyncBarrier> &barriers) {
assert(!pending_layout_transition); // This should never be call in the middle of another barrier application
assert(pending_write_barriers.none());
assert(!pending_write_dep_chain);
const UntaggedScopeOps scope;
for (const auto &barrier : barriers) {
ApplyBarrier(scope, barrier, false);
}
ApplyPendingBarriers(kInvalidTag); // There can't be any need for this tag
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index) const {
HazardResult hazard;
auto usage = FlagBit(usage_index);
const auto usage_stage = PipelineStageBit(usage_index);
if (IsRead(usage)) {
if (IsRAWHazard(usage_stage, usage)) {
hazard.Set(this, usage_index, READ_AFTER_WRITE, last_write, write_tag);
}
} else {
// Write operation:
// Check for read operations more recent than last_write (as setting last_write clears reads, that would be *any*
// If reads exists -- test only against them because either:
// * the reads were hazards, and we've reported the hazard, so just test the current write vs. the read operations
// * the read weren't hazards, and thus if the write is safe w.r.t. the reads, no hazard vs. last_write is possible if
// the current write happens after the reads, so just test the write against the reades
// Otherwise test against last_write
//
// Look for casus belli for WAR
if (last_reads.size()) {
for (const auto &read_access : last_reads) {
if (IsReadHazard(usage_stage, read_access)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
} else if (last_write.any() && IsWriteHazard(usage)) {
// Write-After-Write check -- if we have a previous write to test against
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index, const SyncOrdering ordering_rule,
QueueId queue_id) const {
const auto &ordering = GetOrderingRules(ordering_rule);
return DetectHazard(usage_index, ordering, queue_id);
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index, const OrderingBarrier &ordering,
QueueId queue_id) const {
// The ordering guarantees act as barriers to the last accesses, independent of synchronization operations
HazardResult hazard;
const auto usage_bit = FlagBit(usage_index);
const auto usage_stage = PipelineStageBit(usage_index);
const bool input_attachment_ordering = (ordering.access_scope & SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT).any();
const bool last_write_is_ordered = (last_write & ordering.access_scope).any() && (write_queue == queue_id);
if (IsRead(usage_bit)) {
// Exclude RAW if no write, or write not most "most recent" operation w.r.t. usage;
bool is_raw_hazard = IsRAWHazard(usage_stage, usage_bit);
if (is_raw_hazard) {
// NOTE: we know last_write is non-zero
// See if the ordering rules save us from the simple RAW check above
// First check to see if the current usage is covered by the ordering rules
const bool usage_is_input_attachment = (usage_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ);
const bool usage_is_ordered =
(input_attachment_ordering && usage_is_input_attachment) || (0 != (usage_stage & ordering.exec_scope));
if (usage_is_ordered) {
// Now see of the most recent write (or a subsequent read) are ordered
const bool most_recent_is_ordered = last_write_is_ordered || (0 != GetOrderedStages(queue_id, ordering));
is_raw_hazard = !most_recent_is_ordered;
}
}
if (is_raw_hazard) {
hazard.Set(this, usage_index, READ_AFTER_WRITE, last_write, write_tag);
}
} else if (usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION) {
// For Image layout transitions, the barrier represents the first synchronization/access scope of the layout transition
return DetectBarrierHazard(usage_index, queue_id, ordering.exec_scope, ordering.access_scope);
} else {
// Only check for WAW if there are no reads since last_write
const bool usage_write_is_ordered = (usage_bit & ordering.access_scope).any();
if (last_reads.size()) {
// Look for any WAR hazards outside the ordered set of stages
VkPipelineStageFlags2KHR ordered_stages = 0;
if (usage_write_is_ordered) {
// If the usage is ordered, we can ignore all ordered read stages w.r.t. WAR)
ordered_stages = GetOrderedStages(queue_id, ordering);
}
// If we're tracking any reads that aren't ordered against the current write, got to check 'em all.
if ((ordered_stages & last_read_stages) != last_read_stages) {
for (const auto &read_access : last_reads) {
if (read_access.stage & ordered_stages) continue; // but we can skip the ordered ones
if (IsReadHazard(usage_stage, read_access)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
}
} else if (last_write.any() && !(last_write_is_ordered && usage_write_is_ordered)) {
bool ilt_ilt_hazard = false;
if ((usage_index == SYNC_IMAGE_LAYOUT_TRANSITION) && (usage_bit == last_write)) {
// ILT after ILT is a special case where we check the 2nd access scope of the first ILT against the first access
// scope of the second ILT, which has been passed (smuggled?) in the ordering barrier
ilt_ilt_hazard = !(write_barriers & ordering.access_scope).any();
}
if (ilt_ilt_hazard || IsWriteHazard(usage_bit)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectHazard(const ResourceAccessState &recorded_use, QueueId queue_id,
const ResourceUsageRange &tag_range) const {
HazardResult hazard;
using Size = FirstAccesses::size_type;
const auto &recorded_accesses = recorded_use.first_accesses_;
Size count = recorded_accesses.size();
if (count) {
const auto &last_access = recorded_accesses.back();
bool do_write_last = IsWrite(last_access.usage_index);
if (do_write_last) --count;
for (Size i = 0; i < count; ++count) {
const auto &first = recorded_accesses[i];
// Skip and quit logic
if (first.tag < tag_range.begin) continue;
if (first.tag >= tag_range.end) {
do_write_last = false; // ignore last since we know it can't be in tag_range
break;
}
hazard = DetectHazard(first.usage_index, first.ordering_rule, queue_id);
if (hazard.hazard) {
hazard.AddRecordedAccess(first);
break;
}
}
if (do_write_last && tag_range.includes(last_access.tag)) {
// Writes are a bit special... both for the "most recent" access logic, and layout transition specific logic
OrderingBarrier barrier = GetOrderingRules(last_access.ordering_rule);
if (last_access.usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION) {
// Or in the layout first access scope as a barrier... IFF the usage is an ILT
// this was saved off in the "apply barriers" logic to simplify ILT access checks as they straddle
// the barrier that applies them
barrier |= recorded_use.first_write_layout_ordering_;
}
// Any read stages present in the recorded context (this) are most recent to the write, and thus mask those stages in
// the active context
if (recorded_use.first_read_stages_) {
// we need to ignore the first use read stage in the active context (so we add them to the ordering rule),
// reads in the active context are not "most recent" as all recorded context operations are *after* them
// This supresses only RAW checks for stages present in the recorded context, but not those only present in the
// active context.
barrier.exec_scope |= recorded_use.first_read_stages_;
// if there are any first use reads, we suppress WAW by injecting the active context write in the ordering rule
barrier.access_scope |= FlagBit(last_access.usage_index);
}
hazard = DetectHazard(last_access.usage_index, barrier, queue_id);
if (hazard.hazard) {
hazard.AddRecordedAccess(last_access);
}
}
}
return hazard;
}
// Asynchronous Hazards occur between subpasses with no connection through the DAG
HazardResult ResourceAccessState::DetectAsyncHazard(SyncStageAccessIndex usage_index, const ResourceUsageTag start_tag) const {
HazardResult hazard;
auto usage = FlagBit(usage_index);
// Async checks need to not go back further than the start of the subpass, as we only want to find hazards between the async
// subpasses. Anything older than that should have been checked at the start of each subpass, taking into account all of
// the raster ordering rules.
if (IsRead(usage)) {
if (last_write.any() && (write_tag >= start_tag)) {
hazard.Set(this, usage_index, READ_RACING_WRITE, last_write, write_tag);
}
} else {
if (last_write.any() && (write_tag >= start_tag)) {
hazard.Set(this, usage_index, WRITE_RACING_WRITE, last_write, write_tag);
} else if (last_reads.size() > 0) {
// Any reads during the other subpass will conflict with this write, so we need to check them all.
for (const auto &read_access : last_reads) {
if (read_access.tag >= start_tag) {
hazard.Set(this, usage_index, WRITE_RACING_READ, read_access.access, read_access.tag);
break;
}
}
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectAsyncHazard(const ResourceAccessState &recorded_use, const ResourceUsageRange &tag_range,
ResourceUsageTag start_tag) const {
HazardResult hazard;
for (const auto &first : recorded_use.first_accesses_) {
// Skip and quit logic
if (first.tag < tag_range.begin) continue;
if (first.tag >= tag_range.end) break;
hazard = DetectAsyncHazard(first.usage_index, start_tag);
if (hazard.hazard) {
hazard.AddRecordedAccess(first);
break;
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectBarrierHazard(SyncStageAccessIndex usage_index, QueueId queue_id,
VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope) const {
// Only supporting image layout transitions for now
assert(usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
HazardResult hazard;
// only test for WAW if there no intervening read operations.
// See DetectHazard(SyncStagetAccessIndex) above for more details.
if (last_reads.size()) {
// Look at the reads if any
for (const auto &read_access : last_reads) {
if (read_access.IsReadBarrierHazard(queue_id, src_exec_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
} else if (last_write.any() && IsWriteBarrierHazard(queue_id, src_exec_scope, src_access_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
return hazard;
}
HazardResult ResourceAccessState::DetectBarrierHazard(SyncStageAccessIndex usage_index, const ResourceAccessState &scope_state,
VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope, QueueId event_queue,
ResourceUsageTag event_tag) const {
// Only supporting image layout transitions for now
assert(usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
HazardResult hazard;
if ((write_tag >= event_tag) && last_write.any()) {
// Any write after the event precludes the possibility of being in the first access scope for the layout transition
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
} else {
// only test for WAW if there no intervening read operations.
// See DetectHazard(SyncStagetAccessIndex) above for more details.
if (last_reads.size()) {
// Look at the reads if any... if reads exist, they are either the reason the access is in the event
// first scope, or they are a hazard.
const ReadStates &scope_reads = scope_state.last_reads;
const ReadStates::size_type scope_read_count = scope_reads.size();
// Since the hasn't been a write:
// * The current read state is a superset of the scoped one
// * The stage order is the same.
assert(last_reads.size() >= scope_read_count);
for (ReadStates::size_type read_idx = 0; read_idx < scope_read_count; ++read_idx) {
const ReadState &scope_read = scope_reads[read_idx];
const ReadState ¤t_read = last_reads[read_idx];
assert(scope_read.stage == current_read.stage);
if (current_read.tag > event_tag) {
// The read is more recent than the set event scope, thus no barrier from the wait/ILT.
hazard.Set(this, usage_index, WRITE_AFTER_READ, current_read.access, current_read.tag);
} else {
// The read is in the events first synchronization scope, so we use a barrier hazard check
// If the read stage is not in the src sync scope
// *AND* not execution chained with an existing sync barrier (that's the or)
// then the barrier access is unsafe (R/W after R)
if (scope_read.IsReadBarrierHazard(event_queue, src_exec_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, scope_read.access, scope_read.tag);
break;
}
}
}
if (!hazard.IsHazard() && (last_reads.size() > scope_read_count)) {
const ReadState ¤t_read = last_reads[scope_read_count];
hazard.Set(this, usage_index, WRITE_AFTER_READ, current_read.access, current_read.tag);
}
} else if (last_write.any()) {
// if there are no reads, the write is either the reason the access is in the event scope... they are a hazard
// The write is in the first sync scope of the event (sync their aren't any reads to be the reason)
// So do a normal barrier hazard check
if (scope_state.IsWriteBarrierHazard(event_queue, src_exec_scope, src_access_scope)) {
hazard.Set(&scope_state, usage_index, WRITE_AFTER_WRITE, scope_state.last_write, scope_state.write_tag);
}
}
}
return hazard;
}
// The logic behind resolves is the same as update, we assume that earlier hazards have be reported, and that no
// tranistive hazard can exists with a hazard between the earlier operations. Yes, an early hazard can mask that another
// exists, but if you fix *that* hazard it either fixes or unmasks the subsequent ones.
void ResourceAccessState::Resolve(const ResourceAccessState &other) {
if (write_tag < other.write_tag) {
// If this is a later write, we've reported any exsiting hazard, and we can just overwrite as the more recent
// operation
*this = other;
} else if (other.write_tag == write_tag) {
// In the *equals* case for write operations, we merged the write barriers and the read state (but without the
// dependency chaining logic or any stage expansion)
write_barriers |= other.write_barriers;
pending_write_barriers |= other.pending_write_barriers;
pending_layout_transition |= other.pending_layout_transition;
pending_write_dep_chain |= other.pending_write_dep_chain;
pending_layout_ordering_ |= other.pending_layout_ordering_;
// Merge the read states
const auto pre_merge_count = last_reads.size();
const auto pre_merge_stages = last_read_stages;
for (uint32_t other_read_index = 0; other_read_index < other.last_reads.size(); other_read_index++) {
auto &other_read = other.last_reads[other_read_index];
if (pre_merge_stages & other_read.stage) {
// Merge in the barriers for read stages that exist in *both* this and other
// TODO: This is N^2 with stages... perhaps the ReadStates should be sorted by stage index.
// but we should wait on profiling data for that.
for (uint32_t my_read_index = 0; my_read_index < pre_merge_count; my_read_index++) {
auto &my_read = last_reads[my_read_index];
if (other_read.stage == my_read.stage) {
if (my_read.tag < other_read.tag) {
// Other is more recent, copy in the state
my_read.access = other_read.access;
my_read.tag = other_read.tag;
my_read.queue = other_read.queue;
my_read.pending_dep_chain = other_read.pending_dep_chain;
// TODO: Phase 2 -- review the state merge logic to avoid false positive from overwriting the barriers
// May require tracking more than one access per stage.
my_read.barriers = other_read.barriers;
my_read.sync_stages = other_read.sync_stages;
if (my_read.stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR) {
// Since I'm overwriting the fragement stage read, also update the input attachment info
// as this is the only stage that affects it.
input_attachment_read = other.input_attachment_read;
}
} else if (other_read.tag == my_read.tag) {
// The read tags match so merge the barriers
my_read.barriers |= other_read.barriers;
my_read.sync_stages |= other_read.sync_stages;
my_read.pending_dep_chain |= other_read.pending_dep_chain;
}
break;
}
}
} else {
// The other read stage doesn't exist in this, so add it.
last_reads.emplace_back(other_read);
last_read_stages |= other_read.stage;
if (other_read.stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR) {
input_attachment_read = other.input_attachment_read;
}
}
}
read_execution_barriers |= other.read_execution_barriers;
} // the else clause would be that other write is before this write... in which case we supercede the other state and
// ignore it.
// Merge first access information by making a copy of this first_access and reconstructing with a shuffle
// of the copy and other into this using the update first logic.
// NOTE: All sorts of additional cleverness could be put into short circuts. (for example back is write and is before front
// of the other first_accesses... )
if (!(first_accesses_ == other.first_accesses_) && !other.first_accesses_.empty()) {
FirstAccesses firsts(std::move(first_accesses_));
first_accesses_.clear();
first_read_stages_ = 0U;
auto a = firsts.begin();
auto a_end = firsts.end();
for (auto &b : other.first_accesses_) {
// TODO: Determine whether some tag offset will be needed for PHASE II
while ((a != a_end) && (a->tag < b.tag)) {
UpdateFirst(a->tag, a->usage_index, a->ordering_rule);
++a;
}
UpdateFirst(b.tag, b.usage_index, b.ordering_rule);
}
for (; a != a_end; ++a) {
UpdateFirst(a->tag, a->usage_index, a->ordering_rule);
}
}
}
void ResourceAccessState::Update(SyncStageAccessIndex usage_index, SyncOrdering ordering_rule, const ResourceUsageTag tag) {
// Move this logic in the ResourceStateTracker as methods, thereof (or we'll repeat it for every flavor of resource...
const auto usage_bit = FlagBit(usage_index);
if (IsRead(usage_index)) {
// Mulitple outstanding reads may be of interest and do dependency chains independently
// However, for purposes of barrier tracking, only one read per pipeline stage matters
const auto usage_stage = PipelineStageBit(usage_index);
if (usage_stage & last_read_stages) {
const auto not_usage_stage = ~usage_stage;
for (auto &read_access : last_reads) {
if (read_access.stage == usage_stage) {
read_access.Set(usage_stage, usage_bit, 0, tag);
} else if (read_access.barriers & usage_stage) {
// If the current access is barriered to this stage, mark it as "known to happen after"
read_access.sync_stages |= usage_stage;
} else {
// If the current access is *NOT* barriered to this stage it needs to be cleared.
// Note: this is possible because semaphores can *clear* effective barriers, so the assumption
// that sync_stages is a subset of barriers may not apply.
read_access.sync_stages &= not_usage_stage;
}
}
} else {
for (auto &read_access : last_reads) {
if (read_access.barriers & usage_stage) {
read_access.sync_stages |= usage_stage;
}
}
last_reads.emplace_back(usage_stage, usage_bit, 0, tag);
last_read_stages |= usage_stage;
}
// Fragment shader reads come in two flavors, and we need to track if the one we're tracking is the special one.
if (usage_stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR) {
// TODO Revisit re: multiple reads for a given stage
input_attachment_read = (usage_bit == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT);
}
} else {
// Assume write
// TODO determine what to do with READ-WRITE operations if any
SetWrite(usage_bit, tag);
}
UpdateFirst(tag, usage_index, ordering_rule);
}
// Clobber last read and all barriers... because all we have is DANGER, DANGER, WILL ROBINSON!!!
// if the last_reads/last_write were unsafe, we've reported them, in either case the prior access is irrelevant.
// We can overwrite them as *this* write is now after them.
//
// Note: intentionally ignore pending barriers and chains (i.e. don't apply or clear them), let ApplyPendingBarriers handle them.
void ResourceAccessState::SetWrite(const SyncStageAccessFlags &usage_bit, const ResourceUsageTag tag) {
ClearRead();
ClearWrite();
write_tag = tag;
last_write = usage_bit;
}
void ResourceAccessState::ClearWrite() {
read_execution_barriers = VK_PIPELINE_STAGE_2_NONE;
input_attachment_read = false; // Denotes no outstanding input attachment read after the last write.
write_barriers.reset();
write_dependency_chain = VK_PIPELINE_STAGE_2_NONE;
last_write.reset();
write_tag = 0;
write_queue = QueueSyncState::kQueueIdInvalid;
}
void ResourceAccessState::ClearRead() {
last_reads.clear();
last_read_stages = VK_PIPELINE_STAGE_2_NONE;
}
void ResourceAccessState::ClearPending() {
pending_write_dep_chain = VK_PIPELINE_STAGE_2_NONE;
pending_layout_transition = false;
pending_write_barriers.reset();
pending_layout_ordering_ = OrderingBarrier();
}
void ResourceAccessState::ClearFirstUse() {
first_accesses_.clear();
first_read_stages_ = VK_PIPELINE_STAGE_2_NONE;
first_write_layout_ordering_ = OrderingBarrier();
}
// Apply the memory barrier without updating the existing barriers. The execution barrier
// changes the "chaining" state, but to keep barriers independent, we defer this until all barriers
// of the batch have been processed. Also, depending on whether layout transition happens, we'll either
// replace the current write barriers or add to them, so accumulate to pending as well.
template <typename ScopeOps>
void ResourceAccessState::ApplyBarrier(ScopeOps &&scope, const SyncBarrier &barrier, bool layout_transition) {
// For independent barriers we need to track what the new barriers and dependency chain *will* be when we're done
// applying the memory barriers
// NOTE: We update the write barrier if the write is in the first access scope or if there is a layout
// transistion, under the theory of "most recent access". If the resource acces *isn't* safe
// vs. this layout transition DetectBarrierHazard should report it. We treat the layout
// transistion *as* a write and in scope with the barrier (it's before visibility).
if (layout_transition || scope.WriteInScope(barrier, *this)) {
pending_write_barriers |= barrier.dst_access_scope;
pending_write_dep_chain |= barrier.dst_exec_scope.exec_scope;
if (layout_transition) {
pending_layout_ordering_ |= OrderingBarrier(barrier.src_exec_scope.exec_scope, barrier.src_access_scope);
}
}
// Track layout transistion as pending as we can't modify last_write until all barriers processed
pending_layout_transition |= layout_transition;
if (!pending_layout_transition) {
// Once we're dealing with a layout transition (which is modelled as a *write*) then the last reads/chains
// don't need to be tracked as we're just going to clear them.
VkPipelineStageFlags2 stages_in_scope = VK_PIPELINE_STAGE_2_NONE;
for (auto &read_access : last_reads) {
// The | implements the "dependency chain" logic for this access, as the barriers field stores the second sync scope
if (scope.ReadInScope(barrier, read_access)) {
// We'll apply the barrier in the next loop, because it's DRY'r to do it one place.
stages_in_scope |= read_access.stage;
}
}
for (auto &read_access : last_reads) {
if (0 != ((read_access.stage | read_access.sync_stages) & stages_in_scope)) {
// If this stage, or any stage known to be synchronized after it are in scope, apply the barrier to this read
// NOTE: Forwarding barriers to known prior stages changes the sync_stages from shallow to deep, because the
// barriers used to determine sync_stages have been propagated to all known earlier stages
read_access.ApplyReadBarrier(barrier.dst_exec_scope.exec_scope);
}
}
}
}
void ResourceAccessState::ApplyPendingBarriers(const ResourceUsageTag tag) {
if (pending_layout_transition) {
// SetWrite clobbers the last_reads array, and thus we don't have to clear the read_state out.
SetWrite(SYNC_IMAGE_LAYOUT_TRANSITION_BIT, tag); // Side effect notes below
UpdateFirst(tag, SYNC_IMAGE_LAYOUT_TRANSITION, SyncOrdering::kNonAttachment);
TouchupFirstForLayoutTransition(tag, pending_layout_ordering_);
pending_layout_ordering_ = OrderingBarrier();
pending_layout_transition = false;
}
// Apply the accumulate execution barriers (and thus update chaining information)
// for layout transition, last_reads is reset by SetWrite, so this will be skipped.
for (auto &read_access : last_reads) {
read_execution_barriers |= read_access.ApplyPendingBarriers();
}
// We OR in the accumulated write chain and barriers even in the case of a layout transition as SetWrite zeros them.
write_dependency_chain |= pending_write_dep_chain;
write_barriers |= pending_write_barriers;
pending_write_dep_chain = 0;
pending_write_barriers = 0;
}
// Assumes signal queue != wait queue
void ResourceAccessState::ApplySemaphore(const SemaphoreScope &signal, const SemaphoreScope wait) {
// Semaphores only guarantee the first scope of the signal is before the second scope of the wait.
// If any access isn't in the first scope, there are no guarantees, thus those barriers are cleared
assert(signal.queue != wait.queue);
for (auto &read_access : last_reads) {
if (read_access.ReadInQueueScopeOrChain(signal.queue, signal.exec_scope)) {
// Deflects WAR on wait queue
read_access.barriers = wait.exec_scope;
} else {
// Leave sync stages alone. Update method will clear unsynchronized stages on subsequent reads as needed.
read_access.barriers = VK_PIPELINE_STAGE_2_NONE;
}
}
if (WriteInQueueSourceScopeOrChain(signal.queue, signal.exec_scope, signal.valid_accesses)) {
// Will deflect RAW wait queue, WAW needs a chained barrier on wait queue
read_execution_barriers = wait.exec_scope;
write_barriers = wait.valid_accesses;
} else {
read_execution_barriers = VK_PIPELINE_STAGE_2_NONE;
write_barriers.reset();
}
write_dependency_chain = read_execution_barriers;
}
// Read access predicate for queue wait
bool ResourceAccessState::WaitQueueTagPredicate::operator()(const ResourceAccessState::ReadState &read_access) const {
return (read_access.queue == queue) && (read_access.tag <= tag) &&
(read_access.stage != VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL);
}
bool ResourceAccessState::WaitQueueTagPredicate::operator()(const ResourceAccessState &access) const {
return (access.write_queue == queue) && (access.write_tag <= tag) &&
(access.last_write != SYNC_PRESENT_ENGINE_BIT_SYNCVAL_PRESENT_PRESENTED_BIT_SYNCVAL);
}
// Read access predicate for queue wait
bool ResourceAccessState::WaitTagPredicate::operator()(const ResourceAccessState::ReadState &read_access) const {
return (read_access.tag <= tag) && (read_access.stage != VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL);
}
bool ResourceAccessState::WaitTagPredicate::operator()(const ResourceAccessState &access) const {
return (access.write_tag <= tag) && (access.last_write != SYNC_PRESENT_ENGINE_BIT_SYNCVAL_PRESENT_PRESENTED_BIT_SYNCVAL);
}
// Present operations only matching only the *exactly* tagged present and acquire operations
bool ResourceAccessState::WaitAcquirePredicate::operator()(const ResourceAccessState::ReadState &read_access) const {
return (read_access.tag == acquire_tag) && (read_access.stage == VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL);
}
bool ResourceAccessState::WaitAcquirePredicate::operator()(const ResourceAccessState &access) const {
return (access.write_tag == present_tag) &&
(access.last_write == SYNC_PRESENT_ENGINE_BIT_SYNCVAL_PRESENT_PRESENTED_BIT_SYNCVAL);
}
// Return if the resulting state is "empty"
template <typename Predicate>
bool ResourceAccessState::ApplyPredicatedWait(Predicate &predicate) {
VkPipelineStageFlags2KHR sync_reads = VK_PIPELINE_STAGE_2_NONE;
// Use the predicate to build a mask of the read stages we are synchronizing
// Use the sync_stages to also detect reads known to be before any synchronized reads (first pass)
for (auto &read_access : last_reads) {
if (predicate(read_access)) {
// If we know this stage is before any stage we syncing, or if the predicate tells us that we are waited for..
sync_reads |= read_access.stage;
}
}
// Now that we know the reads directly in scopejust need to go over the list again to pick up the "known earlier" stages.
// NOTE: sync_stages is "deep" catching all stages synchronized after it because we forward barriers
uint32_t unsync_count = 0;
for (auto &read_access : last_reads) {
if (0 != ((read_access.stage | read_access.sync_stages) & sync_reads)) {
// This is redundant in the "stage" case, but avoids a second branch to get an accurate count
sync_reads |= read_access.stage;
} else {
++unsync_count;
}
}
if (unsync_count) {
if (sync_reads) {
// When have some remaining unsynchronized reads, we have to rewrite the last_reads array.
ReadStates unsync_reads;
unsync_reads.reserve(unsync_count);
VkPipelineStageFlags2KHR unsync_read_stages = VK_PIPELINE_STAGE_2_NONE;
for (auto &read_access : last_reads) {
if (0 == (read_access.stage & sync_reads)) {
unsync_reads.emplace_back(read_access);
unsync_read_stages |= read_access.stage;
}
}
last_read_stages = unsync_read_stages;
last_reads = std::move(unsync_reads);
}
} else {
// Nothing remains (or it was empty to begin with)
ClearRead();
}
bool all_clear = last_reads.size() == 0;
if (last_write.any()) {
if (predicate(*this) || sync_reads) {
// Clear any predicated write, or any the write from any any access with synchronized reads.
// This could drop RAW detection, but only if the synchronized reads were RAW hazards, and given
// MRR approach to reporting, this is consistent with other drops, especially since fixing the
// RAW wit the sync_reads stages would preclude a subsequent RAW.
ClearWrite();
} else {
all_clear = false;
}
}
return all_clear;
}
bool ResourceAccessState::FirstAccessInTagRange(const ResourceUsageRange &tag_range) const {
if (!first_accesses_.size()) return false;
const ResourceUsageRange first_access_range = {first_accesses_.front().tag, first_accesses_.back().tag + 1};
return tag_range.intersects(first_access_range);
}
void ResourceAccessState::OffsetTag(ResourceUsageTag offset) {
if (last_write.any()) write_tag += offset;
for (auto &read_access : last_reads) {
read_access.tag += offset;
}
for (auto &first : first_accesses_) {
first.tag += offset;
}
}
ResourceAccessState::ResourceAccessState()
: write_barriers(~SyncStageAccessFlags(0)),
write_dependency_chain(0),
write_tag(),
write_queue(QueueSyncState::kQueueIdInvalid),
last_write(0),
input_attachment_read(false),
last_read_stages(0),
read_execution_barriers(0),
pending_write_dep_chain(0),
pending_layout_transition(false),
pending_write_barriers(0),
pending_layout_ordering_(),
first_accesses_(),
first_read_stages_(0U),
first_write_layout_ordering_() {}
// This should be just Bits or Index, but we don't have an invalid state for Index
VkPipelineStageFlags2KHR ResourceAccessState::GetReadBarriers(const SyncStageAccessFlags &usage_bit) const {
VkPipelineStageFlags2KHR barriers = 0U;
for (const auto &read_access : last_reads) {
if ((read_access.access & usage_bit).any()) {
barriers = read_access.barriers;
break;
}
}
return barriers;
}
void ResourceAccessState::SetQueueId(QueueId id) {
for (auto &read_access : last_reads) {
if (read_access.queue == QueueSyncState::kQueueIdInvalid) {
read_access.queue = id;
}
}
if (last_write.any() && (write_queue == QueueSyncState::kQueueIdInvalid)) {
write_queue = id;
}
}
bool ResourceAccessState::WriteInChain(VkPipelineStageFlags2KHR src_exec_scope) const {
return 0 != (write_dependency_chain & src_exec_scope);
}
bool ResourceAccessState::WriteInScope(const SyncStageAccessFlags &src_access_scope) const {
return (src_access_scope & last_write).any();
}
bool ResourceAccessState::WriteBarrierInScope(const SyncStageAccessFlags &src_access_scope) const {
return (write_barriers & src_access_scope).any();
}
bool ResourceAccessState::WriteInSourceScopeOrChain(VkPipelineStageFlags2KHR src_exec_scope,
SyncStageAccessFlags src_access_scope) const {
return WriteInChain(src_exec_scope) || WriteInScope(src_access_scope);
}
bool ResourceAccessState::WriteInQueueSourceScopeOrChain(QueueId queue, VkPipelineStageFlags2KHR src_exec_scope,
SyncStageAccessFlags src_access_scope) const {
return WriteInChain(src_exec_scope) || ((queue == write_queue) && WriteInScope(src_access_scope));
}
bool ResourceAccessState::WriteInEventScope(VkPipelineStageFlags2KHR src_exec_scope, const SyncStageAccessFlags &src_access_scope,
QueueId scope_queue, ResourceUsageTag scope_tag) const {
// The scope logic for events is, if we're asking, the resource usage was flagged as "in the first execution scope" at
// the time of the SetEvent, thus all we need check is whether the access is the same one (i.e. before the scope tag
// in order to know if it's in the excecution scope
return (write_tag < scope_tag) && WriteInQueueSourceScopeOrChain(scope_queue, src_exec_scope, src_access_scope);
}
bool ResourceAccessState::WriteInChainedScope(VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope) const {
return WriteInChain(src_exec_scope) && WriteBarrierInScope(src_access_scope);
}
// As ReadStates must be unique by stage, this is as good a sort as needed
bool operator<(const ResourceAccessState::ReadState &lhs, const ResourceAccessState::ReadState &rhs) {
return lhs.stage < rhs.stage;
}
void ResourceAccessState::Normalize() {
if (!last_write.any()) {
ClearWrite();
}
if (!last_reads.size()) {
ClearRead();
} else {
// Sort the reads in stage order for consistent comparisons
std::sort(last_reads.begin(), last_reads.end());
for (auto &read_access : last_reads) {
read_access.Normalize();
}
}
ClearPending();
ClearFirstUse();
}
void ResourceAccessState::GatherReferencedTags(ResourceUsageTagSet &used) const {
if (last_write.any()) {
used.insert(write_tag);
}
for (const auto &read_access : last_reads) {
used.insert(read_access.tag);
}
}
bool ResourceAccessState::IsRAWHazard(VkPipelineStageFlags2KHR usage_stage, const SyncStageAccessFlags &usage) const {
assert(IsRead(usage));
// Only RAW vs. last_write if it doesn't happen-after any other read because either:
// * the previous reads are not hazards, and thus last_write must be visible and available to
// any reads that happen after.
// * the previous reads *are* hazards to last_write, have been reported, and if that hazard is fixed
// the current read will be also not be a hazard, thus reporting a hazard here adds no needed information.
return last_write.any() && (0 == (read_execution_barriers & usage_stage)) && IsWriteHazard(usage);
}
VkPipelineStageFlags2 ResourceAccessState::GetOrderedStages(QueueId queue_id, const OrderingBarrier &ordering) const {
// At apply queue submission order limits on the effect of ordering
VkPipelineStageFlags2 non_qso_stages = VK_PIPELINE_STAGE_2_NONE;
if (queue_id != QueueSyncState::kQueueIdInvalid) {
for (const auto &read_access : last_reads) {
if (read_access.queue != queue_id) {
non_qso_stages |= read_access.stage;
}
}
}
// Whether the stage are in the ordering scope only matters if the current write is ordered
const VkPipelineStageFlags2 read_stages_in_qso = last_read_stages & ~non_qso_stages;
VkPipelineStageFlags2 ordered_stages = read_stages_in_qso & ordering.exec_scope;
// Special input attachment handling as always (not encoded in exec_scop)
const bool input_attachment_ordering = (ordering.access_scope & SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT).any();
if (input_attachment_ordering && input_attachment_read) {
// If we have an input attachment in last_reads and input attachments are ordered we all that stage
ordered_stages |= VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR;
}
return ordered_stages;
}
void ResourceAccessState::UpdateFirst(const ResourceUsageTag tag, SyncStageAccessIndex usage_index, SyncOrdering ordering_rule) {
// Only record until we record a write.
if (first_accesses_.empty() || IsRead(first_accesses_.back().usage_index)) {
const VkPipelineStageFlags2KHR usage_stage = IsRead(usage_index) ? PipelineStageBit(usage_index) : 0U;
if (0 == (usage_stage & first_read_stages_)) {
// If this is a read we haven't seen or a write, record.
// We always need to know what stages were found prior to write
first_read_stages_ |= usage_stage;
if (0 == (read_execution_barriers & usage_stage)) {
// If this stage isn't masked then we add it (since writes map to usage_stage 0, this also records writes)
first_accesses_.emplace_back(tag, usage_index, ordering_rule);
}
}
}
}
void ResourceAccessState::TouchupFirstForLayoutTransition(ResourceUsageTag tag, const OrderingBarrier &layout_ordering) {
// Only call this after recording an image layout transition
assert(first_accesses_.size());
if (first_accesses_.back().tag == tag) {
// If this layout transition is the the first write, add the additional ordering rules that guard the ILT
assert(first_accesses_.back().usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
first_write_layout_ordering_ = layout_ordering;
}
}
ResourceAccessState::ReadState::ReadState(VkPipelineStageFlags2KHR stage_, SyncStageAccessFlags access_,
VkPipelineStageFlags2KHR barriers_, ResourceUsageTag tag_)
: stage(stage_),
access(access_),
barriers(barriers_),
sync_stages(VK_PIPELINE_STAGE_2_NONE),
tag(tag_),
queue(QueueSyncState::kQueueIdInvalid),
pending_dep_chain(VK_PIPELINE_STAGE_2_NONE) {}
void ResourceAccessState::ReadState::Set(VkPipelineStageFlags2KHR stage_, const SyncStageAccessFlags &access_,
VkPipelineStageFlags2KHR barriers_, ResourceUsageTag tag_) {
stage = stage_;
access = access_;
barriers = barriers_;
sync_stages = VK_PIPELINE_STAGE_2_NONE;
tag = tag_;
pending_dep_chain = VK_PIPELINE_STAGE_2_NONE; // If this is a new read, we aren't applying a barrier set.
}
// Scope test including "queue submission order" effects. Specifically, accesses from a different queue are not
// considered to be in "queue submission order" with barriers, events, or semaphore signalling, but any barriers
// that have bee applied (via semaphore) to those accesses can be chained off of.
bool ResourceAccessState::ReadState::ReadInQueueScopeOrChain(QueueId scope_queue, VkPipelineStageFlags2 exec_scope) const {
VkPipelineStageFlags2 effective_stages = barriers | ((scope_queue == queue) ? stage : VK_PIPELINE_STAGE_2_NONE);
return (exec_scope & effective_stages) != 0;
}
VkPipelineStageFlags2 ResourceAccessState::ReadState::ApplyPendingBarriers() {
barriers |= pending_dep_chain;
pending_dep_chain = 0;
return barriers;
}
ResourceUsageRange SyncValidator::ReserveGlobalTagRange(size_t tag_count) const {
ResourceUsageRange reserve;
reserve.begin = tag_limit_.fetch_add(tag_count);
reserve.end = reserve.begin + tag_count;
return reserve;
}
void SyncValidator::ApplyTaggedWait(QueueId queue_id, ResourceUsageTag tag) {
auto tagged_wait_op = [queue_id, tag](const std::shared_ptr<QueueBatchContext> &batch) {
batch->ApplyTaggedWait(queue_id, tag);
batch->Trim();
};
ForAllQueueBatchContexts(tagged_wait_op);
}
void SyncValidator::ApplyAcquireWait(const AcquiredImage &acquired) {
auto acq_wait_op = [&acquired](const std::shared_ptr<QueueBatchContext> &batch) {
batch->ApplyAcquireWait(acquired);
batch->Trim();
};
ForAllQueueBatchContexts(acq_wait_op);
}
template <typename BatchOp>
void SyncValidator::ForAllQueueBatchContexts(BatchOp &&op) {
// Often we need to go through every queue batch context and apply synchronization operations
// As usual -- two groups, the "last batch" and the signaled semaphores
QueueBatchContext::BatchSet queue_batch_contexts = GetQueueBatchSnapshot();
// Note: The const is to force the reference to const be on all platforms.
//
// It's not obivious (nor cross platform consitent), that the batch reference should be const
// but since it's pointing to the actual *key* for the set it must be. This doesn't make the
// object the shared pointer is referencing constant however.
for (const auto &batch : queue_batch_contexts) {
op(batch);
}
}
void SyncValidator::UpdateFenceWaitInfo(VkFence fence, QueueId queue_id, ResourceUsageTag tag) {
std::shared_ptr<const FENCE_STATE> fence_state = Get<FENCE_STATE>(fence);
UpdateFenceWaitInfo(fence_state, FenceSyncState(fence_state, queue_id, tag));
}
void SyncValidator::UpdateFenceWaitInfo(VkFence fence, const PresentedImage &image, ResourceUsageTag tag) {
std::shared_ptr<const FENCE_STATE> fence_state = Get<FENCE_STATE>(fence);
UpdateFenceWaitInfo(fence_state, FenceSyncState(fence_state, image, tag));
}
void SyncValidator::UpdateFenceWaitInfo(std::shared_ptr<const FENCE_STATE> &fence_state, FenceSyncState &&wait_info) {
if (BASE_NODE::Invalid(fence_state)) return;
waitable_fences_[fence_state->fence()] = std::move(wait_info);
}
void SyncValidator::WaitForFence(VkFence fence) {
auto fence_it = waitable_fences_.find(fence);
if (fence_it != waitable_fences_.end()) {
// The fence may no longer be waitable for several valid reasons.
FenceSyncState &wait_for = fence_it->second;
if (wait_for.acquired.Invalid()) {
// This is just a normal fence wait
ApplyTaggedWait(wait_for.queue_id, wait_for.tag);
} else {
// This a fence wait for a present operation
ApplyAcquireWait(wait_for.acquired);
}
waitable_fences_.erase(fence_it);
}
}
const QueueSyncState *SyncValidator::GetQueueSyncState(VkQueue queue) const {
return GetMappedPlainFromShared(queue_sync_states_, queue);
}
QueueSyncState *SyncValidator::GetQueueSyncState(VkQueue queue) { return GetMappedPlainFromShared(queue_sync_states_, queue); }
std::shared_ptr<const QueueSyncState> SyncValidator::GetQueueSyncStateShared(VkQueue queue) const {
return GetMapped(queue_sync_states_, queue, []() { return std::shared_ptr<QueueSyncState>(); });
}
std::shared_ptr<QueueSyncState> SyncValidator::GetQueueSyncStateShared(VkQueue queue) {
return GetMapped(queue_sync_states_, queue, []() { return std::shared_ptr<QueueSyncState>(); });
}
template <typename T>
struct GetBatchTraits {};
template <>
struct GetBatchTraits<std::shared_ptr<QueueSyncState>> {
using Batch = std::shared_ptr<QueueBatchContext>;
static Batch Get(const std::shared_ptr<QueueSyncState> &qss) { return qss ? qss->LastBatch() : Batch(); }
};
template <>
struct GetBatchTraits<std::shared_ptr<SignaledSemaphores::Signal>> {
using Batch = std::shared_ptr<QueueBatchContext>;
static Batch Get(const std::shared_ptr<SignaledSemaphores::Signal> &sig) { return sig ? sig->batch : Batch(); }
};
template <typename BatchSet, typename Map, typename Predicate>
static BatchSet GetQueueBatchSnapshotImpl(const Map &map, Predicate &&pred) {
BatchSet snapshot;
for (auto &entry : map) {
// Intentional copy
auto batch = GetBatchTraits<typename Map::mapped_type>::Get(entry.second);
if (batch && pred(batch)) snapshot.emplace(std::move(batch));
}
return snapshot;
}
template <typename Predicate>
QueueBatchContext::ConstBatchSet SyncValidator::GetQueueLastBatchSnapshot(Predicate &&pred) const {
return GetQueueBatchSnapshotImpl<QueueBatchContext::ConstBatchSet>(queue_sync_states_, std::forward<Predicate>(pred));
}
template <typename Predicate>
QueueBatchContext::BatchSet SyncValidator::GetQueueLastBatchSnapshot(Predicate &&pred) {
return GetQueueBatchSnapshotImpl<QueueBatchContext::BatchSet>(queue_sync_states_, std::forward<Predicate>(pred));
}
QueueBatchContext::BatchSet SyncValidator::GetQueueBatchSnapshot() {
QueueBatchContext::BatchSet snapshot = GetQueueLastBatchSnapshot();
auto append = [&snapshot](const std::shared_ptr<QueueBatchContext> &batch) {
if (batch && !layer_data::Contains(snapshot, batch)) {
snapshot.emplace(batch);
}
return false;
};
GetQueueBatchSnapshotImpl<QueueBatchContext::BatchSet>(signaled_semaphores_, append);
return snapshot;
}
struct QueueSubmitCmdState {
std::shared_ptr<const QueueSyncState> queue;
std::shared_ptr<QueueBatchContext> last_batch;
std::string submit_func_name;
SignaledSemaphores signaled;
QueueSubmitCmdState(const char *func_name, const SignaledSemaphores &parent_semaphores)
: submit_func_name(func_name), signaled(parent_semaphores) {}
};
bool QueueBatchContext::DoQueueSubmitValidate(const SyncValidator &sync_state, QueueSubmitCmdState &cmd_state,
const VkSubmitInfo2 &batch_info) {
bool skip = false;
// For each submit in the batch...
for (const auto &cb : command_buffers_) {
const auto &cb_access_context = cb.cb->access_context;
if (cb_access_context.GetTagLimit() == 0) {
batch_.cb_index++;
continue; // Skip empty CB's but also skip the unused index for correct reporting
}
skip |= cb_access_context.ValidateFirstUse(*this, cmd_state.submit_func_name.c_str(), cb.index);
// The barriers have already been applied in ValidatFirstUse
ResourceUsageRange tag_range = ImportRecordedAccessLog(cb_access_context);
ResolveSubmittedCommandBuffer(*cb_access_context.GetCurrentAccessContext(), tag_range.begin);
}
return skip;
}
bool SignaledSemaphores::SignalSemaphore(const std::shared_ptr<const SEMAPHORE_STATE> &sem_state,
const std::shared_ptr<QueueBatchContext> &batch,
const VkSemaphoreSubmitInfo &signal_info) {
assert(batch);
const SyncExecScope exec_scope =
SyncExecScope::MakeSrc(batch->GetQueueFlags(), signal_info.stageMask, VK_PIPELINE_STAGE_2_HOST_BIT);
std::shared_ptr<Signal> signal = std::make_shared<Signal>(sem_state, batch, exec_scope);
return Insert(sem_state, std::move(signal));
}
bool SignaledSemaphores::Insert(const std::shared_ptr<const SEMAPHORE_STATE> &sem_state, std::shared_ptr<Signal> &&signal) {
const VkSemaphore sem = sem_state->semaphore();
auto signal_it = signaled_.find(sem);
std::shared_ptr<Signal> insert_signal;
if (signal_it == signaled_.end()) {
if (prev_) {
auto prev_sig = GetMapped(prev_->signaled_, sem_state->semaphore(), []() { return std::shared_ptr<Signal>(); });
if (prev_sig) {
// The is an invalid signal, as this semaphore is already signaled... copy the prev state (as prev_ is const)
insert_signal = std::make_shared<Signal>(*prev_sig);
}
}
auto insert_pair = signaled_.emplace(sem, std::move(insert_signal));
signal_it = insert_pair.first;
}
bool success = false;
if (!signal_it->second) {
signal_it->second = std::move(signal);
success = true;
}
return success;
}
bool SignaledSemaphores::SignalSemaphore(const std::shared_ptr<const SEMAPHORE_STATE> &sem_state, const PresentedImage &presented,
ResourceUsageTag acq_tag) {
// Ignore any signal we haven't waited... CoreChecks should have reported this
std::shared_ptr<Signal> signal = std::make_shared<Signal>(sem_state, presented, acq_tag);
return Insert(sem_state, std::move(signal));
}
std::shared_ptr<const SignaledSemaphores::Signal> SignaledSemaphores::Unsignal(VkSemaphore sem) {
std::shared_ptr<const Signal> unsignaled;
const auto found_it = signaled_.find(sem);
if (found_it != signaled_.end()) {
// Move the unsignaled singal out from the signaled list, but keep the shared_ptr as the caller needs the contents for
// a bit.
unsignaled = std::move(found_it->second);
if (!prev_) {
// No parent, not need to keep the entry
// IFF (prev_) leave the entry in the leaf table as we use it to export unsignal to prev_ during record phase
signaled_.erase(found_it);
}
} else if (prev_) {
// We can't unsignal prev_ because it's const * by design.
// We put in an empty placeholder
signaled_.emplace(sem, std::shared_ptr<Signal>());
unsignaled = GetPrev(sem);
}
// NOTE: No else clause. Because if we didn't find it, and there's no previous, this indicates an error,
// but CoreChecks should have reported it
// If unsignaled is null, there was a missing pending semaphore, and that's also issue CoreChecks reports
return unsignaled;
}
void SignaledSemaphores::Resolve(SignaledSemaphores &parent, std::shared_ptr<QueueBatchContext> &last_batch) {
// Must only be called on child objects, with the non-const reference of the parent/previous object passed in
assert(prev_ == &parent);
// The global the semaphores we applied to the cmd_state QueueBatchContexts
// NOTE: All conserved QueueBatchContext's need to have there access logs reset to use the global logger and the only conserved
// QBC's are those referenced by unwaited signals and the last batch.
for (auto &sig_sem : signaled_) {
if (sig_sem.second && sig_sem.second->batch) {
auto &sig_batch = sig_sem.second->batch;
// Batches retained for signalled semaphore don't need to retain event data, unless it's the last batch in the submit
if (sig_batch != last_batch) {
sig_batch->ResetEventsContext();
// Make sure that retained batches are minimal, and trim after the events contexts has been cleared.
sig_batch->Trim();
}
}
// Import clears in the parent any signal waited in the
parent.Import(sig_sem.first, std::move(sig_sem.second));
}
Reset();
}
void SignaledSemaphores::Import(VkSemaphore sem, std::shared_ptr<Signal> &&from) {
// Overwrite the s tate with the last state from this
if (from) {
assert(sem == from->sem_state->semaphore());
signaled_[sem] = std::move(from);
} else {
signaled_.erase(sem);
}
}
void SignaledSemaphores::Reset() {
signaled_.clear();
prev_ = nullptr;
}
syncval_state::CommandBuffer::CommandBuffer(SyncValidator *dev, VkCommandBuffer cb, const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *pool)
: CMD_BUFFER_STATE(dev, cb, pCreateInfo, pool), access_context(*dev, this) {}
syncval_state::CommandBuffer::~CommandBuffer() { Destroy(); }
void syncval_state::CommandBuffer::Destroy() {
ResetCBState(); // must be first to clean up self references correctly.
CMD_BUFFER_STATE::Destroy();
}
void syncval_state::CommandBuffer::Reset() {
CMD_BUFFER_STATE::Reset();
ResetCBState();
}
void syncval_state::CommandBuffer::ResetCBState() { access_context.Reset(); }
void syncval_state::CommandBuffer::NotifyInvalidate(const BASE_NODE::NodeList &invalid_nodes, bool unlink) {
for (auto &obj : invalid_nodes) {
switch (obj->Type()) {
case kVulkanObjectTypeEvent:
access_context.RecordDestroyEvent(static_cast<EVENT_STATE *>(obj.get()));
break;
default:
break;
}
CMD_BUFFER_STATE::NotifyInvalidate(invalid_nodes, unlink);
}
}
std::shared_ptr<CMD_BUFFER_STATE> SyncValidator::CreateCmdBufferState(VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo,
const COMMAND_POOL_STATE *cmd_pool) {
auto cb_state = std::make_shared<syncval_state::CommandBuffer>(this, cb, pCreateInfo, cmd_pool);
if (cb_state) {
cb_state->access_context.SetSelfReference();
}
return std::static_pointer_cast<CMD_BUFFER_STATE>(cb_state);
}
std::shared_ptr<SWAPCHAIN_NODE> SyncValidator::CreateSwapchainState(const VkSwapchainCreateInfoKHR *create_info,
VkSwapchainKHR swapchain) {
return std::static_pointer_cast<SWAPCHAIN_NODE>(std::make_shared<syncval_state::Swapchain>(this, create_info, swapchain));
}
bool SyncValidator::PreCallValidateCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
const auto *context = cb_context->GetCurrentAccessContext();
// If we have no previous accesses, we have no hazards
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
auto hazard = context->DetectHazard(*src_buffer, SYNC_COPY_TRANSFER_READ, src_range);
if (hazard.hazard) {
skip |= LogError(srcBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer: Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcBuffer).c_str(), region,
cb_context->FormatHazard(hazard).c_str());
}
}
if (dst_buffer && !skip) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer: Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(), region,
cb_context->FormatHazard(hazard).c_str());
}
}
if (skip) break;
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
const auto tag = cb_context->NextCommandTag(CMD_COPYBUFFER);
auto *context = cb_context->GetCurrentAccessContext();
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
context->UpdateAccessState(*src_buffer, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
if (dst_buffer) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
bool SyncValidator::ValidateCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2 *pCopyBufferInfos,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
const auto *context = cb_context->GetCurrentAccessContext();
// If we have no previous accesses, we have no hazards
auto src_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->dstBuffer);
for (uint32_t region = 0; region < pCopyBufferInfos->regionCount; region++) {
const auto ©_region = pCopyBufferInfos->pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
auto hazard = context->DetectHazard(*src_buffer, SYNC_COPY_TRANSFER_READ, src_range);
if (hazard.hazard) {
// TODO -- add tag information to log msg when useful.
skip |=
LogError(pCopyBufferInfos->srcBuffer, string_SyncHazardVUID(hazard.hazard),
"%s(): Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyBufferInfos->srcBuffer).c_str(),
region, cb_context->FormatHazard(hazard).c_str());
}
}
if (dst_buffer && !skip) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |=
LogError(pCopyBufferInfos->dstBuffer, string_SyncHazardVUID(hazard.hazard),
"%s(): Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyBufferInfos->dstBuffer).c_str(),
region, cb_context->FormatHazard(hazard).c_str());
}
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferInfo2KHR *pCopyBufferInfos) const {
return ValidateCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2 *pCopyBufferInfos) const {
return ValidateCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2);
}
void SyncValidator::RecordCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2KHR *pCopyBufferInfos, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
const auto tag = cb_context->NextCommandTag(cmd_type);
auto *context = cb_context->GetCurrentAccessContext();
auto src_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->dstBuffer);
for (uint32_t region = 0; region < pCopyBufferInfos->regionCount; region++) {
const auto ©_region = pCopyBufferInfos->pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
context->UpdateAccessState(*src_buffer, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
if (dst_buffer) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyBuffer2KHR(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2KHR *pCopyBufferInfos) {
RecordCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2KHR);
}
void SyncValidator::PreCallRecordCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2 *pCopyBufferInfos) {
RecordCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2);
}
bool SyncValidator::PreCallValidateCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy *pRegions) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_COPY_TRANSFER_READ, copy_region.srcSubresource,
copy_region.srcOffset, copy_region.extent, false);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_COPY_TRANSFER_WRITE, copy_region.dstSubresource,
copy_region.dstOffset, copy_region.extent, false);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy *pRegions) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_COPYIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.srcSubresource, copy_region.srcOffset, copy_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.dstSubresource, copy_region.dstOffset, copy_region.extent, tag);
}
}
}
bool SyncValidator::ValidateCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2 *pCopyImageInfo,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(pCopyImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pCopyImageInfo->dstImage);
for (uint32_t region = 0; region < pCopyImageInfo->regionCount; region++) {
const auto ©_region = pCopyImageInfo->pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_COPY_TRANSFER_READ, copy_region.srcSubresource,
copy_region.srcOffset, copy_region.extent, false);
if (hazard.hazard) {
skip |= LogError(pCopyImageInfo->srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyImageInfo->srcImage).c_str(),
region, cb_access_context->FormatHazard(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_COPY_TRANSFER_WRITE, copy_region.dstSubresource,
copy_region.dstOffset, copy_region.extent, false);
if (hazard.hazard) {
skip |= LogError(pCopyImageInfo->dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyImageInfo->dstImage).c_str(),
region, cb_access_context->FormatHazard(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageInfo2KHR *pCopyImageInfo) const {
return ValidateCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2 *pCopyImageInfo) const {
return ValidateCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2);
}
void SyncValidator::RecordCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2KHR *pCopyImageInfo, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(pCopyImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pCopyImageInfo->dstImage);
for (uint32_t region = 0; region < pCopyImageInfo->regionCount; region++) {
const auto ©_region = pCopyImageInfo->pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.srcSubresource, copy_region.srcOffset, copy_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.dstSubresource, copy_region.dstOffset, copy_region.extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyImage2KHR(VkCommandBuffer commandBuffer, const VkCopyImageInfo2KHR *pCopyImageInfo) {
RecordCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2 *pCopyImageInfo) {
RecordCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2);
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
SyncOpPipelineBarrier pipeline_barrier(CMD_PIPELINEBARRIER, *this, cb_access_context->GetQueueFlags(), srcStageMask,
dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount,
pImageMemoryBarriers);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
void SyncValidator::PreCallRecordCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
cb_access_context->RecordSyncOp<SyncOpPipelineBarrier>(CMD_PIPELINEBARRIER, *this, cb_access_context->GetQueueFlags(),
srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier2KHR(VkCommandBuffer commandBuffer,
const VkDependencyInfoKHR *pDependencyInfo) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
SyncOpPipelineBarrier pipeline_barrier(CMD_PIPELINEBARRIER2KHR, *this, cb_access_context->GetQueueFlags(), *pDependencyInfo);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo *pDependencyInfo) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
SyncOpPipelineBarrier pipeline_barrier(CMD_PIPELINEBARRIER2, *this, cb_access_context->GetQueueFlags(), *pDependencyInfo);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
void SyncValidator::PreCallRecordCmdPipelineBarrier2KHR(VkCommandBuffer commandBuffer, const VkDependencyInfoKHR *pDependencyInfo) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
cb_access_context->RecordSyncOp<SyncOpPipelineBarrier>(CMD_PIPELINEBARRIER2KHR, *this, cb_access_context->GetQueueFlags(),
*pDependencyInfo);
}
void SyncValidator::PreCallRecordCmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
cb_access_context->RecordSyncOp<SyncOpPipelineBarrier>(CMD_PIPELINEBARRIER2, *this, cb_access_context->GetQueueFlags(),
*pDependencyInfo);
}
void SyncValidator::CreateDevice(const VkDeviceCreateInfo *pCreateInfo) {
// The state tracker sets up the device state
StateTracker::CreateDevice(pCreateInfo);
ForEachShared<QUEUE_STATE>([this](const std::shared_ptr<QUEUE_STATE> &queue_state) {
auto queue_flags = physical_device_state->queue_family_properties[queue_state->queueFamilyIndex].queueFlags;
std::shared_ptr<QueueSyncState> queue_sync_state =
std::make_shared<QueueSyncState>(queue_state, queue_flags, queue_id_limit_++);
queue_sync_states_.emplace(std::make_pair(queue_state->Queue(), std::move(queue_sync_state)));
});
}
bool SyncValidator::ValidateBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
if (cb_state) {
SyncOpBeginRenderPass sync_op(cmd_type, *this, pRenderPassBegin, pSubpassBeginInfo);
skip = sync_op.Validate(cb_state->access_context);
}
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, &subpass_begin_info, CMD_BEGINRENDERPASS);
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2);
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2KHR);
return skip;
}
void SyncValidator::PostCallRecordBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo,
VkResult result) {
// The state tracker sets up the command buffer state
StateTracker::PostCallRecordBeginCommandBuffer(commandBuffer, pBeginInfo, result);
// Create/initialize the structure that trackers accesses at the command buffer scope.
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
cb_state->access_context.Reset();
}
void SyncValidator::RecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
if (cb_state) {
cb_state->access_context.RecordSyncOp<SyncOpBeginRenderPass>(cmd_type, *this, pRenderPassBegin, pSubpassBeginInfo);
}
}
void SyncValidator::PostCallRecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents) {
StateTracker::PostCallRecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, &subpass_begin_info, CMD_BEGINRENDERPASS);
}
void SyncValidator::PostCallRecordCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2);
}
void SyncValidator::PostCallRecordCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2KHR);
}
bool SyncValidator::ValidateCmdNextSubpass(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo, CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpNextSubpass sync_op(cmd_type, *this, pSubpassBeginInfo, pSubpassEndInfo);
return sync_op.Validate(*cb_context);
}
bool SyncValidator::PreCallValidateCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass(commandBuffer, contents);
// Convert to a NextSubpass2
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
auto subpass_end_info = LvlInitStruct<VkSubpassEndInfo>();
skip |= ValidateCmdNextSubpass(commandBuffer, &subpass_begin_info, &subpass_end_info, CMD_NEXTSUBPASS);
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass2KHR(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass2KHR(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
skip |= ValidateCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2KHR);
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass2(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
skip |= ValidateCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2);
return skip;
}
void SyncValidator::RecordCmdNextSubpass(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpNextSubpass>(cmd_type, *this, pSubpassBeginInfo, pSubpassEndInfo);
}
void SyncValidator::PostCallRecordCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) {
StateTracker::PostCallRecordCmdNextSubpass(commandBuffer, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
RecordCmdNextSubpass(commandBuffer, &subpass_begin_info, nullptr, CMD_NEXTSUBPASS);
}
void SyncValidator::PostCallRecordCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) {
StateTracker::PostCallRecordCmdNextSubpass2(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
RecordCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2);
}
void SyncValidator::PostCallRecordCmdNextSubpass2KHR(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) {
StateTracker::PostCallRecordCmdNextSubpass2KHR(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
RecordCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2KHR);
}
bool SyncValidator::ValidateCmdEndRenderPass(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
auto *cb_context = &cb_state->access_context;
SyncOpEndRenderPass sync_op(cmd_type, *this, pSubpassEndInfo);
skip |= sync_op.Validate(*cb_context);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass(VkCommandBuffer commandBuffer) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass(commandBuffer);
skip |= ValidateCmdEndRenderPass(commandBuffer, nullptr, CMD_ENDRENDERPASS);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2KHR);
return skip;
}
void SyncValidator::RecordCmdEndRenderPass(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo,
CMD_TYPE cmd_type) {
// Resolve the all subpass contexts to the command buffer contexts
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpEndRenderPass>(cmd_type, *this, pSubpassEndInfo);
}
// Simple heuristic rule to detect WAW operations representing algorithmically safe or increment
// updates to a resource which do not conflict at the byte level.
// TODO: Revisit this rule to see if it needs to be tighter or looser
// TODO: Add programatic control over suppression heuristics
bool SyncValidator::SupressedBoundDescriptorWAW(const HazardResult &hazard) const {
return (hazard.hazard == WRITE_AFTER_WRITE) && (FlagBit(hazard.usage_index) == hazard.prior_access);
}
void SyncValidator::PostCallRecordCmdEndRenderPass(VkCommandBuffer commandBuffer) {
RecordCmdEndRenderPass(commandBuffer, nullptr, CMD_ENDRENDERPASS);
StateTracker::PostCallRecordCmdEndRenderPass(commandBuffer);
}
void SyncValidator::PostCallRecordCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) {
RecordCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2);
StateTracker::PostCallRecordCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
}
void SyncValidator::PostCallRecordCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) {
RecordCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2KHR);
StateTracker::PostCallRecordCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
}
template <typename RegionType>
bool SyncValidator::ValidateCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const RegionType *pRegions,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
HazardResult hazard;
if (dst_image) {
if (src_buffer) {
ResourceAccessRange src_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, dst_image->createInfo.format));
hazard = context->DetectHazard(*src_buffer, SYNC_COPY_TRANSFER_READ, src_range);
if (hazard.hazard) {
// PHASE1 TODO -- add tag information to log msg when useful.
skip |=
LogError(srcBuffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcBuffer).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
}
hazard = context->DetectHazard(*dst_image, SYNC_COPY_TRANSFER_WRITE, copy_region.imageSubresource,
copy_region.imageOffset, copy_region.imageExtent, false);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
if (skip) break;
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy *pRegions) const {
return ValidateCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions,
CMD_COPYBUFFERTOIMAGE);
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2KHR *pCopyBufferToImageInfo) const {
return ValidateCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage2(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2 *pCopyBufferToImageInfo) const {
return ValidateCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2);
}
template <typename RegionType>
void SyncValidator::RecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const RegionType *pRegions,
CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (dst_image) {
if (src_buffer) {
ResourceAccessRange src_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, dst_image->createInfo.format));
context->UpdateAccessState(*src_buffer, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
context->UpdateAccessState(*dst_image, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.imageSubresource, copy_region.imageOffset, copy_region.imageExtent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy *pRegions) {
StateTracker::PreCallRecordCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions);
RecordCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions, CMD_COPYBUFFERTOIMAGE);
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2KHR *pCopyBufferToImageInfo) {
StateTracker::PreCallRecordCmdCopyBufferToImage2KHR(commandBuffer, pCopyBufferToImageInfo);
RecordCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage2(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2 *pCopyBufferToImageInfo) {
StateTracker::PreCallRecordCmdCopyBufferToImage2(commandBuffer, pCopyBufferToImageInfo);
RecordCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2);
}
template <typename RegionType>
bool SyncValidator::ValidateCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const RegionType *pRegions,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
const auto dst_mem = (dst_buffer && !dst_buffer->sparse) ? dst_buffer->MemState()->mem() : VK_NULL_HANDLE;
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_COPY_TRANSFER_READ, copy_region.imageSubresource,
copy_region.imageOffset, copy_region.imageExtent, false);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
if (dst_mem) {
ResourceAccessRange dst_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, src_image->createInfo.format));
hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
}
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage,
VkImageLayout srcImageLayout, VkBuffer dstBuffer, uint32_t regionCount,
const VkBufferImageCopy *pRegions) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions,
CMD_COPYIMAGETOBUFFER);
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2KHR *pCopyImageToBufferInfo) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer2(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2 *pCopyImageToBufferInfo) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2);
}
template <typename RegionType>
void SyncValidator::RecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const RegionType *pRegions,
CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
const auto dst_mem = (dst_buffer && !dst_buffer->sparse) ? dst_buffer->MemState()->mem() : VK_NULL_HANDLE;
const VulkanTypedHandle dst_handle(dst_mem, kVulkanObjectTypeDeviceMemory);
for (uint32_t region = 0; region < regionCount; region++) {
const auto ©_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.imageSubresource, copy_region.imageOffset, copy_region.imageExtent, tag);
if (dst_buffer) {
ResourceAccessRange dst_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, src_image->createInfo.format));
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy *pRegions) {
StateTracker::PreCallRecordCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions);
RecordCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions, CMD_COPYIMAGETOBUFFER);
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2KHR *pCopyImageToBufferInfo) {
StateTracker::PreCallRecordCmdCopyImageToBuffer2KHR(commandBuffer, pCopyImageToBufferInfo);
RecordCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2KHR);
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer2(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2 *pCopyImageToBufferInfo) {
StateTracker::PreCallRecordCmdCopyImageToBuffer2(commandBuffer, pCopyImageToBufferInfo);
RecordCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2);
}
template <typename RegionType>
bool SyncValidator::ValidateCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const RegionType *pRegions, VkFilter filter, CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const char *caller_name = CommandTypeString(cmd_type);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &blit_region = pRegions[region];
if (src_image) {
VkOffset3D offset = {std::min(blit_region.srcOffsets[0].x, blit_region.srcOffsets[1].x),
std::min(blit_region.srcOffsets[0].y, blit_region.srcOffsets[1].y),
std::min(blit_region.srcOffsets[0].z, blit_region.srcOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.srcOffsets[1].x - blit_region.srcOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].y - blit_region.srcOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].z - blit_region.srcOffsets[0].z))};
auto hazard =
context->DetectHazard(*src_image, SYNC_BLIT_TRANSFER_READ, blit_region.srcSubresource, offset, extent, false);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", caller_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
}
if (dst_image) {
VkOffset3D offset = {std::min(blit_region.dstOffsets[0].x, blit_region.dstOffsets[1].x),
std::min(blit_region.dstOffsets[0].y, blit_region.dstOffsets[1].y),
std::min(blit_region.dstOffsets[0].z, blit_region.dstOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.dstOffsets[1].x - blit_region.dstOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].y - blit_region.dstOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].z - blit_region.dstOffsets[0].z))};
auto hazard =
context->DetectHazard(*dst_image, SYNC_BLIT_TRANSFER_WRITE, blit_region.dstSubresource, offset, extent, false);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", caller_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit *pRegions, VkFilter filter) const {
return ValidateCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter,
CMD_BLITIMAGE);
}
bool SyncValidator::PreCallValidateCmdBlitImage2KHR(VkCommandBuffer commandBuffer,
const VkBlitImageInfo2KHR *pBlitImageInfo) const {
return ValidateCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, CMD_BLITIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdBlitImage2(VkCommandBuffer commandBuffer,
const VkBlitImageInfo2 *pBlitImageInfo) const {
return ValidateCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, CMD_BLITIMAGE2);
}
template <typename RegionType>
void SyncValidator::RecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const RegionType *pRegions, VkFilter filter, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
const auto tag = cb_state->access_context.NextCommandTag(cmd_type);
auto *context = cb_state->access_context.GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &blit_region = pRegions[region];
if (src_image) {
VkOffset3D offset = {std::min(blit_region.srcOffsets[0].x, blit_region.srcOffsets[1].x),
std::min(blit_region.srcOffsets[0].y, blit_region.srcOffsets[1].y),
std::min(blit_region.srcOffsets[0].z, blit_region.srcOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.srcOffsets[1].x - blit_region.srcOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].y - blit_region.srcOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].z - blit_region.srcOffsets[0].z))};
context->UpdateAccessState(*src_image, SYNC_BLIT_TRANSFER_READ, SyncOrdering::kNonAttachment,
blit_region.srcSubresource, offset, extent, tag);
}
if (dst_image) {
VkOffset3D offset = {std::min(blit_region.dstOffsets[0].x, blit_region.dstOffsets[1].x),
std::min(blit_region.dstOffsets[0].y, blit_region.dstOffsets[1].y),
std::min(blit_region.dstOffsets[0].z, blit_region.dstOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.dstOffsets[1].x - blit_region.dstOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].y - blit_region.dstOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].z - blit_region.dstOffsets[0].z))};
context->UpdateAccessState(*dst_image, SYNC_BLIT_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
blit_region.dstSubresource, offset, extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit *pRegions, VkFilter filter) {
StateTracker::PreCallRecordCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount,
pRegions, filter);
RecordCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter,
CMD_BLITIMAGE);
}
void SyncValidator::PreCallRecordCmdBlitImage2KHR(VkCommandBuffer commandBuffer, const VkBlitImageInfo2KHR *pBlitImageInfo) {
StateTracker::PreCallRecordCmdBlitImage2KHR(commandBuffer, pBlitImageInfo);
RecordCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, CMD_BLITIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdBlitImage2(VkCommandBuffer commandBuffer, const VkBlitImageInfo2 *pBlitImageInfo) {
StateTracker::PreCallRecordCmdBlitImage2KHR(commandBuffer, pBlitImageInfo);
RecordCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, CMD_BLITIMAGE2);
}
bool SyncValidator::ValidateIndirectBuffer(const CommandBufferAccessContext &cb_context, const AccessContext &context,
VkCommandBuffer commandBuffer, const VkDeviceSize struct_size, const VkBuffer buffer,
const VkDeviceSize offset, const uint32_t drawCount, const uint32_t stride,
CMD_TYPE cmd_type) const {
bool skip = false;
if (drawCount == 0) return skip;
const char *caller_name = CommandTypeString(cmd_type);
auto buf_state = Get<BUFFER_STATE>(buffer);
VkDeviceSize size = struct_size;
if (drawCount == 1 || stride == size) {
if (drawCount > 1) size *= drawCount;
const ResourceAccessRange range = MakeRange(offset, size);
auto hazard = context.DetectHazard(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for indirect %s in %s. Access info %s.", caller_name, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatHazard(hazard).c_str());
}
} else {
for (uint32_t i = 0; i < drawCount; ++i) {
const ResourceAccessRange range = MakeRange(offset + i * stride, size);
auto hazard = context.DetectHazard(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for indirect %s in %s. Access info %s.", caller_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(buffer).c_str(),
report_data->FormatHandle(commandBuffer).c_str(), cb_context.FormatHazard(hazard).c_str());
break;
}
}
}
return skip;
}
void SyncValidator::RecordIndirectBuffer(AccessContext &context, const ResourceUsageTag tag, const VkDeviceSize struct_size,
const VkBuffer buffer, const VkDeviceSize offset, const uint32_t drawCount,
uint32_t stride) {
auto buf_state = Get<BUFFER_STATE>(buffer);
VkDeviceSize size = struct_size;
if (drawCount == 1 || stride == size) {
if (drawCount > 1) size *= drawCount;
const ResourceAccessRange range = MakeRange(offset, size);
context.UpdateAccessState(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range, tag);
} else {
for (uint32_t i = 0; i < drawCount; ++i) {
const ResourceAccessRange range = MakeRange(offset + i * stride, size);
context.UpdateAccessState(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range,
tag);
}
}
}
bool SyncValidator::ValidateCountBuffer(const CommandBufferAccessContext &cb_context, const AccessContext &context,
VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
CMD_TYPE cmd_type) const {
bool skip = false;
auto count_buf_state = Get<BUFFER_STATE>(buffer);
const ResourceAccessRange range = MakeRange(offset, 4);
auto hazard = context.DetectHazard(*count_buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(count_buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for countBuffer %s in %s. Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(buffer).c_str(),
report_data->FormatHandle(commandBuffer).c_str(), cb_context.FormatHazard(hazard).c_str());
}
return skip;
}
void SyncValidator::RecordCountBuffer(AccessContext &context, const ResourceUsageTag tag, VkBuffer buffer, VkDeviceSize offset) {
auto count_buf_state = Get<BUFFER_STATE>(buffer);
const ResourceAccessRange range = MakeRange(offset, 4);
context.UpdateAccessState(*count_buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range, tag);
}
bool SyncValidator::PreCallValidateCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
skip |= cb_state->access_context.ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCH);
return skip;
}
void SyncValidator::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
StateTracker::PreCallRecordCmdDispatch(commandBuffer, x, y, z);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_DISPATCH);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, tag);
}
bool SyncValidator::PreCallValidateCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *context = cb_state->access_context.GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_state->access_context.ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, CMD_DISPATCHINDIRECT);
skip |= ValidateIndirectBuffer(cb_state->access_context, *context, commandBuffer, sizeof(VkDispatchIndirectCommand), buffer,
offset, 1, sizeof(VkDispatchIndirectCommand), CMD_DISPATCHINDIRECT);
return skip;
}
void SyncValidator::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
StateTracker::PreCallRecordCmdDispatchIndirect(commandBuffer, buffer, offset);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_DISPATCHINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDispatchIndirectCommand), buffer, offset, 1, sizeof(VkDispatchIndirectCommand));
}
bool SyncValidator::PreCallValidateCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAW);
skip |= cb_access_context->ValidateDrawVertex(vertexCount, firstVertex, CMD_DRAW);
skip |= cb_access_context->ValidateDrawSubpassAttachment(CMD_DRAW);
return skip;
}
void SyncValidator::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
StateTracker::PreCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_DRAW);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawVertex(vertexCount, firstVertex, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXED);
skip |= cb_access_context->ValidateDrawVertexIndex(indexCount, firstIndex, CMD_DRAWINDEXED);
skip |= cb_access_context->ValidateDrawSubpassAttachment(CMD_DRAWINDEXED);
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
StateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXED);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawVertexIndex(indexCount, firstIndex, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDIRECT);
skip |= cb_access_context->ValidateDrawSubpassAttachment(CMD_DRAWINDIRECT);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndirectCommand), buffer, offset,
drawCount, stride, CMD_DRAWINDIRECT);
// TODO: For now, we validate the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertex(UINT32_MAX, 0, CMD_DRAWINDIRECT);
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, drawCount, stride);
if (drawCount == 0) return;
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndirectCommand), buffer, offset, drawCount, stride);
// TODO: For now, we record the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will record the vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, CMD_DRAWINDEXEDINDIRECT);
skip |= cb_access_context->ValidateDrawSubpassAttachment(CMD_DRAWINDEXEDINDIRECT);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndexedIndirectCommand), buffer,
offset, drawCount, stride, CMD_DRAWINDEXEDINDIRECT);
// TODO: For now, we validate the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the index and vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertexIndex(UINT32_MAX, 0, CMD_DRAWINDEXEDINDIRECT);
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, drawCount, stride);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXEDINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndexedIndirectCommand), buffer, offset, drawCount, stride);
// TODO: For now, we record the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will record the index and vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertexIndex(UINT32_MAX, 0, tag);
}
bool SyncValidator::ValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, cmd_type);
skip |= cb_access_context->ValidateDrawSubpassAttachment(cmd_type);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndirectCommand), buffer, offset,
maxDrawCount, stride, cmd_type);
skip |= ValidateCountBuffer(*cb_access_context, *context, commandBuffer, countBuffer, countBufferOffset, cmd_type);
// TODO: For now, we validate the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertex(UINT32_MAX, 0, cmd_type);
return skip;
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNT);
}
void SyncValidator::RecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndirectCommand), buffer, offset, 1, stride);
RecordCountBuffer(*context, tag, countBuffer, countBufferOffset);
// TODO: For now, we record the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will record the vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertex(UINT32_MAX, 0, tag);
}
void SyncValidator::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNT);
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNTKHR);
}
void SyncValidator::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNTKHR);
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNTAMD);
}
void SyncValidator::PreCallRecordCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNTAMD);
}
bool SyncValidator::ValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, cmd_type);
skip |= cb_access_context->ValidateDrawSubpassAttachment(cmd_type);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndexedIndirectCommand), buffer,
offset, maxDrawCount, stride, cmd_type);
skip |= ValidateCountBuffer(*cb_access_context, *context, commandBuffer, countBuffer, countBufferOffset, cmd_type);
// TODO: For now, we validate the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the index and vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertexIndex(UINT32_MAX, 0, cmd_type);
return skip;
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNT);
}
void SyncValidator::RecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, CMD_TYPE cmd_type) {
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndexedIndirectCommand), buffer, offset, 1, stride);
RecordCountBuffer(*context, tag, countBuffer, countBufferOffset);
// TODO: For now, we record the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will update the index and vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertexIndex(UINT32_MAX, 0, tag);
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNT);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNTKHR);
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNTKHR);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNTAMD);
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNTAMD);
}
bool SyncValidator::PreCallValidateCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
auto hazard = context->DetectHazard(*image_state, SYNC_CLEAR_TRANSFER_WRITE, range, false);
if (hazard.hazard) {
skip |= LogError(image, string_SyncHazardVUID(hazard.hazard),
"vkCmdClearColorImage: Hazard %s for %s, range index %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(image).c_str(), index,
cb_access_context->FormatHazard(hazard).c_str());
}
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
StateTracker::PreCallRecordCmdClearColorImage(commandBuffer, image, imageLayout, pColor, rangeCount, pRanges);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_CLEARCOLORIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
context->UpdateAccessState(*image_state, SYNC_CLEAR_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
auto hazard = context->DetectHazard(*image_state, SYNC_CLEAR_TRANSFER_WRITE, range, false);
if (hazard.hazard) {
skip |= LogError(image, string_SyncHazardVUID(hazard.hazard),
"vkCmdClearDepthStencilImage: Hazard %s for %s, range index %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(image).c_str(), index,
cb_access_context->FormatHazard(hazard).c_str());
}
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
StateTracker::PreCallRecordCmdClearDepthStencilImage(commandBuffer, image, imageLayout, pDepthStencil, rangeCount, pRanges);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_CLEARDEPTHSTENCILIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
context->UpdateAccessState(*image_state, SYNC_CLEAR_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool,
uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer,
VkDeviceSize dstOffset, VkDeviceSize stride,
VkQueryResultFlags flags) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, stride * queryCount);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyQueryPoolResults: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatHazard(hazard).c_str());
}
}
// TODO:Track VkQueryPool
return skip;
}
void SyncValidator::PreCallRecordCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery,
uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize stride, VkQueryResultFlags flags) {
StateTracker::PreCallRecordCmdCopyQueryPoolResults(commandBuffer, queryPool, firstQuery, queryCount, dstBuffer, dstOffset,
stride, flags);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_COPYQUERYPOOLRESULTS);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, stride * queryCount);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
// TODO:Track VkQueryPool
}
bool SyncValidator::PreCallValidateCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size, uint32_t data) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(*dst_buffer, dstOffset, size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdFillBuffer: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatHazard(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size, uint32_t data) {
StateTracker::PreCallRecordCmdFillBuffer(commandBuffer, dstBuffer, dstOffset, size, data);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_FILLBUFFER);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(*dst_buffer, dstOffset, size);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve *pRegions) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &resolve_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_RESOLVE_TRANSFER_READ, resolve_region.srcSubresource,
resolve_region.srcOffset, resolve_region.extent, false);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, resolve_region.dstSubresource,
resolve_region.dstOffset, resolve_region.extent, false);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatHazard(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve *pRegions) {
StateTracker::PreCallRecordCmdResolveImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount,
pRegions);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_RESOLVEIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &resolve_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_RESOLVE_TRANSFER_READ, SyncOrdering::kNonAttachment,
resolve_region.srcSubresource, resolve_region.srcOffset, resolve_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
resolve_region.dstSubresource, resolve_region.dstOffset, resolve_region.extent, tag);
}
}
}
bool SyncValidator::ValidateCmdResolveImage2(VkCommandBuffer commandBuffer, const VkResolveImageInfo2KHR *pResolveImageInfo,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(pResolveImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pResolveImageInfo->dstImage);
for (uint32_t region = 0; region < pResolveImageInfo->regionCount; region++) {
const auto &resolve_region = pResolveImageInfo->pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_RESOLVE_TRANSFER_READ, resolve_region.srcSubresource,
resolve_region.srcOffset, resolve_region.extent, false);
if (hazard.hazard) {
skip |= LogError(pResolveImageInfo->srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pResolveImageInfo->srcImage).c_str(),
region, cb_access_context->FormatHazard(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, resolve_region.dstSubresource,
resolve_region.dstOffset, resolve_region.extent, false);
if (hazard.hazard) {
skip |= LogError(pResolveImageInfo->dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", CommandTypeString(cmd_type),
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pResolveImageInfo->dstImage).c_str(),
region, cb_access_context->FormatHazard(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR *pResolveImageInfo) const {
return ValidateCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdResolveImage2(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2 *pResolveImageInfo) const {
return ValidateCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2);
}
void SyncValidator::RecordCmdResolveImage2(VkCommandBuffer commandBuffer, const VkResolveImageInfo2KHR *pResolveImageInfo,
CMD_TYPE cmd_type) {
StateTracker::PreCallRecordCmdResolveImage2KHR(commandBuffer, pResolveImageInfo);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(pResolveImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pResolveImageInfo->dstImage);
for (uint32_t region = 0; region < pResolveImageInfo->regionCount; region++) {
const auto &resolve_region = pResolveImageInfo->pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_RESOLVE_TRANSFER_READ, SyncOrdering::kNonAttachment,
resolve_region.srcSubresource, resolve_region.srcOffset, resolve_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
resolve_region.dstSubresource, resolve_region.dstOffset, resolve_region.extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR *pResolveImageInfo) {
RecordCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdResolveImage2(VkCommandBuffer commandBuffer, const VkResolveImageInfo2 *pResolveImageInfo) {
RecordCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2);
}
bool SyncValidator::PreCallValidateCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize dataSize, const void *pData) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
// VK_WHOLE_SIZE not allowed
const ResourceAccessRange range = MakeRange(dstOffset, dataSize);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdUpdateBuffer: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatHazard(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize dataSize, const void *pData) {
StateTracker::PreCallRecordCmdUpdateBuffer(commandBuffer, dstBuffer, dstOffset, dataSize, pData);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_UPDATEBUFFER);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
// VK_WHOLE_SIZE not allowed
const ResourceAccessRange range = MakeRange(dstOffset, dataSize);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdWriteBufferMarkerAMD: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatHazard(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) {
StateTracker::PreCallRecordCmdWriteBufferMarkerAMD(commandBuffer, pipelineStage, dstBuffer, dstOffset, marker);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_WRITEBUFFERMARKERAMD);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
const auto *access_context = cb_context->GetCurrentAccessContext();
assert(access_context);
if (!access_context) return skip;
SyncOpSetEvent set_event_op(CMD_SETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask, nullptr);
return set_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
StateTracker::PostCallRecordCmdSetEvent(commandBuffer, event, stageMask);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpSetEvent>(CMD_SETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask,
cb_context->GetCurrentAccessContext());
}
bool SyncValidator::PreCallValidateCmdSetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfoKHR *pDependencyInfo) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
if (!pDependencyInfo) return skip;
const auto *access_context = cb_context->GetCurrentAccessContext();
assert(access_context);
if (!access_context) return skip;
SyncOpSetEvent set_event_op(CMD_SETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo, nullptr);
return set_event_op.Validate(*cb_context);
}
bool SyncValidator::PreCallValidateCmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfo *pDependencyInfo) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
if (!pDependencyInfo) return skip;
SyncOpSetEvent set_event_op(CMD_SETEVENT2, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo, nullptr);
return set_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdSetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfoKHR *pDependencyInfo) {
StateTracker::PostCallRecordCmdSetEvent2KHR(commandBuffer, event, pDependencyInfo);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
if (!pDependencyInfo) return;
cb_context->RecordSyncOp<SyncOpSetEvent>(CMD_SETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo,
cb_context->GetCurrentAccessContext());
}
void SyncValidator::PostCallRecordCmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfo *pDependencyInfo) {
StateTracker::PostCallRecordCmdSetEvent2(commandBuffer, event, pDependencyInfo);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
if (!pDependencyInfo) return;
cb_context->RecordSyncOp<SyncOpSetEvent>(CMD_SETEVENT2, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo,
cb_context->GetCurrentAccessContext());
}
bool SyncValidator::PreCallValidateCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpResetEvent reset_event_op(CMD_RESETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask);
return reset_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
StateTracker::PostCallRecordCmdResetEvent(commandBuffer, event, stageMask);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpResetEvent>(CMD_RESETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask);
}
bool SyncValidator::PreCallValidateCmdResetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2KHR stageMask) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpResetEvent reset_event_op(CMD_RESETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, stageMask);
return reset_event_op.Validate(*cb_context);
}
bool SyncValidator::PreCallValidateCmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2 stageMask) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpResetEvent reset_event_op(CMD_RESETEVENT2, *this, cb_context->GetQueueFlags(), event, stageMask);
return reset_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdResetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2KHR stageMask) {
StateTracker::PostCallRecordCmdResetEvent2KHR(commandBuffer, event, stageMask);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpResetEvent>(CMD_RESETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, stageMask);
}
void SyncValidator::PostCallRecordCmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags2 stageMask) {
StateTracker::PostCallRecordCmdResetEvent2(commandBuffer, event, stageMask);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpResetEvent>(CMD_RESETEVENT2, *this, cb_context->GetQueueFlags(), event, stageMask);
}
bool SyncValidator::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpWaitEvents wait_events_op(CMD_WAITEVENTS, *this, cb_context->GetQueueFlags(), eventCount, pEvents, srcStageMask,
dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
return wait_events_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
StateTracker::PostCallRecordCmdWaitEvents(commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpWaitEvents>(
CMD_WAITEVENTS, *this, cb_context->GetQueueFlags(), eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
bool SyncValidator::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpWaitEvents wait_events_op(CMD_WAITEVENTS2KHR, *this, cb_context->GetQueueFlags(), eventCount, pEvents, pDependencyInfos);
skip |= wait_events_op.Validate(*cb_context);
return skip;
}
void SyncValidator::PostCallRecordCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos) {
StateTracker::PostCallRecordCmdWaitEvents2KHR(commandBuffer, eventCount, pEvents, pDependencyInfos);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpWaitEvents>(CMD_WAITEVENTS2KHR, *this, cb_context->GetQueueFlags(), eventCount, pEvents,
pDependencyInfos);
}
bool SyncValidator::PreCallValidateCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
SyncOpWaitEvents wait_events_op(CMD_WAITEVENTS2, *this, cb_context->GetQueueFlags(), eventCount, pEvents, pDependencyInfos);
skip |= wait_events_op.Validate(*cb_context);
return skip;
}
void SyncValidator::PostCallRecordCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos) {
StateTracker::PostCallRecordCmdWaitEvents2KHR(commandBuffer, eventCount, pEvents, pDependencyInfos);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
cb_context->RecordSyncOp<SyncOpWaitEvents>(CMD_WAITEVENTS2, *this, cb_context->GetQueueFlags(), eventCount, pEvents,
pDependencyInfos);
}
void SyncEventState::ResetFirstScope() {
first_scope.reset();
scope = SyncExecScope();
first_scope_tag = 0;
}
// Keep the "ignore this event" logic in same place for ValidateWait and RecordWait to use
SyncEventState::IgnoreReason SyncEventState::IsIgnoredByWait(CMD_TYPE cmd_type, VkPipelineStageFlags2KHR srcStageMask) const {
IgnoreReason reason = NotIgnored;
if ((CMD_WAITEVENTS2KHR == cmd_type || CMD_WAITEVENTS2 == cmd_type) && (CMD_SETEVENT == last_command)) {
reason = SetVsWait2;
} else if ((last_command == CMD_RESETEVENT || last_command == CMD_RESETEVENT2KHR) && !HasBarrier(0U, 0U)) {
reason = (last_command == CMD_RESETEVENT) ? ResetWaitRace : Reset2WaitRace;
} else if (unsynchronized_set) {
reason = SetRace;
} else if (first_scope) {
const VkPipelineStageFlags2KHR missing_bits = scope.mask_param & ~srcStageMask;
// Note it is the "not missing bits" path that is the only "NotIgnored" path
if (missing_bits) reason = MissingStageBits;
} else {
reason = MissingSetEvent;
}
return reason;
}
bool SyncEventState::HasBarrier(VkPipelineStageFlags2KHR stageMask, VkPipelineStageFlags2KHR exec_scope_arg) const {
return (last_command == CMD_NONE) || (stageMask & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) || (barriers & exec_scope_arg) ||
(barriers & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
}
void SyncEventState::AddReferencedTags(ResourceUsageTagSet &referenced) const {
if (first_scope) {
first_scope->AddReferencedTags(referenced);
}
}
SyncOpBarriers::SyncOpBarriers(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBase(cmd_type), barriers_(1) {
auto &barrier_set = barriers_[0];
barrier_set.dependency_flags = dependencyFlags;
barrier_set.src_exec_scope = SyncExecScope::MakeSrc(queue_flags, srcStageMask);
barrier_set.dst_exec_scope = SyncExecScope::MakeDst(queue_flags, dstStageMask);
// Translate the API parameters into structures SyncVal understands directly, and dehandle for safer/faster replay.
barrier_set.MakeMemoryBarriers(barrier_set.src_exec_scope, barrier_set.dst_exec_scope, dependencyFlags, memoryBarrierCount,
pMemoryBarriers);
barrier_set.MakeBufferMemoryBarriers(sync_state, barrier_set.src_exec_scope, barrier_set.dst_exec_scope, dependencyFlags,
bufferMemoryBarrierCount, pBufferMemoryBarriers);
barrier_set.MakeImageMemoryBarriers(sync_state, barrier_set.src_exec_scope, barrier_set.dst_exec_scope, dependencyFlags,
imageMemoryBarrierCount, pImageMemoryBarriers);
}
SyncOpBarriers::SyncOpBarriers(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t event_count,
const VkDependencyInfoKHR *dep_infos)
: SyncOpBase(cmd_type), barriers_(event_count) {
for (uint32_t i = 0; i < event_count; i++) {
const auto &dep_info = dep_infos[i];
auto &barrier_set = barriers_[i];
barrier_set.dependency_flags = dep_info.dependencyFlags;
auto stage_masks = sync_utils::GetGlobalStageMasks(dep_info);
barrier_set.src_exec_scope = SyncExecScope::MakeSrc(queue_flags, stage_masks.src);
barrier_set.dst_exec_scope = SyncExecScope::MakeDst(queue_flags, stage_masks.dst);
// Translate the API parameters into structures SyncVal understands directly, and dehandle for safer/faster replay.
barrier_set.MakeMemoryBarriers(queue_flags, dep_info.dependencyFlags, dep_info.memoryBarrierCount,
dep_info.pMemoryBarriers);
barrier_set.MakeBufferMemoryBarriers(sync_state, queue_flags, dep_info.dependencyFlags, dep_info.bufferMemoryBarrierCount,
dep_info.pBufferMemoryBarriers);
barrier_set.MakeImageMemoryBarriers(sync_state, queue_flags, dep_info.dependencyFlags, dep_info.imageMemoryBarrierCount,
dep_info.pImageMemoryBarriers);
}
}
SyncOpPipelineBarrier::SyncOpPipelineBarrier(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBarriers(cmd_type, sync_state, queue_flags, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount,
pImageMemoryBarriers) {}
SyncOpPipelineBarrier::SyncOpPipelineBarrier(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags,
const VkDependencyInfoKHR &dep_info)
: SyncOpBarriers(cmd_type, sync_state, queue_flags, 1, &dep_info) {}
bool SyncOpPipelineBarrier::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *context = cb_context.GetCurrentAccessContext();
assert(context);
if (!context) return skip;
assert(barriers_.size() == 1); // PipelineBarriers only support a single barrier set.
// Validate Image Layout transitions
const auto &barrier_set = barriers_[0];
for (const auto &image_barrier : barrier_set.image_memory_barriers) {
if (image_barrier.new_layout == image_barrier.old_layout) continue; // Only interested in layout transitions at this point.
const auto *image_state = image_barrier.image.get();
if (!image_state) continue;
const auto hazard = context->DetectImageBarrierHazard(image_barrier);
if (hazard.hazard) {
// PHASE1 TODO -- add tag information to log msg when useful.
const auto &sync_state = cb_context.GetSyncState();
const auto image_handle = image_state->image();
skip |= sync_state.LogError(image_handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for image barrier %" PRIu32 " %s. Access info %s.", CmdName(),
string_SyncHazard(hazard.hazard), image_barrier.index,
sync_state.report_data->FormatHandle(image_handle).c_str(),
cb_context.FormatHazard(hazard).c_str());
}
}
return skip;
}
struct SyncOpPipelineBarrierFunctorFactory {
using BarrierOpFunctor = PipelineBarrierOp;
using ApplyFunctor = ApplyBarrierFunctor<BarrierOpFunctor>;
using GlobalBarrierOpFunctor = PipelineBarrierOp;
using GlobalApplyFunctor = ApplyBarrierOpsFunctor<GlobalBarrierOpFunctor>;
using BufferRange = ResourceAccessRange;
using ImageRange = subresource_adapter::ImageRangeGenerator;
using GlobalRange = ResourceAccessRange;
ApplyFunctor MakeApplyFunctor(QueueId queue_id, const SyncBarrier &barrier, bool layout_transition) const {
return ApplyFunctor(BarrierOpFunctor(queue_id, barrier, layout_transition));
}
GlobalApplyFunctor MakeGlobalApplyFunctor(size_t size_hint, ResourceUsageTag tag) const {
return GlobalApplyFunctor(true /* resolve */, size_hint, tag);
}
GlobalBarrierOpFunctor MakeGlobalBarrierOpFunctor(QueueId queue_id, const SyncBarrier &barrier) const {
return GlobalBarrierOpFunctor(queue_id, barrier, false);
}
BufferRange MakeRangeGen(const BUFFER_STATE &buffer, const ResourceAccessRange &range) const {
if (!SimpleBinding(buffer)) return ResourceAccessRange();
const auto base_address = ResourceBaseAddress(buffer);
return (range + base_address);
}
ImageRange MakeRangeGen(const IMAGE_STATE &image, const VkImageSubresourceRange &subresource_range) const {
if (!SimpleBinding(image)) return subresource_adapter::ImageRangeGenerator();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, base_address, false);
return range_gen;
}
GlobalRange MakeGlobalRangeGen(AccessAddressType) const { return kFullRange; }
};
template <typename Barriers, typename FunctorFactory>
void SyncOpBarriers::ApplyBarriers(const Barriers &barriers, const FunctorFactory &factory, const QueueId queue_id,
const ResourceUsageTag tag, AccessContext *context) {
for (const auto &barrier : barriers) {
const auto *state = barrier.GetState();
if (state) {
auto *const accesses = &context->GetAccessStateMap(GetAccessAddressType(*state));
auto update_action = factory.MakeApplyFunctor(queue_id, barrier.barrier, barrier.IsLayoutTransition());
auto range_gen = factory.MakeRangeGen(*state, barrier.Range());
UpdateMemoryAccessState(accesses, update_action, &range_gen);
}
}
}
template <typename Barriers, typename FunctorFactory>
void SyncOpBarriers::ApplyGlobalBarriers(const Barriers &barriers, const FunctorFactory &factory, const QueueId queue_id,
const ResourceUsageTag tag, AccessContext *access_context) {
auto barriers_functor = factory.MakeGlobalApplyFunctor(barriers.size(), tag);
for (const auto &barrier : barriers) {
barriers_functor.EmplaceBack(factory.MakeGlobalBarrierOpFunctor(queue_id, barrier));
}
for (const auto address_type : kAddressTypes) {
auto range_gen = factory.MakeGlobalRangeGen(address_type);
UpdateMemoryAccessState(&(access_context->GetAccessStateMap(address_type)), barriers_functor, &range_gen);
}
}
ResourceUsageTag SyncOpPipelineBarrier::Record(CommandBufferAccessContext *cb_context) {
const auto tag = cb_context->NextCommandTag(cmd_type_);
ReplayRecord(*cb_context, tag);
return tag;
}
void SyncOpPipelineBarrier::ReplayRecord(CommandExecutionContext &exec_context, const ResourceUsageTag tag) const {
SyncOpPipelineBarrierFunctorFactory factory;
// Pipeline barriers only have a single barrier set, unlike WaitEvents2
assert(barriers_.size() == 1);
const auto &barrier_set = barriers_[0];
if (!exec_context.ValidForSyncOps()) return;
SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
AccessContext *access_context = exec_context.GetCurrentAccessContext();
const auto queue_id = exec_context.GetQueueId();
ApplyBarriers(barrier_set.buffer_memory_barriers, factory, queue_id, tag, access_context);
ApplyBarriers(barrier_set.image_memory_barriers, factory, queue_id, tag, access_context);
ApplyGlobalBarriers(barrier_set.memory_barriers, factory, queue_id, tag, access_context);
if (barrier_set.single_exec_scope) {
events_context->ApplyBarrier(barrier_set.src_exec_scope, barrier_set.dst_exec_scope, tag);
} else {
for (const auto &barrier : barrier_set.memory_barriers) {
events_context->ApplyBarrier(barrier.src_exec_scope, barrier.dst_exec_scope, tag);
}
}
}
bool SyncOpPipelineBarrier::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
// No Validation for replay, as the layout transition accesses are checked directly, and the src*Mask ordering is captured
// with first access information.
return false;
}
void SyncOpBarriers::BarrierSet::MakeMemoryBarriers(const SyncExecScope &src, const SyncExecScope &dst,
VkDependencyFlags dependency_flags, uint32_t memory_barrier_count,
const VkMemoryBarrier *barriers) {
memory_barriers.reserve(std::max<uint32_t>(1, memory_barrier_count));
for (uint32_t barrier_index = 0; barrier_index < memory_barrier_count; barrier_index++) {
const auto &barrier = barriers[barrier_index];
SyncBarrier sync_barrier(barrier, src, dst);
memory_barriers.emplace_back(sync_barrier);
}
if (0 == memory_barrier_count) {
// If there are no global memory barriers, force an exec barrier
memory_barriers.emplace_back(SyncBarrier(src, dst));
}
single_exec_scope = true;
}
void SyncOpBarriers::BarrierSet::MakeBufferMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src,
const SyncExecScope &dst, VkDependencyFlags dependencyFlags,
uint32_t barrier_count, const VkBufferMemoryBarrier *barriers) {
buffer_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto buffer = sync_state.Get<BUFFER_STATE>(barrier.buffer);
if (buffer) {
const auto barrier_size = GetBufferWholeSize(*buffer, barrier.offset, barrier.size);
const auto range = MakeRange(barrier.offset, barrier_size);
const SyncBarrier sync_barrier(barrier, src, dst);
buffer_memory_barriers.emplace_back(buffer, sync_barrier, range);
} else {
buffer_memory_barriers.emplace_back();
}
}
}
void SyncOpBarriers::BarrierSet::MakeMemoryBarriers(VkQueueFlags queue_flags, VkDependencyFlags dependency_flags,
uint32_t memory_barrier_count, const VkMemoryBarrier2 *barriers) {
memory_barriers.reserve(memory_barrier_count);
for (uint32_t barrier_index = 0; barrier_index < memory_barrier_count; barrier_index++) {
const auto &barrier = barriers[barrier_index];
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
SyncBarrier sync_barrier(barrier, src, dst);
memory_barriers.emplace_back(sync_barrier);
}
single_exec_scope = false;
}
void SyncOpBarriers::BarrierSet::MakeBufferMemoryBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkDependencyFlags dependencyFlags, uint32_t barrier_count,
const VkBufferMemoryBarrier2 *barriers) {
buffer_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
auto buffer = sync_state.Get<BUFFER_STATE>(barrier.buffer);
if (buffer) {
const auto barrier_size = GetBufferWholeSize(*buffer, barrier.offset, barrier.size);
const auto range = MakeRange(barrier.offset, barrier_size);
const SyncBarrier sync_barrier(barrier, src, dst);
buffer_memory_barriers.emplace_back(buffer, sync_barrier, range);
} else {
buffer_memory_barriers.emplace_back();
}
}
}
void SyncOpBarriers::BarrierSet::MakeImageMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src,
const SyncExecScope &dst, VkDependencyFlags dependencyFlags,
uint32_t barrier_count, const VkImageMemoryBarrier *barriers) {
image_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto image = sync_state.Get<IMAGE_STATE>(barrier.image);
if (image) {
auto subresource_range = NormalizeSubresourceRange(image->createInfo, barrier.subresourceRange);
const SyncBarrier sync_barrier(barrier, src, dst);
image_memory_barriers.emplace_back(image, index, sync_barrier, barrier.oldLayout, barrier.newLayout, subresource_range);
} else {
image_memory_barriers.emplace_back();
image_memory_barriers.back().index = index; // Just in case we're interested in the ones we skipped.
}
}
}
void SyncOpBarriers::BarrierSet::MakeImageMemoryBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkDependencyFlags dependencyFlags, uint32_t barrier_count,
const VkImageMemoryBarrier2 *barriers) {
image_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
auto image = sync_state.Get<IMAGE_STATE>(barrier.image);
if (image) {
auto subresource_range = NormalizeSubresourceRange(image->createInfo, barrier.subresourceRange);
const SyncBarrier sync_barrier(barrier, src, dst);
image_memory_barriers.emplace_back(image, index, sync_barrier, barrier.oldLayout, barrier.newLayout, subresource_range);
} else {
image_memory_barriers.emplace_back();
image_memory_barriers.back().index = index; // Just in case we're interested in the ones we skipped.
}
}
}
SyncOpWaitEvents::SyncOpWaitEvents(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags,
uint32_t eventCount, const VkEvent *pEvents, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBarriers(cmd_type, sync_state, queue_flags, srcStageMask, dstStageMask, VkDependencyFlags(0U), memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount,
pImageMemoryBarriers) {
MakeEventsList(sync_state, eventCount, pEvents);
}
SyncOpWaitEvents::SyncOpWaitEvents(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags,
uint32_t eventCount, const VkEvent *pEvents, const VkDependencyInfoKHR *pDependencyInfo)
: SyncOpBarriers(cmd_type, sync_state, queue_flags, eventCount, pDependencyInfo) {
MakeEventsList(sync_state, eventCount, pEvents);
assert(events_.size() == barriers_.size()); // Just so nobody gets clever and decides to cull the event or barrier arrays
}
const char *const SyncOpWaitEvents::kIgnored = "Wait operation is ignored for this event.";
bool SyncOpWaitEvents::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto &sync_state = cb_context.GetSyncState();
const auto command_buffer_handle = cb_context.GetCBState().commandBuffer();
// This is only interesting at record and not replay (Execute/Submit) time.
for (size_t barrier_set_index = 0; barrier_set_index < barriers_.size(); barrier_set_index++) {
const auto &barrier_set = barriers_[barrier_set_index];
if (barrier_set.single_exec_scope) {
if (barrier_set.src_exec_scope.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
const std::string vuid = std::string("SYNC-") + std::string(CmdName()) + std::string("-hostevent-unsupported");
skip = sync_state.LogInfo(command_buffer_handle, vuid,
"%s, srcStageMask includes %s, unsupported by synchronization validation.", CmdName(),
string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT));
} else {
const auto &barriers = barrier_set.memory_barriers;
for (size_t barrier_index = 0; barrier_index < barriers.size(); barrier_index++) {
const auto &barrier = barriers[barrier_index];
if (barrier.src_exec_scope.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
const std::string vuid =
std::string("SYNC-") + std::string(CmdName()) + std::string("-hostevent-unsupported");
skip =
sync_state.LogInfo(command_buffer_handle, vuid,
"%s, srcStageMask %s of %s %zu, %s %zu, unsupported by synchronization validation.",
CmdName(), string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT),
"pDependencyInfo", barrier_set_index, "pMemoryBarriers", barrier_index);
}
}
}
}
}
// The rest is common to record time and replay time.
skip |= DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
return skip;
}
bool SyncOpWaitEvents::DoValidate(const CommandExecutionContext &exec_context, const ResourceUsageTag base_tag) const {
bool skip = false;
const auto &sync_state = exec_context.GetSyncState();
const QueueId queue_id = exec_context.GetQueueId();
VkPipelineStageFlags2KHR event_stage_masks = 0U;
VkPipelineStageFlags2KHR barrier_mask_params = 0U;
bool events_not_found = false;
const auto *events_context = exec_context.GetCurrentEventsContext();
assert(events_context);
size_t barrier_set_index = 0;
size_t barrier_set_incr = (barriers_.size() == 1) ? 0 : 1;
for (const auto &event : events_) {
const auto *sync_event = events_context->Get(event.get());
const auto &barrier_set = barriers_[barrier_set_index];
if (!sync_event) {
// NOTE PHASE2: This is where we'll need queue submit time validation to come back and check the srcStageMask bits
// or solve this with replay creating the SyncEventState in the queue context... also this will be a
// new validation error... wait without previously submitted set event...
events_not_found = true; // Demote "extra_stage_bits" error to warning, to avoid false positives at *record time*
barrier_set_index += barrier_set_incr;
continue; // Core, Lifetimes, or Param check needs to catch invalid events.
}
// For replay calls, don't revalidate "same command buffer" events
if (sync_event->last_command_tag > base_tag) continue;
const auto event_handle = sync_event->event->event();
// TODO add "destroyed" checks
if (sync_event->first_scope) {
// Only accumulate barrier and event stages if there is a pending set in the current context
barrier_mask_params |= barrier_set.src_exec_scope.mask_param;
event_stage_masks |= sync_event->scope.mask_param;
}
const auto &src_exec_scope = barrier_set.src_exec_scope;
const auto ignore_reason = sync_event->IsIgnoredByWait(cmd_type_, src_exec_scope.mask_param);
if (ignore_reason) {
switch (ignore_reason) {
case SyncEventState::ResetWaitRace:
case SyncEventState::Reset2WaitRace: {
// Four permuations of Reset and Wait calls...
const char *vuid =
(cmd_type_ == CMD_WAITEVENTS) ? "VUID-vkCmdResetEvent-event-03834" : "VUID-vkCmdResetEvent-event-03835";
if (ignore_reason == SyncEventState::Reset2WaitRace) {
vuid = (cmd_type_ == CMD_WAITEVENTS) ? "VUID-vkCmdResetEvent2-event-03831"
: "VUID-vkCmdResetEvent2-event-03832";
}
const char *const message =
"%s: %s %s operation following %s without intervening execution barrier, may cause race condition. %s";
skip |= sync_state.LogError(event_handle, vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(), CmdName(),
CommandTypeString(sync_event->last_command), kIgnored);
break;
}
case SyncEventState::SetRace: {
// Issue error message that Wait is waiting on an signal subject to race condition, and is thus ignored for
// this event
const char *const vuid = "SYNC-vkCmdWaitEvents-unsynchronized-setops";
const char *const message =
"%s: %s Unsychronized %s calls result in race conditions w.r.t. event signalling, %s %s";
const char *const reason = "First synchronization scope is undefined.";
skip |= sync_state.LogError(event_handle, vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(),
CommandTypeString(sync_event->last_command), reason, kIgnored);
break;
}
case SyncEventState::MissingStageBits: {
const auto missing_bits = sync_event->scope.mask_param & ~src_exec_scope.mask_param;
// Issue error message that event waited for is not in wait events scope
const char *const vuid = "VUID-vkCmdWaitEvents-srcStageMask-01158";
const char *const message = "%s: %s stageMask %" PRIx64 " includes bits not present in srcStageMask 0x%" PRIx64
". Bits missing from srcStageMask %s. %s";
skip |= sync_state.LogError(event_handle, vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(),
sync_event->scope.mask_param, src_exec_scope.mask_param,
sync_utils::StringPipelineStageFlags(missing_bits).c_str(), kIgnored);
break;
}
case SyncEventState::SetVsWait2: {
skip |= sync_state.LogError(event_handle, "VUID-vkCmdWaitEvents2-pEvents-03837",
"%s: Follows set of %s by %s. Disallowed.", CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(),
CommandTypeString(sync_event->last_command));
break;
}
case SyncEventState::MissingSetEvent: {
// TODO: There are conditions at queue submit time where we can definitively say that
// a missing set event is an error. Add those if not captured in CoreChecks
break;
}
default:
assert(ignore_reason == SyncEventState::NotIgnored);
}
} else if (barrier_set.image_memory_barriers.size()) {
const auto &image_memory_barriers = barrier_set.image_memory_barriers;
const auto *context = exec_context.GetCurrentAccessContext();
assert(context);
for (const auto &image_memory_barrier : image_memory_barriers) {
if (image_memory_barrier.old_layout == image_memory_barrier.new_layout) continue;
const auto *image_state = image_memory_barrier.image.get();
if (!image_state) continue;
const auto &subresource_range = image_memory_barrier.range;
const auto &src_access_scope = image_memory_barrier.barrier.src_access_scope;
const auto hazard = context->DetectImageBarrierHazard(*image_state, subresource_range, sync_event->scope.exec_scope,
src_access_scope, queue_id, *sync_event,
AccessContext::DetectOptions::kDetectAll);
if (hazard.hazard) {
skip |= sync_state.LogError(image_state->image(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for image barrier %" PRIu32 " %s. Access info %s.", CmdName(),
string_SyncHazard(hazard.hazard), image_memory_barrier.index,
sync_state.report_data->FormatHandle(image_state->image()).c_str(),
exec_context.FormatHazard(hazard).c_str());
break;
}
}
}
// TODO: Add infrastructure for checking pDependencyInfo's vs. CmdSetEvent2 VUID - vkCmdWaitEvents2KHR - pEvents -
// 03839
barrier_set_index += barrier_set_incr;
}
// Note that we can't check for HOST in pEvents as we don't track that set event type
const auto extra_stage_bits = (barrier_mask_params & ~VK_PIPELINE_STAGE_2_HOST_BIT_KHR) & ~event_stage_masks;
if (extra_stage_bits) {
// Issue error message that event waited for is not in wait events scope
// NOTE: This isn't exactly the right VUID for WaitEvents2, but it's as close as we currently have support for
const char *const vuid =
(CMD_WAITEVENTS == cmd_type_) ? "VUID-vkCmdWaitEvents-srcStageMask-01158" : "VUID-vkCmdWaitEvents2-pEvents-03838";
const char *const message =
"%s: srcStageMask 0x%" PRIx64 " contains stages not present in pEvents stageMask. Extra stages are %s.%s";
const auto handle = exec_context.Handle();
if (events_not_found) {
skip |= sync_state.LogInfo(handle, vuid, message, CmdName(), barrier_mask_params,
sync_utils::StringPipelineStageFlags(extra_stage_bits).c_str(),
" vkCmdSetEvent may be in previously submitted command buffer.");
} else {
skip |= sync_state.LogError(handle, vuid, message, CmdName(), barrier_mask_params,
sync_utils::StringPipelineStageFlags(extra_stage_bits).c_str(), "");
}
}
return skip;
}
struct SyncOpWaitEventsFunctorFactory {
using BarrierOpFunctor = WaitEventBarrierOp;
using ApplyFunctor = ApplyBarrierFunctor<BarrierOpFunctor>;
using GlobalBarrierOpFunctor = WaitEventBarrierOp;
using GlobalApplyFunctor = ApplyBarrierOpsFunctor<GlobalBarrierOpFunctor>;
using BufferRange = EventSimpleRangeGenerator;
using ImageRange = EventImageRangeGenerator;
using GlobalRange = EventSimpleRangeGenerator;
// Need to restrict to only valid exec and access scope for this event
// Pass by value is intentional to get a copy we can change without modifying the passed barrier
SyncBarrier RestrictToEvent(SyncBarrier barrier) const {
barrier.src_exec_scope.exec_scope = sync_event->scope.exec_scope & barrier.src_exec_scope.exec_scope;
barrier.src_access_scope = sync_event->scope.valid_accesses & barrier.src_access_scope;
return barrier;
}
ApplyFunctor MakeApplyFunctor(QueueId queue_id, const SyncBarrier &barrier_arg, bool layout_transition) const {
auto barrier = RestrictToEvent(barrier_arg);
return ApplyFunctor(BarrierOpFunctor(queue_id, sync_event->first_scope_tag, barrier, layout_transition));
}
GlobalApplyFunctor MakeGlobalApplyFunctor(size_t size_hint, ResourceUsageTag tag) const {
return GlobalApplyFunctor(false /* don't resolve */, size_hint, tag);
}
GlobalBarrierOpFunctor MakeGlobalBarrierOpFunctor(const QueueId queue_id, const SyncBarrier &barrier_arg) const {
auto barrier = RestrictToEvent(barrier_arg);
return GlobalBarrierOpFunctor(queue_id, sync_event->first_scope_tag, barrier, false);
}
BufferRange MakeRangeGen(const BUFFER_STATE &buffer, const ResourceAccessRange &range_arg) const {
const AccessAddressType address_type = GetAccessAddressType(buffer);
const auto base_address = ResourceBaseAddress(buffer);
ResourceAccessRange range = SimpleBinding(buffer) ? (range_arg + base_address) : ResourceAccessRange();
EventSimpleRangeGenerator filtered_range_gen(sync_event->FirstScope(address_type), range);
return filtered_range_gen;
}
ImageRange MakeRangeGen(const IMAGE_STATE &image, const VkImageSubresourceRange &subresource_range) const {
if (!SimpleBinding(image)) return ImageRange();
const auto address_type = GetAccessAddressType(image);
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator image_range_gen(*image.fragment_encoder.get(), subresource_range, base_address,
false);
EventImageRangeGenerator filtered_range_gen(sync_event->FirstScope(address_type), image_range_gen);
return filtered_range_gen;
}
GlobalRange MakeGlobalRangeGen(AccessAddressType address_type) const {
return EventSimpleRangeGenerator(sync_event->FirstScope(address_type), kFullRange);
}
SyncOpWaitEventsFunctorFactory(SyncEventState *sync_event_) : sync_event(sync_event_) { assert(sync_event); }
SyncEventState *sync_event;
};
ResourceUsageTag SyncOpWaitEvents::Record(CommandBufferAccessContext *cb_context) {
const auto tag = cb_context->NextCommandTag(cmd_type_);
ReplayRecord(*cb_context, tag);
return tag;
}
void SyncOpWaitEvents::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag tag) const {
// Unlike PipelineBarrier, WaitEvent is *not* limited to accesses within the current subpass (if any) and thus needs to import
// all accesses. Can instead import for all first_scopes, or a union of them, if this becomes a performance/memory issue,
// but with no idea of the performance of the union, nor of whether it even matters... take the simplest approach here,
if (!exec_context.ValidForSyncOps()) return;
AccessContext *access_context = exec_context.GetCurrentAccessContext();
SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
const QueueId queue_id = exec_context.GetQueueId();
access_context->ResolvePreviousAccesses();
size_t barrier_set_index = 0;
size_t barrier_set_incr = (barriers_.size() == 1) ? 0 : 1;
assert(barriers_.size() == 1 || (barriers_.size() == events_.size()));
for (auto &event_shared : events_) {
if (!event_shared.get()) continue;
auto *sync_event = events_context->GetFromShared(event_shared);
sync_event->last_command = cmd_type_;
sync_event->last_command_tag = tag;
const auto &barrier_set = barriers_[barrier_set_index];
const auto &dst = barrier_set.dst_exec_scope;
if (!sync_event->IsIgnoredByWait(cmd_type_, barrier_set.src_exec_scope.mask_param)) {
// These apply barriers one at a time as the are restricted to the resource ranges specified per each barrier,
// but do not update the dependency chain information (but set the "pending" state) // s.t. the order independence
// of the barriers is maintained.
SyncOpWaitEventsFunctorFactory factory(sync_event);
ApplyBarriers(barrier_set.buffer_memory_barriers, factory, queue_id, tag, access_context);
ApplyBarriers(barrier_set.image_memory_barriers, factory, queue_id, tag, access_context);
ApplyGlobalBarriers(barrier_set.memory_barriers, factory, queue_id, tag, access_context);
// Apply the global barrier to the event itself (for race condition tracking)
// Events don't happen at a stage, so we need to store the unexpanded ALL_COMMANDS if set for inter-event-calls
sync_event->barriers = dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
sync_event->barriers |= dst.exec_scope;
} else {
// We ignored this wait, so we don't have any effective synchronization barriers for it.
sync_event->barriers = 0U;
}
barrier_set_index += barrier_set_incr;
}
// Apply the pending barriers
ResolvePendingBarrierFunctor apply_pending_action(tag);
access_context->ApplyToContext(apply_pending_action);
}
bool SyncOpWaitEvents::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
return DoValidate(exec_context, base_tag);
}
bool SyncValidator::PreCallValidateCmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2KHR pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) const {
bool skip = false;
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_access_context = &cb_state->access_context;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdWriteBufferMarkerAMD2: Hazard %s for dstBuffer %s. Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(),
cb_access_context->FormatHazard(hazard).c_str());
}
}
return skip;
}
void SyncOpWaitEvents::MakeEventsList(const SyncValidator &sync_state, uint32_t event_count, const VkEvent *events) {
events_.reserve(event_count);
for (uint32_t event_index = 0; event_index < event_count; event_index++) {
events_.emplace_back(sync_state.Get<EVENT_STATE>(events[event_index]));
}
}
SyncOpResetEvent::SyncOpResetEvent(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
VkPipelineStageFlags2KHR stageMask)
: SyncOpBase(cmd_type),
event_(sync_state.Get<EVENT_STATE>(event)),
exec_scope_(SyncExecScope::MakeSrc(queue_flags, stageMask)) {}
bool SyncOpResetEvent::Validate(const CommandBufferAccessContext& cb_context) const {
return DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
}
bool SyncOpResetEvent::DoValidate(const CommandExecutionContext &exec_context, const ResourceUsageTag base_tag) const {
auto *events_context = exec_context.GetCurrentEventsContext();
assert(events_context);
bool skip = false;
if (!events_context) return skip;
const auto &sync_state = exec_context.GetSyncState();
const auto *sync_event = events_context->Get(event_);
if (!sync_event) return skip; // Core, Lifetimes, or Param check needs to catch invalid events.
if (sync_event->last_command_tag > base_tag) return skip; // if we validated this in recording of the secondary, don't repeat
const char *const set_wait =
"%s: %s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
"hazards.";
const char *message = set_wait; // Only one message this call.
if (!sync_event->HasBarrier(exec_scope_.mask_param, exec_scope_.exec_scope)) {
const char *vuid = nullptr;
switch (sync_event->last_command) {
case CMD_SETEVENT:
case CMD_SETEVENT2KHR:
case CMD_SETEVENT2:
// Needs a barrier between set and reset
vuid = "SYNC-vkCmdResetEvent-missingbarrier-set";
break;
case CMD_WAITEVENTS:
case CMD_WAITEVENTS2:
case CMD_WAITEVENTS2KHR: {
// Needs to be in the barriers chain (either because of a barrier, or because of dstStageMask
vuid = "SYNC-vkCmdResetEvent-missingbarrier-wait";
break;
}
default:
// The only other valid last command that wasn't one.
assert((sync_event->last_command == CMD_NONE) || (sync_event->last_command == CMD_RESETEVENT) ||
(sync_event->last_command == CMD_RESETEVENT2KHR));
break;
}
if (vuid) {
skip |= sync_state.LogError(event_->event(), vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_->event()).c_str(), CmdName(),
CommandTypeString(sync_event->last_command));
}
}
return skip;
}
ResourceUsageTag SyncOpResetEvent::Record(CommandBufferAccessContext *cb_context) {
const auto tag = cb_context->NextCommandTag(cmd_type_);
ReplayRecord(*cb_context, tag);
return tag;
}
bool SyncOpResetEvent::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
return DoValidate(exec_context, base_tag);
}
void SyncOpResetEvent::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag tag) const {
if (!exec_context.ValidForSyncOps()) return;
SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
auto *sync_event = events_context->GetFromShared(event_);
if (!sync_event) return; // Core, Lifetimes, or Param check needs to catch invalid events.
// Update the event state
sync_event->last_command = cmd_type_;
sync_event->last_command_tag = tag;
sync_event->unsynchronized_set = CMD_NONE;
sync_event->ResetFirstScope();
sync_event->barriers = 0U;
}
SyncOpSetEvent::SyncOpSetEvent(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
VkPipelineStageFlags2KHR stageMask, const AccessContext *access_context)
: SyncOpBase(cmd_type),
event_(sync_state.Get<EVENT_STATE>(event)),
recorded_context_(),
src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, stageMask)),
dep_info_() {
// Snapshot the current access_context for later inspection at wait time.
// NOTE: This appears brute force, but given that we only save a "first-last" model of access history, the current
// access context (include barrier state for chaining) won't necessarily contain the needed information at Wait
// or Submit time reference.
if (access_context) {
recorded_context_ = std::make_shared<const AccessContext>(*access_context);
}
}
SyncOpSetEvent::SyncOpSetEvent(CMD_TYPE cmd_type, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
const VkDependencyInfoKHR &dep_info, const AccessContext *access_context)
: SyncOpBase(cmd_type),
event_(sync_state.Get<EVENT_STATE>(event)),
recorded_context_(),
src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, sync_utils::GetGlobalStageMasks(dep_info).src)),
dep_info_(new safe_VkDependencyInfo(&dep_info)) {
if (access_context) {
recorded_context_ = std::make_shared<const AccessContext>(*access_context);
}
}
bool SyncOpSetEvent::Validate(const CommandBufferAccessContext &cb_context) const {
return DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
}
bool SyncOpSetEvent::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
return DoValidate(exec_context, base_tag);
}
bool SyncOpSetEvent::DoValidate(const CommandExecutionContext &exec_context, const ResourceUsageTag base_tag) const {
bool skip = false;
const auto &sync_state = exec_context.GetSyncState();
auto *events_context = exec_context.GetCurrentEventsContext();
assert(events_context);
if (!events_context) return skip;
const auto *sync_event = events_context->Get(event_);
if (!sync_event) return skip; // Core, Lifetimes, or Param check needs to catch invalid events.
if (sync_event->last_command_tag >= base_tag) return skip; // for replay we don't want to revalidate internal "last commmand"
const char *const reset_set =
"%s: %s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
"hazards.";
const char *const wait =
"%s: %s %s operation following %s without intervening vkCmdResetEvent, may result in data hazard and is ignored.";
if (!sync_event->HasBarrier(src_exec_scope_.mask_param, src_exec_scope_.exec_scope)) {
const char *vuid_stem = nullptr;
const char *message = nullptr;
switch (sync_event->last_command) {
case CMD_RESETEVENT:
case CMD_RESETEVENT2KHR:
case CMD_RESETEVENT2:
// Needs a barrier between reset and set
vuid_stem = "-missingbarrier-reset";
message = reset_set;
break;
case CMD_SETEVENT:
case CMD_SETEVENT2KHR:
case CMD_SETEVENT2:
// Needs a barrier between set and set
vuid_stem = "-missingbarrier-set";
message = reset_set;
break;
case CMD_WAITEVENTS:
case CMD_WAITEVENTS2:
case CMD_WAITEVENTS2KHR:
// Needs a barrier or is in second execution scope
vuid_stem = "-missingbarrier-wait";
message = wait;
break;
default:
// The only other valid last command that wasn't one.
assert(sync_event->last_command == CMD_NONE);
break;
}
if (vuid_stem) {
assert(nullptr != message);
std::string vuid("SYNC-");
vuid.append(CmdName()).append(vuid_stem);
skip |= sync_state.LogError(event_->event(), vuid.c_str(), message, CmdName(),
sync_state.report_data->FormatHandle(event_->event()).c_str(), CmdName(),
CommandTypeString(sync_event->last_command));
}
}
return skip;
}
ResourceUsageTag SyncOpSetEvent::Record(CommandBufferAccessContext *cb_context) {
const auto tag = cb_context->NextCommandTag(cmd_type_);
auto *events_context = cb_context->GetCurrentEventsContext();
const QueueId queue_id = cb_context->GetQueueId();
assert(recorded_context_);
if (recorded_context_ && events_context) {
DoRecord(queue_id, tag, recorded_context_, events_context);
}
return tag;
}
void SyncOpSetEvent::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag tag) const {
// Create a copy of the current context, and merge in the state snapshot at record set event time
// Note: we mustn't change the recorded context copy, as a given CB could be submitted more than once (in generaL)
if (!exec_context.ValidForSyncOps()) return;
SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
AccessContext *access_context = exec_context.GetCurrentAccessContext();
const QueueId queue_id = exec_context.GetQueueId();
// Note: merged_context is a copy of the access_context, combined with the recorded context
auto merged_context = std::make_shared<AccessContext>(*access_context);
merged_context->ResolveFromContext(QueueTagOffsetBarrierAction(queue_id, tag), *recorded_context_);
merged_context->Trim(); // Ensure the copy is minimal and normalized
DoRecord(queue_id, tag, merged_context, events_context);
}
void SyncOpSetEvent::DoRecord(QueueId queue_id, ResourceUsageTag tag, const std::shared_ptr<const AccessContext> &access_context,
SyncEventsContext *events_context) const {
auto *sync_event = events_context->GetFromShared(event_);
if (!sync_event) return; // Core, Lifetimes, or Param check needs to catch invalid events.
// NOTE: We're going to simply record the sync scope here, as anything else would be implementation defined/undefined
// and we're issuing errors re: missing barriers between event commands, which if the user fixes would fix
// any issues caused by naive scope setting here.
// What happens with two SetEvent is that one cannot know what group of operations will be waited for.
// Given:
// Stuff1; SetEvent; Stuff2; SetEvent; WaitEvents;
// WaitEvents cannot know which of Stuff1, Stuff2, or both has completed execution.
if (!sync_event->HasBarrier(src_exec_scope_.mask_param, src_exec_scope_.exec_scope)) {
sync_event->unsynchronized_set = sync_event->last_command;
sync_event->ResetFirstScope();
} else if (!sync_event->first_scope) {
// We only set the scope if there isn't one
sync_event->scope = src_exec_scope_;
// Save the shared_ptr to copy of the access_context present at set time (sent us by the caller)
sync_event->first_scope = access_context;
sync_event->unsynchronized_set = CMD_NONE;
sync_event->first_scope_tag = tag;
}
// TODO: Store dep_info_ shared ptr in sync_state for WaitEvents2 validation
sync_event->last_command = cmd_type_;
sync_event->last_command_tag = tag;
sync_event->barriers = 0U;
}
SyncOpBeginRenderPass::SyncOpBeginRenderPass(CMD_TYPE cmd_type, const SyncValidator &sync_state,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo)
: SyncOpBase(cmd_type), rp_context_(nullptr) {
if (pRenderPassBegin) {
rp_state_ = sync_state.Get<RENDER_PASS_STATE>(pRenderPassBegin->renderPass);
renderpass_begin_info_ = safe_VkRenderPassBeginInfo(pRenderPassBegin);
auto fb_state = sync_state.Get<FRAMEBUFFER_STATE>(pRenderPassBegin->framebuffer);
if (fb_state) {
shared_attachments_ = sync_state.GetAttachmentViews(*renderpass_begin_info_.ptr(), *fb_state);
// TODO: Revisit this when all attachment validation is through SyncOps to see if we can discard the plain pointer copy
// Note that this a safe to presist as long as shared_attachments is not cleared
attachments_.reserve(shared_attachments_.size());
for (const auto &attachment : shared_attachments_) {
attachments_.emplace_back(attachment.get());
}
}
if (pSubpassBeginInfo) {
subpass_begin_info_ = safe_VkSubpassBeginInfo(pSubpassBeginInfo);
}
}
}
bool SyncOpBeginRenderPass::Validate(const CommandBufferAccessContext &cb_context) const {
// Check if any of the layout transitions are hazardous.... but we don't have the renderpass context to work with, so we
bool skip = false;
assert(rp_state_.get());
if (nullptr == rp_state_.get()) return skip;
auto &rp_state = *rp_state_.get();
const uint32_t subpass = 0;
// Construct the state we can use to validate against... (since validation is const and RecordCmdBeginRenderPass
// hasn't happened yet)
const std::vector<AccessContext> empty_context_vector;
AccessContext temp_context(subpass, cb_context.GetQueueFlags(), rp_state.subpass_dependencies, empty_context_vector,
cb_context.GetCurrentAccessContext());
// Validate attachment operations
if (attachments_.size() == 0) return skip;
const auto &render_area = renderpass_begin_info_.renderArea;
// Since the isn't a valid RenderPassAccessContext until Record, needs to create the view/generator list... we could limit this
// by predicating on whether subpass 0 uses the attachment if it is too expensive to create the full list redundantly here.
// More broadly we could look at thread specific state shared between Validate and Record as is done for other heavyweight
// operations (though it's currently a messy approach)
AttachmentViewGenVector view_gens = RenderPassAccessContext::CreateAttachmentViewGen(render_area, attachments_);
skip |= temp_context.ValidateLayoutTransitions(cb_context, rp_state, render_area, subpass, view_gens, cmd_type_);
// Validate load operations if there were no layout transition hazards
if (!skip) {
temp_context.RecordLayoutTransitions(rp_state, subpass, view_gens, kInvalidTag);
skip |= temp_context.ValidateLoadOperation(cb_context, rp_state, render_area, subpass, view_gens, cmd_type_);
}
return skip;
}
ResourceUsageTag SyncOpBeginRenderPass::Record(CommandBufferAccessContext *cb_context) {
assert(rp_state_.get());
if (nullptr == rp_state_.get()) return cb_context->NextCommandTag(cmd_type_);
const ResourceUsageTag begin_tag =
cb_context->RecordBeginRenderPass(cmd_type_, *rp_state_.get(), renderpass_begin_info_.renderArea, attachments_);
// Note: this state update must be after RecordBeginRenderPass as there is no current render pass until that function runs
rp_context_ = cb_context->GetCurrentRenderPassContext();
return begin_tag;
}
bool SyncOpBeginRenderPass::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
return false;
}
void SyncOpBeginRenderPass::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag tag) const {
// Need to update the exec_contexts state (which for RenderPass operations *must* be a QueueBatchContext, as
// render pass operations are not allowed in secondary command buffers.
const QueueId queue_id = exec_context.GetQueueId();
assert(queue_id != QueueSyncState::kQueueIdInvalid); // Renderpass replay only valid at submit (not exec) time
if (queue_id == QueueSyncState::kQueueIdInvalid) return;
exec_context.BeginRenderPassReplay(*this, tag);
}
SyncOpNextSubpass::SyncOpNextSubpass(CMD_TYPE cmd_type, const SyncValidator &sync_state,
const VkSubpassBeginInfo *pSubpassBeginInfo, const VkSubpassEndInfo *pSubpassEndInfo)
: SyncOpBase(cmd_type) {
if (pSubpassBeginInfo) {
subpass_begin_info_.initialize(pSubpassBeginInfo);
}
if (pSubpassEndInfo) {
subpass_end_info_.initialize(pSubpassEndInfo);
}
}
bool SyncOpNextSubpass::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *renderpass_context = cb_context.GetCurrentRenderPassContext();
if (!renderpass_context) return skip;
skip |= renderpass_context->ValidateNextSubpass(cb_context.GetExecutionContext(), cmd_type_);
return skip;
}
ResourceUsageTag SyncOpNextSubpass::Record(CommandBufferAccessContext *cb_context) {
return cb_context->RecordNextSubpass(cmd_type_);
}
bool SyncOpNextSubpass::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
return false;
}
SyncOpEndRenderPass::SyncOpEndRenderPass(CMD_TYPE cmd_type, const SyncValidator &sync_state,
const VkSubpassEndInfo *pSubpassEndInfo)
: SyncOpBase(cmd_type) {
if (pSubpassEndInfo) {
subpass_end_info_.initialize(pSubpassEndInfo);
}
}
void SyncOpNextSubpass::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag tag) const {
exec_context.NextSubpassReplay();
}
bool SyncOpEndRenderPass::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *renderpass_context = cb_context.GetCurrentRenderPassContext();
if (!renderpass_context) return skip;
skip |= renderpass_context->ValidateEndRenderPass(cb_context.GetExecutionContext(), cmd_type_);
return skip;
}
ResourceUsageTag SyncOpEndRenderPass::Record(CommandBufferAccessContext *cb_context) {
return cb_context->RecordEndRenderPass(cmd_type_);
}
bool SyncOpEndRenderPass::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandExecutionContext &exec_context) const {
return false;
}
void SyncOpEndRenderPass::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag tag) const {
exec_context.EndRenderPassReplay();
}
void SyncValidator::PreCallRecordCmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2KHR pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) {
StateTracker::PreCallRecordCmdWriteBufferMarker2AMD(commandBuffer, pipelineStage, dstBuffer, dstOffset, marker);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_access_context = &cb_state->access_context;
const auto tag = cb_access_context->NextCommandTag(CMD_WRITEBUFFERMARKERAMD);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers) const {
bool skip = StateTracker::PreCallValidateCmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
const auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return skip;
const auto *cb_context = &cb_state->access_context;
// Heavyweight, but we need a proxy copy of the active command buffer access context
CommandBufferAccessContext proxy_cb_context(*cb_context, CommandBufferAccessContext::AsProxyContext());
// Make working copies of the access and events contexts
for (uint32_t cb_index = 0; cb_index < commandBufferCount; ++cb_index) {
proxy_cb_context.NextIndexedCommandTag(CMD_EXECUTECOMMANDS, cb_index);
const auto recorded_cb = Get<syncval_state::CommandBuffer>(pCommandBuffers[cb_index]);
if (!recorded_cb) continue;
const auto *recorded_cb_context = &recorded_cb->access_context;
const auto *recorded_context = recorded_cb_context->GetCurrentAccessContext();
assert(recorded_context);
skip |= recorded_cb_context->ValidateFirstUse(proxy_cb_context, "vkCmdExecuteCommands", cb_index);
// The barriers have already been applied in ValidatFirstUse
ResourceUsageRange tag_range = proxy_cb_context.ImportRecordedAccessLog(*recorded_cb_context);
proxy_cb_context.ResolveExecutedCommandBuffer(*recorded_context, tag_range.begin);
}
return skip;
}
void SyncValidator::PreCallRecordCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers) {
StateTracker::PreCallRecordCmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
auto cb_state = Get<syncval_state::CommandBuffer>(commandBuffer);
assert(cb_state);
if (!cb_state) return;
auto *cb_context = &cb_state->access_context;
for (uint32_t cb_index = 0; cb_index < commandBufferCount; ++cb_index) {
const ResourceUsageTag cb_tag = cb_context->NextIndexedCommandTag(CMD_EXECUTECOMMANDS, cb_index);
const auto recorded_cb = Get<syncval_state::CommandBuffer>(pCommandBuffers[cb_index]);
if (!recorded_cb) continue;
cb_context->AddHandle(cb_tag, "pCommandBuffers", recorded_cb->Handle(), cb_index);
const auto *recorded_cb_context = &recorded_cb->access_context;
cb_context->RecordExecutedCommandBuffer(*recorded_cb_context);
}
}
void SyncValidator::PostCallRecordQueueWaitIdle(VkQueue queue, VkResult result) {
StateTracker::PostCallRecordQueueWaitIdle(queue, result);
if ((result != VK_SUCCESS) || (!enabled[sync_validation_queue_submit]) || (queue == VK_NULL_HANDLE)) return;
const auto queue_state = GetQueueSyncStateShared(queue);
if (!queue_state) return; // Invalid queue
QueueId waited_queue = queue_state->GetQueueId();
ApplyTaggedWait(waited_queue, ResourceUsageRecord::kMaxIndex);
// Eliminate waitable fences from the current queue.
layer_data::EraseIf(waitable_fences_, [waited_queue](const SignaledFence &sf) { return sf.second.queue_id == waited_queue; });
}
void SyncValidator::PostCallRecordDeviceWaitIdle(VkDevice device, VkResult result) {
StateTracker::PostCallRecordDeviceWaitIdle(device, result);
// We need to treat this a fence waits for all queues... noting that present engine ops will be preserved.
ForAllQueueBatchContexts([](const std::shared_ptr<QueueBatchContext> &batch) {
batch->ApplyTaggedWait(QueueSyncState::kQueueAny, ResourceUsageRecord::kMaxIndex);
});
// As we we've waited for everything on device, any waits are mooted. (except for acquires)
layer_data::EraseIf(waitable_fences_, [](SignaledFences::value_type &waitable) { return waitable.second.acquired.Invalid(); });
}
struct QueuePresentCmdState {
std::shared_ptr<const QueueSyncState> queue;
std::shared_ptr<QueueBatchContext> present_batch;
SignaledSemaphores signaled;
PresentedImages presented_images;
QueuePresentCmdState(const SignaledSemaphores &parent_semaphores) : signaled(parent_semaphores) {}
};
bool SyncValidator::PreCallValidateQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR *pPresentInfo) const {
bool skip = false;
// Since this early return is above the TlsGuard, the Record phase must also be.
if (!enabled[sync_validation_queue_submit]) return skip;
layer_data::TlsGuard<QueuePresentCmdState> cmd_state(&skip, signaled_semaphores_);
cmd_state->queue = GetQueueSyncStateShared(queue);
if (!cmd_state->queue) return skip; // Invalid Queue
// The submit id is a mutable automic which is not recoverable on a skip == true condition
uint64_t submit_id = cmd_state->queue->ReserveSubmitId();
std::shared_ptr<const QueueBatchContext> last_batch = cmd_state->queue->LastBatch();
std::shared_ptr<QueueBatchContext> batch(std::make_shared<QueueBatchContext>(*this, *cmd_state->queue, submit_id, 0));
ResourceUsageRange tag_range = SetupPresentInfo(*pPresentInfo, batch, cmd_state->presented_images);
batch->SetupAccessContext(last_batch, *pPresentInfo, cmd_state->presented_images, cmd_state->signaled);
batch->SetupBatchTags(tag_range);
// Update the present tags
for (auto &presented : cmd_state->presented_images) {
presented.tag += batch->GetTagRange().begin;
}
skip |= batch->DoQueuePresentValidate("vkQueuePresentKHR", cmd_state->presented_images);
batch->DoPresentOperations(cmd_state->presented_images);
batch->LogPresentOperations(cmd_state->presented_images);
batch->Cleanup();
if (!skip) {
cmd_state->present_batch = std::move(batch);
}
return skip;
}
ResourceUsageRange SyncValidator::SetupPresentInfo(const VkPresentInfoKHR &present_info, std::shared_ptr<QueueBatchContext> &batch,
PresentedImages &presented_images) const {
const VkSwapchainKHR *const swapchains = present_info.pSwapchains;
const uint32_t *const image_indices = present_info.pImageIndices;
const uint32_t swap_count = present_info.swapchainCount;
// Create the working list of presented images
presented_images.reserve(swap_count);
for (uint32_t present_index = 0; present_index < swap_count; present_index++) {
// Note: Given the "EraseIf" implementation for acquire fence waits, each presentation needs a unique tag.
const ResourceUsageTag tag = presented_images.size();
presented_images.emplace_back(*this, batch, swapchains[present_index], image_indices[present_index], present_index, tag);
if (presented_images.back().Invalid()) {
presented_images.pop_back();
}
}
// Present is tagged for each swap.
return ResourceUsageRange(0, presented_images.size());
}
void SyncValidator::PostCallRecordQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR *pPresentInfo, VkResult result) {
StateTracker::PostCallRecordQueuePresentKHR(queue, pPresentInfo, result);
if (!enabled[sync_validation_queue_submit]) return;
// The earliest return (when enabled), must be *after* the TlsGuard, as it is the TlsGuard that cleans up the cmd_state
// static payload
layer_data::TlsGuard<QueuePresentCmdState> cmd_state;
// See ValidationStateTracker::PostCallRecordQueuePresentKHR for spec excerpt supporting
if (result == VK_ERROR_OUT_OF_HOST_MEMORY || result == VK_ERROR_OUT_OF_DEVICE_MEMORY || result == VK_ERROR_DEVICE_LOST) {
return;
}
// Update the state with the data from the validate phase
cmd_state->signaled.Resolve(signaled_semaphores_, cmd_state->present_batch);
std::shared_ptr<QueueSyncState> queue_state = std::const_pointer_cast<QueueSyncState>(std::move(cmd_state->queue));
for (auto &presented : cmd_state->presented_images) {
presented.ExportToSwapchain(*this);
}
queue_state->UpdateLastBatch(std::move(cmd_state->present_batch));
}
void SyncValidator::PostCallRecordAcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout,
VkSemaphore semaphore, VkFence fence, uint32_t *pImageIndex,
VkResult result) {
StateTracker::PostCallRecordAcquireNextImageKHR(device, swapchain, timeout, semaphore, fence, pImageIndex, result);
if (!enabled[sync_validation_queue_submit]) return;
RecordAcquireNextImageState(device, swapchain, timeout, semaphore, fence, pImageIndex, result, "vkAcquireNextImageKHR");
}
void SyncValidator::PostCallRecordAcquireNextImage2KHR(VkDevice device, const VkAcquireNextImageInfoKHR *pAcquireInfo,
uint32_t *pImageIndex, VkResult result) {
StateTracker::PostCallRecordAcquireNextImage2KHR(device, pAcquireInfo, pImageIndex, result);
if (!enabled[sync_validation_queue_submit]) return;
RecordAcquireNextImageState(device, pAcquireInfo->swapchain, pAcquireInfo->timeout, pAcquireInfo->semaphore,
pAcquireInfo->fence, pImageIndex, result, "vkAcquireNextImage2KHR");
}
void SyncValidator::RecordAcquireNextImageState(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout, VkSemaphore semaphore,
VkFence fence, uint32_t *pImageIndex, VkResult result, const char *func_name) {
if ((VK_SUCCESS != result) && (VK_SUBOPTIMAL_KHR != result)) return;
// Get the image out of the presented list and create apppropriate fences/semaphores.
auto swapchain_state = Get<syncval_state::Swapchain>(swapchain);
if (BASE_NODE::Invalid(swapchain_state)) return; // Invalid acquire calls to be caught in CoreCheck/Parameter validation
PresentedImage presented = swapchain_state->MovePresentedImage(*pImageIndex);
if (presented.Invalid()) return;
// No way to make access safe, so nothing to record
if ((semaphore == VK_NULL_HANDLE) && (fence == VK_NULL_HANDLE)) return;
// We create a queue-less QBC for the Semaphore and fences to wait on
// Note: this is a heavyweight way to deal with the fact that all operation logs live in the QueueBatchContext... and
// acquire doesn't happen on a queue, but we need a place to put the acquire operation access record.
auto batch = std::make_shared<QueueBatchContext>(*this);
batch->SetupAccessContext(presented);
ResourceUsageRange acquire_tag_range(0, 1);
batch->SetupBatchTags(ResourceUsageRange(0, 1));
const ResourceUsageTag acquire_tag = batch->GetTagRange().begin;
batch->DoAcquireOperation(presented);
batch->LogAcquireOperation(presented, func_name);
// Now swap out the present queue batch with the acquired one.
// Note that fence and signal will read the acquire batch from presented, so this needs to be done before
// setting up the synchronization
presented.batch = std::move(batch);
if (semaphore != VK_NULL_HANDLE) {
std::shared_ptr<const SEMAPHORE_STATE> sem_state = Get<SEMAPHORE_STATE>(semaphore);
if (bool(sem_state)) {
signaled_semaphores_.SignalSemaphore(sem_state, presented, acquire_tag);
}
}
if (fence != VK_NULL_HANDLE) {
UpdateFenceWaitInfo(fence, presented, acquire_tag);
}
}
bool SyncValidator::PreCallValidateQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits,
VkFence fence) const {
auto queue_state = GetQueueSyncStateShared(queue);
if (!bool(queue_state)) return false;
SubmitInfoConverter submit_info(submitCount, pSubmits, queue_state->GetQueueFlags());
return ValidateQueueSubmit(queue, submitCount, submit_info.info2s.data(), fence, "vkQueueSubmit");
}
bool SyncValidator::ValidateQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence,
const char *func_name) const {
bool skip = false;
// Since this early return is above the TlsGuard, the Record phase must also be.
if (!enabled[sync_validation_queue_submit]) return skip;
layer_data::TlsGuard<QueueSubmitCmdState> cmd_state(&skip, func_name, signaled_semaphores_);
cmd_state->queue = GetQueueSyncStateShared(queue);
if (!cmd_state->queue) return skip; // Invalid Queue
// The submit id is a mutable automic which is not recoverable on a skip == true condition
uint64_t submit_id = cmd_state->queue->ReserveSubmitId();
// verify each submit batch
// Since the last batch from the queue state is const, we need to track the last_batch separately from the
// most recently created batch
std::shared_ptr<const QueueBatchContext> last_batch = cmd_state->queue->LastBatch();
std::shared_ptr<QueueBatchContext> batch;
for (uint32_t batch_idx = 0; batch_idx < submitCount; batch_idx++) {
const VkSubmitInfo2 &submit = pSubmits[batch_idx];
batch = std::make_shared<QueueBatchContext>(*this, *cmd_state->queue, submit_id, batch_idx);
batch->SetupCommandBufferInfo(submit);
batch->SetupAccessContext(last_batch, submit, cmd_state->signaled);
// Skip import and validation of empty batches
if (batch->GetTagRange().size()) {
batch->SetupBatchTags();
skip |= batch->DoQueueSubmitValidate(*this, *cmd_state, submit);
}
// Empty batches could have semaphores, though.
for (uint32_t sem_idx = 0; sem_idx < submit.signalSemaphoreInfoCount; ++sem_idx) {
const VkSemaphoreSubmitInfo &semaphore_info = submit.pSignalSemaphoreInfos[sem_idx];
// Make a copy of the state, signal the copy and pend it...
auto sem_state = Get<SEMAPHORE_STATE>(semaphore_info.semaphore);
if (!sem_state) continue;
cmd_state->signaled.SignalSemaphore(sem_state, batch, semaphore_info);
}
// Unless the previous batch was referenced by a signal, the QueueBatchContext will self destruct, but as
// we ResolvePrevious as we can let any contexts we've fully referenced go.
batch->Cleanup(); // Clear the temporaries that the batch holds.
last_batch = batch;
}
// The most recently created batch will become the queue's "last batch" in the record phase
if (batch) {
cmd_state->last_batch = std::move(batch);
}
// Note that if we skip, guard cleans up for us, but cannot release the reserved tag range
return skip;
}
void SyncValidator::PostCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence,
VkResult result) {
StateTracker::PostCallRecordQueueSubmit(queue, submitCount, pSubmits, fence, result);
RecordQueueSubmit(queue, fence, result);
}
void SyncValidator::RecordQueueSubmit(VkQueue queue, VkFence fence, VkResult result) {
// If this return is above the TlsGuard, then the Validate phase return must also be.
if (!enabled[sync_validation_queue_submit]) return; // Queue submit validation must be affirmatively enabled
// The earliest return (when enabled), must be *after* the TlsGuard, as it is the TlsGuard that cleans up the cmd_state
// static payload
layer_data::TlsGuard<QueueSubmitCmdState> cmd_state;
if (VK_SUCCESS != result) return; // dispatched QueueSubmit failed
if (!cmd_state->queue) return; // Validation couldn't find a valid queue object
// Don't need to look up the queue state again, but we need a non-const version
std::shared_ptr<QueueSyncState> queue_state = std::const_pointer_cast<QueueSyncState>(std::move(cmd_state->queue));
cmd_state->signaled.Resolve(signaled_semaphores_, cmd_state->last_batch);
queue_state->UpdateLastBatch(std::move(cmd_state->last_batch));
ResourceUsageRange fence_tag_range = ReserveGlobalTagRange(1U);
UpdateFenceWaitInfo(fence, queue_state->GetQueueId(), fence_tag_range.begin);
}
bool SyncValidator::PreCallValidateQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence) const {
return ValidateQueueSubmit(queue, submitCount, pSubmits, fence, "vkQueueSubmit2KHR");
}
bool SyncValidator::PreCallValidateQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence) const {
return ValidateQueueSubmit(queue, submitCount, pSubmits, fence, "vkQueueSubmit2");
}
void SyncValidator::PostCallRecordQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence, VkResult result) {
StateTracker::PostCallRecordQueueSubmit2KHR(queue, submitCount, pSubmits, fence, result);
RecordQueueSubmit(queue, fence, result);
}
void SyncValidator::PostCallRecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits, VkFence fence,
VkResult result) {
StateTracker::PostCallRecordQueueSubmit2(queue, submitCount, pSubmits, fence, result);
RecordQueueSubmit(queue, fence, result);
}
void SyncValidator::PostCallRecordGetFenceStatus(VkDevice device, VkFence fence, VkResult result) {
StateTracker::PostCallRecordGetFenceStatus(device, fence, result);
if (!enabled[sync_validation_queue_submit]) return;
if (result == VK_SUCCESS) {
// fence is signalled, mark it as waited for
WaitForFence(fence);
}
}
void SyncValidator::PostCallRecordWaitForFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll,
uint64_t timeout, VkResult result) {
StateTracker::PostCallRecordWaitForFences(device, fenceCount, pFences, waitAll, timeout, result);
if (!enabled[sync_validation_queue_submit]) return;
if ((result == VK_SUCCESS) && ((VK_TRUE == waitAll) || (1 == fenceCount))) {
// We can only know the pFences have signal if we waited for all of them, or there was only one of them
for (uint32_t i = 0; i < fenceCount; i++) {
WaitForFence(pFences[i]);
}
}
}
AttachmentViewGen::AttachmentViewGen(const IMAGE_VIEW_STATE *view, const VkOffset3D &offset, const VkExtent3D &extent)
: view_(view), view_mask_(), gen_store_() {
if (!view_ || !view_->image_state || !SimpleBinding(*view_->image_state)) return;
const IMAGE_STATE &image_state = *view_->image_state.get();
const auto base_address = ResourceBaseAddress(image_state);
const auto *encoder = image_state.fragment_encoder.get();
if (!encoder) return;
// Get offset and extent for the view, accounting for possible depth slicing
const VkOffset3D zero_offset = view->GetOffset();
const VkExtent3D &image_extent = view->GetExtent();
// Intentional copy
VkImageSubresourceRange subres_range = view_->normalized_subresource_range;
view_mask_ = subres_range.aspectMask;
gen_store_[Gen::kViewSubresource].emplace(*encoder, subres_range, zero_offset, image_extent, base_address,
view->IsDepthSliced());
gen_store_[Gen::kRenderArea].emplace(*encoder, subres_range, offset, extent, base_address, view->IsDepthSliced());
const auto depth = view_mask_ & VK_IMAGE_ASPECT_DEPTH_BIT;
if (depth && (depth != view_mask_)) {
subres_range.aspectMask = depth;
gen_store_[Gen::kDepthOnlyRenderArea].emplace(*encoder, subres_range, offset, extent, base_address, view->IsDepthSliced());
}
const auto stencil = view_mask_ & VK_IMAGE_ASPECT_STENCIL_BIT;
if (stencil && (stencil != view_mask_)) {
subres_range.aspectMask = stencil;
gen_store_[Gen::kStencilOnlyRenderArea].emplace(*encoder, subres_range, offset, extent, base_address,
view->IsDepthSliced());
}
}
const std::optional<ImageRangeGen> &AttachmentViewGen::GetRangeGen(AttachmentViewGen::Gen type) const {
static_assert(Gen::kGenSize == 4, "Function written with this assumption");
// If the view is a depth only view, then the depth only portion of the render area is simply the render area.
// If the view is a depth stencil view, then the depth only portion of the render area will be a subset,
// and thus needs the generator function that will produce the address ranges of that subset
const bool depth_only = (type == kDepthOnlyRenderArea) && (view_mask_ == VK_IMAGE_ASPECT_DEPTH_BIT);
const bool stencil_only = (type == kStencilOnlyRenderArea) && (view_mask_ == VK_IMAGE_ASPECT_STENCIL_BIT);
if (depth_only || stencil_only) {
type = Gen::kRenderArea;
}
return gen_store_[type];
}
AttachmentViewGen::Gen AttachmentViewGen::GetDepthStencilRenderAreaGenType(bool depth_op, bool stencil_op) const {
assert(IsValid());
assert(view_mask_ & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
if (depth_op) {
assert(view_mask_ & VK_IMAGE_ASPECT_DEPTH_BIT);
if (stencil_op) {
assert(view_mask_ & VK_IMAGE_ASPECT_STENCIL_BIT);
return kRenderArea;
}
return kDepthOnlyRenderArea;
}
if (stencil_op) {
assert(view_mask_ & VK_IMAGE_ASPECT_STENCIL_BIT);
return kStencilOnlyRenderArea;
}
assert(depth_op || stencil_op);
return kRenderArea;
}
AccessAddressType AttachmentViewGen::GetAddressType() const { return AccessContext::ImageAddressType(*view_->image_state); }
void SyncEventsContext::ApplyBarrier(const SyncExecScope &src, const SyncExecScope &dst, ResourceUsageTag tag) {
const bool all_commands_bit = 0 != (src.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
for (auto &event_pair : map_) {
assert(event_pair.second); // Shouldn't be storing empty
auto &sync_event = *event_pair.second;
// Events don't happen at a stage, so we need to check and store the unexpanded ALL_COMMANDS if set for inter-event-calls
// But only if occuring before the tag
if (((sync_event.barriers & src.exec_scope) || all_commands_bit) && (sync_event.last_command_tag <= tag)) {
sync_event.barriers |= dst.exec_scope;
sync_event.barriers |= dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
}
}
}
void SyncEventsContext::ApplyTaggedWait(VkQueueFlags queue_flags, ResourceUsageTag tag) {
const SyncExecScope src_scope =
SyncExecScope::MakeSrc(queue_flags, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_2_HOST_BIT);
const SyncExecScope dst_scope = SyncExecScope::MakeDst(queue_flags, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT);
ApplyBarrier(src_scope, dst_scope, tag);
}
SyncEventsContext &SyncEventsContext::DeepCopy(const SyncEventsContext &from) {
// We need a deep copy of the const context to update during validation phase
for (const auto &event : from.map_) {
map_.emplace(event.first, std::make_shared<SyncEventState>(*event.second));
}
return *this;
}
void SyncEventsContext::AddReferencedTags(ResourceUsageTagSet &referenced) const {
for (const auto &event : map_) {
const std::shared_ptr<const SyncEventState> &event_state = event.second;
if (event_state) {
event_state->AddReferencedTags(referenced);
}
}
}
QueueBatchContext::QueueBatchContext(const SyncValidator &sync_state, const QueueSyncState &queue_state, uint64_t submit_index,
uint32_t batch_index)
: CommandExecutionContext(&sync_state),
queue_state_(&queue_state),
tag_range_(0, 0),
current_access_context_(&access_context_),
batch_log_(),
queue_sync_tag_(sync_state.GetQueueIdLimit(), ResourceUsageTag(0)),
batch_(queue_state, submit_index, batch_index) {}
QueueBatchContext::QueueBatchContext(const SyncValidator &sync_state)
: CommandExecutionContext(&sync_state),
queue_state_(),
tag_range_(0, 0),
current_access_context_(&access_context_),
batch_log_(),
queue_sync_tag_(sync_state.GetQueueIdLimit(), ResourceUsageTag(0)),
batch_() {}
void QueueBatchContext::Trim() {
// Clean up unneeded access context contents and log information
access_context_.Trim();
ResourceUsageTagSet used_tags;
access_context_.AddReferencedTags(used_tags);
// Note: AccessContexts in the SyncEventsState are trimmed when created.
events_context_.AddReferencedTags(used_tags);
// Only conserve AccessLog references that are referenced by used_tags
batch_log_.Trim(used_tags);
}
void QueueBatchContext::ResolveSubmittedCommandBuffer(const AccessContext &recorded_context, ResourceUsageTag offset) {
GetCurrentAccessContext()->ResolveFromContext(QueueTagOffsetBarrierAction(GetQueueId(), offset), recorded_context);
}
VulkanTypedHandle QueueBatchContext::Handle() const { return queue_state_->Handle(); }
template <typename Predicate>
void QueueBatchContext::ApplyPredicatedWait(Predicate &predicate) {
access_context_.EraseIf([&predicate](ResourceAccessRangeMap::value_type &access) {
// Apply..Wait returns true if the waited access is empty...
return access.second.ApplyPredicatedWait<Predicate>(predicate);
});
}
void QueueBatchContext::ApplyTaggedWait(QueueId queue_id, ResourceUsageTag tag) {
const bool any_queue = (queue_id == QueueSyncState::kQueueAny);
if (any_queue) {
// This isn't just avoid an unneeded test, but to allow *all* queues to to be waited in a single pass
// (and it does avoid doing the same test for every access, as well as avoiding the need for the predicate
// to grok Queue/Device/Wait differences.
ResourceAccessState::WaitTagPredicate predicate{tag};
ApplyPredicatedWait(predicate);
} else {
ResourceAccessState::WaitQueueTagPredicate predicate{queue_id, tag};
ApplyPredicatedWait(predicate);
}
if (queue_id == GetQueueId() || any_queue) {
events_context_.ApplyTaggedWait(GetQueueFlags(), tag);
}
}
void QueueBatchContext::ApplyAcquireWait(const AcquiredImage &acquired) {
ResourceAccessState::WaitAcquirePredicate predicate{acquired.present_tag, acquired.acquire_tag};
ApplyPredicatedWait(predicate);
}
HazardResult QueueBatchContext::DetectFirstUseHazard(const ResourceUsageRange &tag_range) {
// Queue batch handling requires dealing with renderpass state and picking the correct access context
if (rp_replay_) {
return rp_replay_.replay_context->DetectFirstUseHazard(GetQueueId(), tag_range, *current_access_context_);
}
return current_replay_->GetCurrentAccessContext()->DetectFirstUseHazard(GetQueueId(), tag_range, access_context_);
}
void QueueBatchContext::BeginRenderPassReplay(const SyncOpBeginRenderPass &begin_op, const ResourceUsageTag tag) {
current_access_context_ = rp_replay_.Begin(GetQueueFlags(), begin_op, access_context_);
current_access_context_->ResolvePreviousAccesses();
}
void QueueBatchContext::NextSubpassReplay() {
current_access_context_ = rp_replay_.Next();
current_access_context_->ResolvePreviousAccesses();
}
void QueueBatchContext::EndRenderPassReplay() {
rp_replay_.End(access_context_);
current_access_context_ = &access_context_;
}
void QueueBatchContext::Cleanup() {
// Clear these after validation and import, not valid after.
batch_ = BatchAccessLog::BatchRecord();
command_buffers_.clear();
async_batches_.clear();
rp_replay_.Reset();
}
AccessContext *QueueBatchContext::RenderPassReplayState::Begin(VkQueueFlags queue_flags, const SyncOpBeginRenderPass &begin_op_,
const AccessContext &external_context) {
Reset();
begin_op = &begin_op_;
subpass = 0;
const RenderPassAccessContext *rp_context = begin_op->GetRenderPassAccessContext();
assert(rp_context);
replay_context = &rp_context->GetContexts()[0];
InitSubpassContexts(queue_flags, *rp_context->GetRenderPassState(), &external_context, subpass_contexts);
return &subpass_contexts[0];
}
AccessContext *QueueBatchContext::RenderPassReplayState::Next() {
subpass++;
const RenderPassAccessContext *rp_context = begin_op->GetRenderPassAccessContext();
replay_context = &rp_context->GetContexts()[subpass];
return &subpass_contexts[subpass];
}
void QueueBatchContext::RenderPassReplayState::End(AccessContext &external_context) {
external_context.ResolveChildContexts(subpass_contexts);
Reset();
}
class ApplySemaphoreBarrierAction {
public:
ApplySemaphoreBarrierAction(const SemaphoreScope &signal, const SemaphoreScope &wait) : signal_(signal), wait_(wait) {}
void operator()(ResourceAccessState *access) const { access->ApplySemaphore(signal_, wait_); }
private:
const SemaphoreScope &signal_;
const SemaphoreScope wait_;
};
class ApplyAcquireNextSemaphoreAction {
public:
static const SyncStageAccessFlags kPresentValidAccesses;
static const SyncExecScope kPresentSrcScope;
ApplyAcquireNextSemaphoreAction(const SyncExecScope &wait_scope, ResourceUsageTag acquire_tag)
: barrier_(1, SyncBarrier(kPresentSrcScope, kPresentValidAccesses, wait_scope, SyncStageAccessFlags())),
acq_tag_(acquire_tag) {}
void operator()(ResourceAccessState *access) const {
// Note that the present operations may or may not be present, given that the fence wait may have cleared them out.
// Also, if a subsequent present has happened, we *don't* want to protect that...
if (access->LastWriteTag() <= acq_tag_) {
access->ApplyBarriersImmediate(barrier_);
}
}
private:
std::vector<SyncBarrier> barrier_;
ResourceUsageTag acq_tag_;
};
const SyncStageAccessFlags ApplyAcquireNextSemaphoreAction::kPresentValidAccesses =
SyncStageAccessFlags(SyncStageAccess::AccessScopeByStage(VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL));
const SyncExecScope ApplyAcquireNextSemaphoreAction::kPresentSrcScope =
SyncExecScope(VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL, // mask_param (unused)
VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL, // expanded_mask
VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL, // exec_scope
ApplyAcquireNextSemaphoreAction::kPresentValidAccesses); // valid_accesses
// Overload for QueuePresent semaphore waiting. Not applicable to QueueSubmit semaphores
std::shared_ptr<QueueBatchContext> QueueBatchContext::ResolveOneWaitSemaphore(VkSemaphore sem,
const PresentedImages &presented_images,
SignaledSemaphores &signaled) {
auto sem_state = sync_state_->Get<SEMAPHORE_STATE>(sem);
if (!sem_state) return nullptr; // Semaphore validity is handled by CoreChecks
// When signal_state goes out of scope, the signal information will be dropped, as Unsignal has released ownership.
auto signal_state = signaled.Unsignal(sem);
if (!signal_state) return nullptr; // Invalid signal, skip it.
assert(signal_state->batch);
const AccessContext &from_context = signal_state->batch->access_context_;
const SemaphoreScope &signal_scope = signal_state->first_scope;
const QueueId queue_id = GetQueueId();
const auto queue_flags = queue_state_->GetQueueFlags();
SemaphoreScope wait_scope{queue_id, SyncExecScope::MakeDst(queue_flags, VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL)};
// If signal queue == wait queue, signal is treated as a memory barrier with an access scope equal to the present accesses
SyncBarrier sem_barrier(signal_scope, wait_scope, SyncBarrier::AllAccess());
const BatchBarrierOp sem_same_queue_op(wait_scope.queue, sem_barrier);
// Need to import the rest of the same queue contents without modification
SyncBarrier noop_barrier;
const BatchBarrierOp noop_barrier_op(wait_scope.queue, noop_barrier);
// Otherwise apply semaphore rules apply
const ApplySemaphoreBarrierAction sem_not_same_queue_op(signal_scope, wait_scope);
const SemaphoreScope noop_semaphore_scope(queue_id, noop_barrier.dst_exec_scope);
const ApplySemaphoreBarrierAction noop_sem_op(signal_scope, noop_semaphore_scope);
// For each presented image
for (const auto &presented : presented_images) {
// Need a copy that can be used as the pseudo-iterator...
subresource_adapter::ImageRangeGenerator range_gen(presented.range_gen);
if (signal_scope.queue == wait_scope.queue) {
// If signal queue == wait queue, signal is treated as a memory barrier with an access scope equal to the
// valid accesses for the sync scope.
access_context_.ResolveFromContext(sem_same_queue_op, from_context, presented.address_type, range_gen);
access_context_.ResolveFromContext(noop_barrier_op, from_context);
} else {
access_context_.ResolveFromContext(sem_not_same_queue_op, from_context, presented.address_type, range_gen);
access_context_.ResolveFromContext(noop_sem_op, from_context);
}
}
return signal_state->batch;
}
std::shared_ptr<QueueBatchContext> QueueBatchContext::ResolveOneWaitSemaphore(VkSemaphore sem, VkPipelineStageFlags2 wait_mask,
SignaledSemaphores &signaled) {
auto sem_state = sync_state_->Get<SEMAPHORE_STATE>(sem);
if (!sem_state) return nullptr; // Semaphore validity is handled by CoreChecks
// When signal state goes out of scope, the signal information will be dropped, as Unsignal has released ownership.
auto signal_state = signaled.Unsignal(sem);
if (!signal_state) return nullptr; // Invalid signal, skip it.
assert(signal_state->batch);
const SemaphoreScope &signal_scope = signal_state->first_scope;
const auto queue_flags = queue_state_->GetQueueFlags();
SemaphoreScope wait_scope{GetQueueId(), SyncExecScope::MakeDst(queue_flags, wait_mask)};
const AccessContext &from_context = signal_state->batch->access_context_;
if (signal_state->acquired.image) {
// Import the *presenting* batch, but replacing presenting with acquired.
ApplyAcquireNextSemaphoreAction apply_acq(wait_scope, signal_state->acquired.acquire_tag);
access_context_.ResolveFromContext(apply_acq, from_context, signal_state->acquired.address_type,
signal_state->acquired.generator);
// Grab the reset of the presenting QBC, with no effective barrier, won't overwrite the acquire, as the tag is newer
SyncBarrier noop_barrier;
const BatchBarrierOp noop_barrier_op(wait_scope.queue, noop_barrier);
access_context_.ResolveFromContext(noop_barrier_op, from_context);
} else {
if (signal_scope.queue == wait_scope.queue) {
// If signal queue == wait queue, signal is treated as a memory barrier with an access scope equal to the
// valid accesses for the sync scope.
SyncBarrier sem_barrier(signal_scope, wait_scope, SyncBarrier::AllAccess());
const BatchBarrierOp sem_barrier_op(wait_scope.queue, sem_barrier);
access_context_.ResolveFromContext(sem_barrier_op, from_context);
events_context_.ApplyBarrier(sem_barrier.src_exec_scope, sem_barrier.dst_exec_scope, ResourceUsageRecord::kMaxIndex);
} else {
ApplySemaphoreBarrierAction sem_op(signal_scope, wait_scope);
access_context_.ResolveFromContext(sem_op, signal_state->batch->access_context_);
}
}
// Cannot move from the signal state because it could be from the const global state, and C++ doesn't
// enforce deep constness.
return signal_state->batch;
}
void QueueBatchContext::ImportSyncTags(const QueueBatchContext &from) {
// NOTE: Assumes that from has set it's tag limit in it's own queue_id slot.
size_t q_limit = queue_sync_tag_.size();
assert(q_limit == from.queue_sync_tag_.size());
for (size_t q = 0; q < q_limit; q++) {
queue_sync_tag_[q] = std::max(queue_sync_tag_[q], from.queue_sync_tag_[q]);
}
}
void QueueBatchContext::SetupAccessContext(const std::shared_ptr<const QueueBatchContext> &prev,
const VkPresentInfoKHR &present_info, const PresentedImages &presented_images,
SignaledSemaphores &signaled) {
ConstBatchSet batches_resolved;
for (VkSemaphore sem : layer_data::make_span(present_info.pWaitSemaphores, present_info.waitSemaphoreCount)) {
std::shared_ptr<QueueBatchContext> resolved = ResolveOneWaitSemaphore(sem, presented_images, signaled);
if (resolved) {
batches_resolved.emplace(std::move(resolved));
}
}
CommonSetupAccessContext(prev, batches_resolved);
}
bool QueueBatchContext::DoQueuePresentValidate(const char *func_name, const PresentedImages &presented_images) {
bool skip = false;
HazardDetector detector(SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_PRESENTED_SYNCVAL);
// Tag the presented images so record doesn't have to know the tagging scheme
for (size_t index = 0; index < presented_images.size(); ++index) {
const PresentedImage &presented = presented_images[index];
// Need a copy that can be used as the pseudo-iterator...
HazardResult hazard = access_context_.DetectHazard(presented.address_type, detector, presented.range_gen,
AccessContext::DetectOptions::kDetectAll);
if (hazard.hazard) {
const auto queue_handle = queue_state_->Handle();
const auto swap_handle = presented.swapchain_state->Handle();
const auto image_handle = presented.image->Handle();
const auto *report_data = sync_state_->report_data;
skip = sync_state_->LogError(queue_handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for present pSwapchains[%" PRIu32 "] , swapchain %s, image index %" PRIu32
" %s, Access info %s.",
func_name, string_SyncHazard(hazard.hazard), presented.present_index,
report_data->FormatHandle(swap_handle).c_str(), presented.image_index,
report_data->FormatHandle(image_handle).c_str(), FormatHazard(hazard).c_str());
if (skip) break;
}
}
return skip;
}
void QueueBatchContext::DoPresentOperations(const PresentedImages &presented_images) {
// For present, tagging is internal to the presented image record.
for (const auto &presented : presented_images) {
// Update memory state
presented.UpdateMemoryAccess(SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_PRESENTED_SYNCVAL, presented.tag, access_context_);
}
}
void QueueBatchContext::LogPresentOperations(const PresentedImages &presented_images) {
if (tag_range_.size()) {
auto access_log = std::make_shared<AccessLog>();
batch_log_.Insert(batch_, tag_range_, access_log);
access_log->reserve(tag_range_.size());
assert(tag_range_.size() == presented_images.size());
for (const auto &presented : presented_images) {
access_log->emplace_back(PresentResourceRecord(static_cast<const PresentedImageRecord>(presented)));
}
}
}
void QueueBatchContext::DoAcquireOperation(const PresentedImage &presented) {
// Only one tag for acquire. The tag in presented is the present tag
presented.UpdateMemoryAccess(SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_ACQUIRE_READ_SYNCVAL, tag_range_.begin, access_context_);
}
void QueueBatchContext::LogAcquireOperation(const PresentedImage &presented, const char *func_name) {
auto access_log = std::make_shared<AccessLog>();
batch_log_.Insert(batch_, tag_range_, access_log);
access_log->emplace_back(AcquireResourceRecord(presented, tag_range_.begin, func_name));
}
void QueueBatchContext::SetupAccessContext(const std::shared_ptr<const QueueBatchContext> &prev, const VkSubmitInfo2 &submit_info,
SignaledSemaphores &signaled) {
// Import (resolve) the batches that are waited on, with the semaphore's effective barriers applied
ConstBatchSet batches_resolved;
const uint32_t wait_count = submit_info.waitSemaphoreInfoCount;
const VkSemaphoreSubmitInfo *wait_infos = submit_info.pWaitSemaphoreInfos;
for (const auto &wait_info : layer_data::make_span(wait_infos, wait_count)) {
std::shared_ptr<QueueBatchContext> resolved = ResolveOneWaitSemaphore(wait_info.semaphore, wait_info.stageMask, signaled);
if (resolved) {
batches_resolved.emplace(std::move(resolved));
}
}
CommonSetupAccessContext(prev, batches_resolved);
}
void QueueBatchContext::SetupAccessContext(const PresentedImage &presented) {
if (presented.batch) {
access_context_.ResolveFromContext(NoopBarrierAction(), presented.batch->access_context_);
batch_log_.Import(presented.batch->batch_log_);
ImportSyncTags(*presented.batch);
}
}
void QueueBatchContext::CommonSetupAccessContext(const std::shared_ptr<const QueueBatchContext> &prev,
QueueBatchContext::ConstBatchSet &batches_resolved) {
// Import the previous batch information
if (prev) {
// Copy in the event state from the previous batch (on this queue)
events_context_.DeepCopy(prev->events_context_);
if (!layer_data::Contains(batches_resolved, prev)) {
// If there are no semaphores to the previous batch, make sure a "submit order" non-barriered import is done
access_context_.ResolveFromContext(NoopBarrierAction(), prev->access_context_);
batches_resolved.emplace(prev);
}
}
// Get all the log and tag sync information for the resolved contexts
for (const auto &batch : batches_resolved) {
batch_log_.Import(batch->batch_log_);
ImportSyncTags(*batch);
}
// Gather async context information for hazard checks and conserve the QBC's for the async batches
async_batches_ =
sync_state_->GetQueueLastBatchSnapshot([&batches_resolved](const std::shared_ptr<const QueueBatchContext> &batch) {
return !layer_data::Contains(batches_resolved, batch);
});
for (const auto &async_batch : async_batches_) {
const QueueId async_queue = async_batch->GetQueueId();
ResourceUsageTag sync_tag;
if (async_queue < queue_sync_tag_.size()) {
sync_tag = queue_sync_tag_[async_queue];
} else {
// If this isn't from a tracked queue, just check the batch itself
sync_tag = async_batch->GetTagRange().begin;
}
// The start of the asynchronous access range for a given queue is one more than the highest tagged reference
access_context_.AddAsyncContext(async_batch->GetCurrentAccessContext(), sync_tag);
// We need to snapshot the async log information for async hazard reporting
batch_log_.Import(async_batch->batch_log_);
}
}
void QueueBatchContext::SetupCommandBufferInfo(const VkSubmitInfo2 &submit_info) {
// Create the list of command buffers to submit
const uint32_t cb_count = submit_info.commandBufferInfoCount;
const VkCommandBufferSubmitInfo *const cb_infos = submit_info.pCommandBufferInfos;
command_buffers_.reserve(cb_count);
for (const auto &cb_info : layer_data::make_span(cb_infos, cb_count)) {
auto cb_state = sync_state_->Get<syncval_state::CommandBuffer>(cb_info.commandBuffer);
if (cb_state) {
tag_range_.end += cb_state->access_context.GetTagLimit();
command_buffers_.emplace_back(static_cast<uint32_t>(&cb_info - cb_infos), std::move(cb_state));
}
}
}
// Look up the usage informaiton from the local or global logger
std::string QueueBatchContext::FormatUsage(ResourceUsageTag tag) const {
std::stringstream out;
BatchAccessLog::AccessRecord access = batch_log_[tag];
if (access.IsValid()) {
const BatchAccessLog::BatchRecord &batch = *access.batch;
const ResourceUsageRecord &record = *access.record;
if (batch.queue) {
// Queue and Batch information (for enqueued operations)
out << SyncNodeFormatter(*sync_state_, batch.queue->GetQueueState());
out << ", submit: " << batch.submit_index << ", batch: " << batch.batch_index;
}
out << ", batch_tag: " << batch.bias;
// Commandbuffer Usages Information
out << ", " << record.Formatter(*sync_state_, nullptr);
}
return out.str();
}
VkQueueFlags QueueBatchContext::GetQueueFlags() const { return queue_state_->GetQueueFlags(); }
QueueId QueueBatchContext::GetQueueId() const {
QueueId id = queue_state_ ? queue_state_->GetQueueId() : QueueSyncState::kQueueIdInvalid;
return id;
}
// For QueuePresent, the tag range is defined externally and must be passed in
void QueueBatchContext::SetupBatchTags(const ResourceUsageRange &tag_range) {
tag_range_ = tag_range;
SetupBatchTags();
}
// For QueueSubmit, the tag range is defined by the CommandBuffer setup.
// For QueuePresent, this is called when the tag_range is specified
void QueueBatchContext::SetupBatchTags() {
// Need new global tags for all accesses... the Reserve updates a mutable atomic
ResourceUsageRange global_tags = sync_state_->ReserveGlobalTagRange(GetTagRange().size());
SetTagBias(global_tags.begin);
}
void QueueBatchContext::InsertRecordedAccessLogEntries(const CommandBufferAccessContext &submitted_cb) {
const ResourceUsageTag end_tag = batch_log_.Import(batch_, submitted_cb);
batch_.bias = end_tag;
batch_.cb_index++;
}
void QueueBatchContext::SetTagBias(ResourceUsageTag bias) {
const auto size = tag_range_.size();
tag_range_.begin = bias;
tag_range_.end = bias + size;
access_context_.SetStartTag(bias);
batch_.bias = bias;
// Needed for ImportSyncTags to pick up the "from" own sync tag.
const QueueId this_q = GetQueueId();
if (this_q < queue_sync_tag_.size()) {
// If this is a non-queued operation we'll get a "special" value like invalid
queue_sync_tag_[this_q] = tag_range_.end;
}
}
// Since we're updating the QueueSync state, this is Record phase and the access log needs to point to the global one
// Batch Contexts saved during signalling have their AccessLog reset when the pending signals are signalled.
// NOTE: By design, QueueBatchContexts that are neither last, nor referenced by a signal are abandoned as unowned, since
// the contexts Resolve all history from previous all contexts when created
void QueueSyncState::UpdateLastBatch(std::shared_ptr<QueueBatchContext> &&new_last) {
// Update the queue to point to the last batch from the submit
if (new_last) {
// Clean up the events data in the previous last batch on queue, as only the subsequent batches have valid use for them
// and the QueueBatchContext::Setup calls have be copying them along from batch to batch during submit.
if (last_batch_) {
last_batch_->ResetEventsContext();
}
new_last->Trim();
last_batch_ = std::move(new_last);
}
}
// Note that function is const, but updates mutable submit_index to allow Validate to create correct tagging for command invocation
// scope state.
// Given that queue submits are supposed to be externally synchronized for the same queue, this should safe without being
// atomic... but as the ops are per submit, the performance cost is negible for the peace of mind.
uint64_t QueueSyncState::ReserveSubmitId() const { return submit_index_.fetch_add(1); }
// This is a const method, force the returned value to be const
std::shared_ptr<const SignaledSemaphores::Signal> SignaledSemaphores::GetPrev(VkSemaphore sem) const {
std::shared_ptr<Signal> prev_state;
if (prev_) {
prev_state = GetMapped(prev_->signaled_, sem, [&prev_state]() { return prev_state; });
}
return prev_state;
}
SignaledSemaphores::Signal::Signal(const std::shared_ptr<const SEMAPHORE_STATE> &sem_state_,
const std::shared_ptr<QueueBatchContext> &batch_, const SyncExecScope &exec_scope_)
: sem_state(sem_state_), batch(batch_), first_scope({batch->GetQueueId(), exec_scope_}) {
// Illegal to create a signal from no batch or an invalid semaphore... caller must assure validity
assert(batch);
assert(sem_state);
}
SignaledSemaphores::Signal::Signal(const std::shared_ptr<const SEMAPHORE_STATE> &sem_state_, const PresentedImage &presented,
ResourceUsageTag acq_tag)
: sem_state(sem_state_), batch(presented.batch), first_scope(), acquired(presented, acq_tag) {
// Illegal to create a signal from no batch or an invalid semaphore... caller must assure validity
assert(batch);
assert(sem_state);
}
FenceSyncState::FenceSyncState() : fence(), tag(kInvalidTag), queue_id(QueueSyncState::kQueueIdInvalid) {}
VkSemaphoreSubmitInfo SubmitInfoConverter::BatchStore::WaitSemaphore(const VkSubmitInfo &info, uint32_t index) {
auto semaphore_info = LvlInitStruct<VkSemaphoreSubmitInfo>();
semaphore_info.semaphore = info.pWaitSemaphores[index];
semaphore_info.stageMask = info.pWaitDstStageMask[index];
return semaphore_info;
}
VkCommandBufferSubmitInfo SubmitInfoConverter::BatchStore::CommandBuffer(const VkSubmitInfo &info, uint32_t index) {
auto cb_info = LvlInitStruct<VkCommandBufferSubmitInfo>();
cb_info.commandBuffer = info.pCommandBuffers[index];
return cb_info;
}
VkSemaphoreSubmitInfo SubmitInfoConverter::BatchStore::SignalSemaphore(const VkSubmitInfo &info, uint32_t index,
VkQueueFlags queue_flags) {
auto semaphore_info = LvlInitStruct<VkSemaphoreSubmitInfo>();
semaphore_info.semaphore = info.pSignalSemaphores[index];
// Can't just use BOTTOM, because of how access expansion is done
semaphore_info.stageMask =
sync_utils::ExpandPipelineStages(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, queue_flags, VK_PIPELINE_STAGE_2_HOST_BIT);
return semaphore_info;
}
SubmitInfoConverter::BatchStore::BatchStore(const VkSubmitInfo &info, VkQueueFlags queue_flags) {
info2 = LvlInitStruct<VkSubmitInfo2>();
info2.waitSemaphoreInfoCount = info.waitSemaphoreCount;
waits.reserve(info2.waitSemaphoreInfoCount);
for (uint32_t i = 0; i < info2.waitSemaphoreInfoCount; ++i) {
waits.emplace_back(WaitSemaphore(info, i));
}
info2.pWaitSemaphoreInfos = waits.data();
info2.commandBufferInfoCount = info.commandBufferCount;
cbs.reserve(info2.commandBufferInfoCount);
for (uint32_t i = 0; i < info2.commandBufferInfoCount; ++i) {
cbs.emplace_back(CommandBuffer(info, i));
}
info2.pCommandBufferInfos = cbs.data();
info2.signalSemaphoreInfoCount = info.signalSemaphoreCount;
signals.reserve(info2.signalSemaphoreInfoCount);
for (uint32_t i = 0; i < info2.signalSemaphoreInfoCount; ++i) {
signals.emplace_back(SignalSemaphore(info, i, queue_flags));
}
info2.pSignalSemaphoreInfos = signals.data();
}
SubmitInfoConverter::SubmitInfoConverter(uint32_t count, const VkSubmitInfo *infos, VkQueueFlags queue_flags) {
info_store.reserve(count);
info2s.reserve(count);
for (uint32_t batch = 0; batch < count; ++batch) {
info_store.emplace_back(infos[batch], queue_flags);
info2s.emplace_back(info_store.back().info2);
}
}
ResourceUsageTag BatchAccessLog::Import(const BatchRecord &batch, const CommandBufferAccessContext &cb_access) {
ResourceUsageTag bias = batch.bias;
ResourceUsageTag tag_limit = bias + cb_access.GetTagLimit();
ResourceUsageRange import_range = {bias, tag_limit};
log_map_.insert(std::make_pair(import_range, CBSubmitLog(batch, cb_access)));
return tag_limit;
}
void BatchAccessLog::Import(const BatchAccessLog &other) {
for (const auto &entry : other.log_map_) {
log_map_.insert(entry);
}
}
void BatchAccessLog::Insert(const BatchRecord &batch, const ResourceUsageRange &range,
std::shared_ptr<const CommandExecutionContext::AccessLog> log) {
log_map_.insert(std::make_pair(range, CBSubmitLog(batch, nullptr, std::move(log))));
}
// Trim: Remove any unreferenced AccessLog ranges from a BatchAccessLog
//
// In order to contain memory growth in the AccessLog information regarding prior submitted command buffers,
// the Trim call removes any AccessLog references that do not correspond to any tags in use. The set of referenced tag, used_tags,
// is generated by scanning the AccessContext and EventContext of the containing QueueBatchContext.
//
// Upon return the BatchAccessLog should only contain references to the AccessLog information needed by the
// containing parent QueueBatchContext.
//
// The algorithm used is another example of the "parallel iteration" pattern common within SyncVal. In this case we are
// traversing the ordered range_map containing the AccessLog references and the ordered set of tags in use.
//
// To efficiently perform the parallel iteration, optimizations within this function include:
// * when ranges are detected that have no tags referenced, all ranges between the last tag and the current tag are erased
// * when used tags prior to the current range are found, all tags up to the current range are skipped
// * when a tag is found within the current range, that range is skipped (and thus kept in the map), and further used tags
// within the range are skipped.
//
// Note that for each subcase, any "next steps" logic is designed to be handled within the subsequent iteration -- meaning that
// each subcase simply handles the specifics of the current update/skip/erase action needed, and leaves the iterators in a sensible
// state for the top of loop... intentionally eliding special case handling.
void BatchAccessLog::Trim(const ResourceUsageTagSet &used_tags) {
auto current_tag = used_tags.cbegin();
const auto end_tag = used_tags.cend();
auto current_map_range = log_map_.begin();
const auto end_map = log_map_.end();
while (current_map_range != end_map) {
if (current_tag == end_tag) {
// We're out of tags, the rest of the map isn't referenced, so erase it
current_map_range = log_map_.erase(current_map_range, end_map);
} else {
auto &range = current_map_range->first;
const ResourceUsageTag tag = *current_tag;
if (tag < range.begin) {
// Skip to the next tag potentially in range
// if this is end_tag, we'll handle that next iteration
current_tag = used_tags.lower_bound(range.begin);
} else if (tag >= range.end) {
// This tag is beyond the current range, delete all ranges between current_map_range,
// and the next that includes the tag. Next is not erased.
auto next_used = log_map_.lower_bound(ResourceUsageRange(tag, tag + 1));
current_map_range = log_map_.erase(current_map_range, next_used);
} else {
// Skip the rest of the tags in this range
// If this is end, the next iteration will handle
current_tag = used_tags.lower_bound(range.end);
// This is a range we will keep, advance to the next. Next iteration handles end condition
++current_map_range;
}
}
}
}
BatchAccessLog::AccessRecord BatchAccessLog::operator[](ResourceUsageTag tag) const {
auto found_log = log_map_.find(tag);
if (found_log != log_map_.cend()) {
return found_log->second[tag];
}
assert("tag not found" == nullptr);
return AccessRecord();
}
BatchAccessLog::AccessRecord BatchAccessLog::CBSubmitLog::operator[](ResourceUsageTag tag) const {
assert(tag >= batch_.bias);
const size_t index = tag - batch_.bias;
assert(log_);
assert(index < log_->size());
return AccessRecord{&batch_, &(*log_)[index]};
}
PresentedImage::PresentedImage(const SyncValidator &sync_state, const std::shared_ptr<QueueBatchContext> batch_,
VkSwapchainKHR swapchain, uint32_t image_index_, uint32_t present_index_, ResourceUsageTag tag_)
: PresentedImageRecord{tag_, image_index_, present_index_, sync_state.Get<syncval_state::Swapchain>(swapchain)},
batch(std::move(batch_)) {
SetImage(image_index_);
}
PresentedImage::PresentedImage(std::shared_ptr<const syncval_state::Swapchain> swapchain, uint32_t at_index) : PresentedImage() {
swapchain_state = std::move(swapchain);
tag = kInvalidTag;
SetImage(at_index);
}
// Export uses move semantics...
void PresentedImage::ExportToSwapchain(SyncValidator &) { // Include this argument to prove the const cast is safe
// If the swapchain is dead just ignore the present
if (BASE_NODE::Invalid(swapchain_state)) return;
auto swap = std::const_pointer_cast<syncval_state::Swapchain>(swapchain_state);
swap->RecordPresentedImage(std::move(*this));
}
void PresentedImage::SetImage(uint32_t at_index) {
image_index = at_index;
if (BASE_NODE::Invalid(swapchain_state)) return;
image = swapchain_state->GetSwapChainImageShared(image_index);
if (Invalid()) return;
// For valid images create the type/range_gen to used to scope the semaphore operations
address_type = AccessContext::ImageAddressType(*image);
range_gen = subresource_adapter::ImageRangeGenerator(*image->fragment_encoder.get(), image->full_range,
ResourceBaseAddress(*image), false);
}
void PresentedImage::UpdateMemoryAccess(SyncStageAccessIndex usage, ResourceUsageTag tag, AccessContext &access_context) const {
// Intentional copy. The range_gen argument is not copied by the Update... call below
subresource_adapter::ImageRangeGenerator generator = range_gen;
UpdateMemoryAccessStateFunctor action(address_type, access_context, usage, SyncOrdering::kNonAttachment, tag);
UpdateMemoryAccessState(&access_context.GetAccessStateMap(address_type), action, &generator);
}
QueueBatchContext::PresentResourceRecord::Base_::Record QueueBatchContext::PresentResourceRecord::MakeRecord() const {
return std::make_unique<PresentResourceRecord>(presented_);
}
std::ostream &QueueBatchContext::PresentResourceRecord::Format(std::ostream &out, const SyncValidator &sync_state) const {
out << "vkQueuePresentKHR ";
out << "present_tag:" << presented_.tag;
out << ", pSwapchains[" << presented_.present_index << "]";
out << ": " << SyncNodeFormatter(sync_state, presented_.swapchain_state.get());
out << ", image_index: " << presented_.image_index;
out << SyncNodeFormatter(sync_state, presented_.image.get());
return out;
}
QueueBatchContext::AcquireResourceRecord::Base_::Record QueueBatchContext::AcquireResourceRecord::MakeRecord() const {
return std::make_unique<AcquireResourceRecord>(presented_, acquire_tag_, func_name_.c_str());
}
std::ostream &QueueBatchContext::AcquireResourceRecord::Format(std::ostream &out, const SyncValidator &sync_state) const {
out << func_name_ << " ";
out << "aquire_tag:" << acquire_tag_;
out << ": " << SyncNodeFormatter(sync_state, presented_.swapchain_state.get());
out << ", image_index: " << presented_.image_index;
out << SyncNodeFormatter(sync_state, presented_.image.get());
return out;
}
syncval_state::Swapchain::Swapchain(ValidationStateTracker *dev_data, const VkSwapchainCreateInfoKHR *pCreateInfo,
VkSwapchainKHR swapchain)
: SWAPCHAIN_NODE(dev_data, pCreateInfo, swapchain) {}
void syncval_state::Swapchain::RecordPresentedImage(PresentedImage &&presented_image) {
// All presented images are stored within the swapchain until the are reaquired.
const uint32_t image_index = presented_image.image_index;
if (image_index >= presented.size()) presented.resize(image_index + 1);
// Use move semantics to avoid atomic operations on the contained shared_ptrs
presented[image_index] = std::move(presented_image);
}
// We move from the presented images array 1) so we don't copy shared_ptr, and 2) to mark it acquired
PresentedImage syncval_state::Swapchain::MovePresentedImage(uint32_t image_index) {
if (presented.size() <= image_index) presented.resize(image_index + 1);
PresentedImage ret_val = std::move(presented[image_index]);
if (ret_val.Invalid()) {
// If this is the first time the image has been acquired, then it's valid to have no present record, so we create one
// Note: It's also possible this is an invalid acquire... but that's CoreChecks/Parameter validation's job to report
ret_val = PresentedImage(static_cast<const syncval_state::Swapchain *>(this)->shared_from_this(), image_index);
}
return ret_val;
}
AcquiredImage::AcquiredImage(const PresentedImage &presented, ResourceUsageTag acq_tag)
: image(presented.image),
address_type(presented.address_type),
generator(presented.range_gen),
present_tag(presented.tag),
acquire_tag(acq_tag) {}
FenceSyncState::FenceSyncState(const std::shared_ptr<const FENCE_STATE> &fence_, QueueId queue_id_, ResourceUsageTag tag_)
: fence(fence_), tag(tag_), queue_id(queue_id_) {}
FenceSyncState::FenceSyncState(const std::shared_ptr<const FENCE_STATE> &fence_, const PresentedImage &image, ResourceUsageTag tag_)
: fence(fence_), tag(tag_), queue_id(QueueSyncState::kQueueIdInvalid), acquired(image, tag) {}
|