1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
|
/* Copyright (c) 2019-2025 The Khronos Group Inc.
* Copyright (c) 2019-2025 Valve Corporation
* Copyright (c) 2019-2025 LunarG, Inc.
* Copyright (C) 2019-2025 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#include <cassert>
#include <vulkan/utility/vk_format_utils.h>
#include "subresource_adapter.h"
#include <cmath>
#include "state_tracker/image_state.h"
#include "generated/dispatch_functions.h"
namespace subresource_adapter {
Subresource::Subresource(const RangeEncoder& encoder, const VkImageSubresource& subres)
: VkImageSubresource({0, subres.mipLevel, subres.arrayLayer}), aspect_index() {
aspect_index = encoder.LowerBoundFromMask(subres.aspectMask);
aspectMask = encoder.AspectBit(aspect_index);
}
IndexType RangeEncoder::Encode1AspectArrayOnly(const Subresource& pos) const { return pos.arrayLayer; }
IndexType RangeEncoder::Encode1AspectMipArray(const Subresource& pos) const { return pos.arrayLayer + pos.mipLevel * mip_size_; }
IndexType RangeEncoder::Encode1AspectMipOnly(const Subresource& pos) const { return pos.mipLevel; }
IndexType RangeEncoder::EncodeAspectArrayOnly(const Subresource& pos) const {
return pos.arrayLayer + aspect_base_[pos.aspect_index];
}
IndexType RangeEncoder::EncodeAspectMipArray(const Subresource& pos) const {
return pos.arrayLayer + pos.mipLevel * mip_size_ + aspect_base_[pos.aspect_index];
}
IndexType RangeEncoder::EncodeAspectMipOnly(const Subresource& pos) const { return pos.mipLevel + aspect_base_[pos.aspect_index]; }
uint32_t RangeEncoder::LowerBoundImpl1(VkImageAspectFlags aspect_mask) const {
assert(aspect_mask & aspect_bits_[0]);
return 0;
}
uint32_t RangeEncoder::LowerBoundWithStartImpl1(VkImageAspectFlags aspect_mask, uint32_t start) const {
assert(start == 0);
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
return limits_.aspect_index;
}
uint32_t RangeEncoder::LowerBoundImpl2(VkImageAspectFlags aspect_mask) const {
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
assert(aspect_mask & aspect_bits_[1]);
return 1;
}
uint32_t RangeEncoder::LowerBoundWithStartImpl2(VkImageAspectFlags aspect_mask, uint32_t start) const {
switch (start) {
case 0:
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
[[fallthrough]];
case 1:
if (aspect_mask & aspect_bits_[1]) {
return 1;
}
break;
default:
break;
}
return limits_.aspect_index;
}
uint32_t RangeEncoder::LowerBoundImpl3(VkImageAspectFlags aspect_mask) const {
if (aspect_mask & aspect_bits_[0]) {
return 0;
} else if (aspect_mask & aspect_bits_[1]) {
return 1;
} else {
assert(aspect_mask & aspect_bits_[2]);
return 2;
}
}
uint32_t RangeEncoder::LowerBoundWithStartImpl3(VkImageAspectFlags aspect_mask, uint32_t start) const {
switch (start) {
case 0:
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
[[fallthrough]];
case 1:
if ((aspect_mask & aspect_bits_[1])) {
return 1;
}
[[fallthrough]];
case 2:
if ((aspect_mask & aspect_bits_[2])) {
return 2;
}
break;
default:
break;
}
return limits_.aspect_index;
}
void RangeEncoder::PopulateFunctionPointers() {
// Select the encode/decode specialists
if (limits_.aspect_index == 1) {
// One aspect use simplified encode/decode math
if (limits_.arrayLayer == 1) { // Same as mip_size_ == 1
encode_function_ = &RangeEncoder::Encode1AspectMipOnly;
decode_function_ = &RangeEncoder::DecodeAspectMipOnly<1>;
} else if (limits_.mipLevel == 1) {
encode_function_ = &RangeEncoder::Encode1AspectArrayOnly;
decode_function_ = &RangeEncoder::DecodeAspectArrayOnly<1>;
} else {
encode_function_ = &RangeEncoder::Encode1AspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<1>;
}
lower_bound_function_ = &RangeEncoder::LowerBoundImpl1;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl1;
} else if (limits_.aspect_index == 2) {
// Two aspect use simplified encode/decode math
if (limits_.arrayLayer == 1) { // Same as mip_size_ == 1
encode_function_ = &RangeEncoder::EncodeAspectMipOnly;
decode_function_ = &RangeEncoder::DecodeAspectMipOnly<2>;
} else if (limits_.mipLevel == 1) {
encode_function_ = &RangeEncoder::EncodeAspectArrayOnly;
decode_function_ = &RangeEncoder::DecodeAspectArrayOnly<2>;
} else {
encode_function_ = &RangeEncoder::EncodeAspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<2>;
}
lower_bound_function_ = &RangeEncoder::LowerBoundImpl2;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl2;
} else {
encode_function_ = &RangeEncoder::EncodeAspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<3>;
lower_bound_function_ = &RangeEncoder::LowerBoundImpl3;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl3;
}
// Initialize the offset array
aspect_base_[0] = 0;
for (uint32_t i = 1; i < limits_.aspect_index; ++i) {
aspect_base_[i] = aspect_base_[i - 1] + aspect_size_;
}
}
RangeEncoder::RangeEncoder(const VkImageSubresourceRange& full_range, const AspectParameters* param)
: limits_(param->AspectMask(), full_range.levelCount, full_range.layerCount, param->AspectCount()),
full_range_(full_range),
mip_size_(full_range.layerCount),
aspect_size_(mip_size_ * full_range.levelCount),
aspect_bits_(param->AspectBits()),
encode_function_(nullptr),
decode_function_(nullptr) {
// Only valid to create an encoder for a *whole* image (i.e. base must be zero, and the specified limits_.selected_aspects
// *must* be equal to the traits aspect mask. (Encoder range assumes zero bases)
assert(full_range.aspectMask == limits_.aspectMask);
assert(full_range.baseArrayLayer == 0);
assert(full_range.baseMipLevel == 0);
// TODO: should be some static assert
assert(param->AspectCount() <= kMaxSupportedAspect);
PopulateFunctionPointers();
}
#ifndef NDEBUG
static bool IsValid(const RangeEncoder& encoder, const VkImageSubresourceRange& bounds) {
const auto& limits = encoder.Limits();
return (((bounds.aspectMask & limits.aspectMask) == bounds.aspectMask) &&
(bounds.baseMipLevel + bounds.levelCount <= limits.mipLevel) &&
(bounds.baseArrayLayer + bounds.layerCount <= limits.arrayLayer));
}
#endif
// Create an iterator like "generator" that for each increment produces the next index range matching the
// next contiguous (in index space) section of the VkImageSubresourceRange
// Ranges will always span the layerCount layers, and if the layerCount is the full range of the image (as known by
// the encoder) will span the levelCount mip levels as weill.
RangeGenerator::RangeGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& subres_range)
: encoder_(&encoder), isr_pos_(encoder, subres_range), pos_(), aspect_base_() {
assert((((isr_pos_.Limits()).aspectMask & (encoder.Limits()).aspectMask) == (isr_pos_.Limits()).aspectMask));
assert((isr_pos_.Limits()).baseMipLevel + (isr_pos_.Limits()).levelCount <= (encoder.Limits()).mipLevel);
assert((isr_pos_.Limits()).baseArrayLayer + (isr_pos_.Limits()).layerCount <= (encoder.Limits()).arrayLayer);
// To see if we have a full range special case, need to compare the subres_range against the *encoders* limits
const auto& limits = encoder.Limits();
if ((subres_range.baseArrayLayer == 0 && subres_range.layerCount == limits.arrayLayer)) {
if ((subres_range.baseMipLevel == 0) && (subres_range.levelCount == limits.mipLevel)) {
if (subres_range.aspectMask == limits.aspectMask) {
// Full range
pos_.begin = 0;
pos_.end = encoder.AspectSize() * limits.aspect_index;
aspect_count_ = 1; // Flag this to never advance aspects.
} else {
// All mips all layers but not all aspect
pos_.begin = encoder.AspectBase(isr_pos_.aspect_index);
pos_.end = pos_.begin + encoder.AspectSize();
aspect_count_ = limits.aspect_index;
}
} else {
// All array layers, but not all levels
pos_.begin = encoder.AspectBase(isr_pos_.aspect_index) + subres_range.baseMipLevel * encoder.MipSize();
pos_.end = pos_.begin + subres_range.levelCount * encoder.MipSize();
aspect_count_ = limits.aspect_index;
}
// Full set of array layers at a time, thus we can span across all selected mip levels
mip_count_ = 1; // we don't ever advance across mips, as we do all of then in one range
} else {
// Each range covers all included array_layers for each selected mip_level for each given selected aspect
// so we'll use the general purpose encode and smallest range size
pos_.begin = encoder.Encode(isr_pos_);
pos_.end = pos_.begin + subres_range.layerCount;
// we do have to traverse across mips, though (other than Encode abover), we don't have to know which one we are on.
mip_count_ = subres_range.levelCount;
aspect_count_ = limits.aspect_index;
}
// To get to the next aspect range we offset from the last base
aspect_base_ = pos_;
mip_index_ = 0;
aspect_index_ = isr_pos_.aspect_index;
}
RangeGenerator& RangeGenerator::operator++() {
mip_index_++;
// NOTE: If all selected mip levels are done at once, mip_count_ is set to one, not the number of selected mip_levels
if (mip_index_ >= mip_count_) {
const auto last_aspect_index = aspect_index_;
// Seek the next value aspect (if any)
aspect_index_ = encoder_->LowerBoundFromMask(isr_pos_.Limits().aspectMask, aspect_index_ + 1);
if (aspect_index_ < aspect_count_) {
// Force isr_pos to the beginning of this found aspect
isr_pos_.SeekAspect(aspect_index_);
// SubresourceGenerator should never be at tombstones we we aren't
assert(isr_pos_.aspectMask != 0);
// Offset by the distance between the last start of aspect and *this* start of aspect
aspect_base_ += (encoder_->AspectBase(isr_pos_.aspect_index) - encoder_->AspectBase(last_aspect_index));
pos_ = aspect_base_;
mip_index_ = 0;
} else {
// Tombstone both index range and subresource positions to "At end" convention
pos_ = {0, 0};
isr_pos_.aspectMask = 0;
}
} else {
// Note: for the layerCount < full_range.layerCount case, because the generated ranges per mip_level are discontinuous
// we have to do each individual array of ranges
pos_ += encoder_->MipSize();
isr_pos_.SeekMip(isr_pos_.Limits().baseMipLevel + mip_index_);
}
return *this;
}
static double FormatTexelSizeWithAspect(VkFormat format, VkImageAspectFlagBits aspectMask) {
uint32_t texel_block_size = 0;
if (aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
texel_block_size = vkuFormatStencilSize(format) / 8;
} else if (aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
texel_block_size = vkuFormatDepthSize(format) / 8;
} else if (vkuFormatIsMultiplane(format)) {
VkFormat compatible_format = vkuFindMultiplaneCompatibleFormat(format, aspectMask);
texel_block_size = vkuFormatTexelBlockSize(compatible_format);
} else {
texel_block_size = vkuFormatTexelBlockSize(format);
}
VkExtent3D block_extent = vkuFormatTexelBlockExtent(format);
const uint32_t texels_per_block = block_extent.width * block_extent.height * block_extent.depth;
if (texels_per_block > 1) {
return (double)(texel_block_size) / (double)(texels_per_block);
} else {
return (double)texel_block_size;
}
}
ImageRangeEncoder::ImageRangeEncoder(const vvl::Image& image)
: ImageRangeEncoder(image, AspectParameters::Get(image.full_range.aspectMask)) {}
ImageRangeEncoder::ImageRangeEncoder(const vvl::Image& image, const AspectParameters* param)
: RangeEncoder(image.full_range, param), total_size_(0U) {
if (image.create_info.extent.depth > 1) {
limits_.arrayLayer = image.create_info.extent.depth;
}
linear_image_ = false;
if (image.create_info.tiling == VK_IMAGE_TILING_LINEAR) {
linear_image_ = true;
// WORKAROUND for profile and mock_icd not containing valid VkSubresourceLayout yet. Treat it as optimal image.
const VkImageAspectFlags first_aspect = AspectBit(0); // AspectBit returns aspects by index
VkImageSubresource mock_test_subres = {first_aspect, 0, 0};
VkSubresourceLayout mock_test_layout = {};
DispatchGetImageSubresourceLayout(image.store_device_as_workaround, image.VkHandle(), &mock_test_subres, &mock_test_layout);
if (mock_test_layout.size == 0) { // Happens only for mock icd
linear_image_ = false;
}
}
// WORKAROUND for not being able to handle general linear images without resulting in non-monotonically increasing ranges
// Need to clean this up to correctly detect aliasing conflicts between linear image(s) and buffers
// Issues:
// * Lower resolution MIP levels are sometimes hidden in unused space of image rows smaller than minimum stride
// * Mutliplane YUV formats may interleave UV rows
// * Ranges treat row size as synonymous with row stride, causing ranges to include interleaved content when
// checking for hazards or updating state.
//
// Needs a rework on how linear range generation is done to ensure correct sizing and monotonicity, before detection of
// aliased resources can be done correctly.
linear_image_ = false;
is_compressed_ = vkuFormatIsCompressed(image.create_info.format);
texel_block_extent_ = vkuFormatTexelBlockExtent(image.create_info.format);
is_3_d_ = image.create_info.imageType == VK_IMAGE_TYPE_3D;
y_interleave_ = false;
VkSubresourceLayout layout = {};
VkImageSubresourceLayers subres_layers = {limits_.aspectMask, 0, 0, limits_.arrayLayer};
for (uint32_t aspect_index = 0; aspect_index < limits_.aspect_index; ++aspect_index) {
VkImageSubresource subres = {};
subres.aspectMask = static_cast<VkImageAspectFlags>(AspectBit(aspect_index));
subres_layers.aspectMask = subres.aspectMask;
texel_sizes_.push_back(
FormatTexelSizeWithAspect(image.create_info.format, static_cast<VkImageAspectFlagBits>(subres.aspectMask)));
IndexType aspect_size = 0;
for (uint32_t mip_index = 0; mip_index < limits_.mipLevel; ++mip_index) {
subres_layers.mipLevel = mip_index;
subres.mipLevel = mip_index;
auto subres_extent = image.GetEffectiveSubresourceExtent(subres_layers);
if (linear_image_) {
DispatchGetImageSubresourceLayout(image.store_device_as_workaround, image.VkHandle(), &subres, &layout);
if (is_3_d_) {
if ((layout.depthPitch == 0) && (subres_extent.depth == 1)) {
layout.depthPitch = layout.size; // Certain implmentations don't supply pitches when size is 1
}
y_interleave_ = y_interleave_ || (layout.rowPitch > layout.depthPitch);
} else {
if ((layout.arrayPitch == 0) && (limits_.arrayLayer == 1)) {
layout.arrayPitch = layout.size; // Certain implmentations don't supply pitches when size is 1
}
y_interleave_ = y_interleave_ || (layout.rowPitch > layout.arrayPitch);
}
} else {
layout.offset += layout.size;
const double row_pitch = subres_extent.width * texel_sizes_[aspect_index];
// TODO: layout.rowPitch is still computed incorrectly for ASTC_10x10,
// but it is less trivial fix comparing to arrayPitch, so will be fixed
// later. There is no known rowPitch bugs, which somehow justifies why
// rowPitch fix is postponed, and arrayPitch, which affected Angle, was fixed.
layout.rowPitch = static_cast<VkDeviceSize>(row_pitch);
layout.arrayPitch = static_cast<VkDeviceSize>(row_pitch * subres_extent.height);
layout.depthPitch = layout.arrayPitch;
if (is_3_d_) {
layout.size = layout.depthPitch * subres_extent.depth;
} else {
// 2D arrays are not affected by MIP level extent reductions.
layout.size = layout.arrayPitch * limits_.arrayLayer;
}
}
subres_info_.emplace_back(layout, subres_extent, texel_block_extent_, texel_sizes_[aspect_index]);
aspect_size += layout.size;
total_size_ += layout.size;
}
aspect_sizes_.emplace_back(aspect_size);
aspect_extent_divisors_.emplace_back(
vkuFindMultiplaneExtentDivisors(image.create_info.format, static_cast<VkImageAspectFlagBits>(subres.aspectMask)));
}
}
IndexType ImageRangeEncoder::Encode2D(const VkSubresourceLayout& layout, uint32_t layer, uint32_t aspect_index,
const VkOffset3D& offset) const {
assert(offset.z == 0U);
// The address offset of the beginning of offset.x's block is:
// block_offset_in_bytes = block_offset_x * block_height * texel_sizes_[apsect]
// where block_offset_x = floor(offset.x / block_width) * block_width
//
// The multiplication by block_height above ensures that we skip the entire block,
// including block data from other rows, which might sound unintuitive. But it makes
// sense because the block layout in memory is linear, and to jump to another block,
// even if we move only in the x direction, we must skip the entire block.
//
// Since offset.x must be a multiple of block_width, we can simplify the formula by canceling out block_width.
// block_offset_in_bytes = floor(offset.x * block_height * texel_sizes_[apsect])
double xSize = static_cast<double>(texel_block_extent_.height * texel_sizes_[aspect_index]);
return layout.offset + layer * layout.arrayPitch + offset.y * layout.rowPitch +
(offset.x ? static_cast<IndexType>(floor(offset.x * xSize)) : 0U);
}
IndexType ImageRangeEncoder::Encode3D(const VkSubresourceLayout& layout, uint32_t aspect_index, const VkOffset3D& offset) const {
// See comment in Encode2D.
double xSize = static_cast<double>(texel_block_extent_.height * texel_sizes_[aspect_index]);
return layout.offset + offset.z * layout.depthPitch + offset.y * layout.rowPitch +
(offset.x ? static_cast<IndexType>(floor(offset.x * xSize)) : 0U);
}
void ImageRangeEncoder::Decode(const VkImageSubresource& subres, const IndexType& encode, uint32_t& out_layer,
VkOffset3D& out_offset) const {
uint32_t subres_index = GetSubresourceIndex(LowerBoundFromMask(subres.aspectMask), subres.mipLevel);
const auto& subres_layout = GetSubresourceInfo(subres_index).layout;
IndexType decode = encode - subres_layout.offset;
out_layer = static_cast<uint32_t>(decode / subres_layout.arrayPitch);
decode -= (out_layer * subres_layout.arrayPitch);
out_offset.z = static_cast<int32_t>(decode / subres_layout.depthPitch);
decode -= (out_offset.z * subres_layout.depthPitch);
out_offset.y = static_cast<int32_t>(decode / subres_layout.rowPitch);
decode -= (out_offset.y * subres_layout.rowPitch);
out_offset.x = static_cast<int32_t>(static_cast<double>(decode) / texel_sizes_[LowerBoundFromMask(subres.aspectMask)]);
}
inline VkImageSubresourceRange GetRemaining(const VkImageSubresourceRange& full_range, VkImageSubresourceRange subres_range) {
if (subres_range.levelCount == VK_REMAINING_MIP_LEVELS) {
subres_range.levelCount = full_range.levelCount - subres_range.baseMipLevel;
}
if (subres_range.layerCount == VK_REMAINING_ARRAY_LAYERS) {
subres_range.layerCount = full_range.layerCount - subres_range.baseArrayLayer;
}
return subres_range;
}
inline bool CoversAllLayers(const VkImageSubresourceRange& full_range, VkImageSubresourceRange subres_range) {
return (subres_range.baseArrayLayer == 0) && (subres_range.layerCount == full_range.layerCount);
}
static bool SubresourceRangeIsEmpty(const VkImageSubresourceRange& range) {
return (0 == range.aspectMask) || (0 == range.levelCount) || (0 == range.layerCount);
}
static bool ExtentIsEmpty(const VkExtent3D& extent) { return (0 == extent.width) || (0 == extent.height) || (0 == extent.width); }
VkOffset3D ImageRangeGenerator::GetOffset(uint32_t aspect_index) const {
// Return the effective offset taking into account the multiplane extent divisor
auto offset = offset_;
auto divisor = encoder_->GetAspectExtentDivisors(aspect_index);
offset.x /= divisor.width;
offset.y /= divisor.height;
return offset;
}
VkExtent3D ImageRangeGenerator::GetExtent(uint32_t aspect_index) const {
// Return the effective extent taking into account the multiplane extent divisor
// Note that we also have to look at the offset, because it affects the rounding
auto offset = GetOffset(aspect_index);
auto extent = extent_;
auto divisor = encoder_->GetAspectExtentDivisors(aspect_index);
extent.width = ((offset_.x + extent.width + divisor.width - 1) / divisor.width) - offset.x;
extent.height = ((offset_.y + extent.height + divisor.height - 1) / divisor.height) - offset.y;
return extent;
}
void ImageRangeGenerator::SetInitialPosFullOffset(uint32_t layer, uint32_t aspect_index) {
const auto offset = GetOffset(aspect_index);
const auto extent = GetExtent(aspect_index);
const bool is_3D = encoder_->Is3D();
const auto& subres_layout = subres_info_->layout;
const IndexType encode_base = is_3D ? encoder_->Encode3D(subres_layout, aspect_index, offset)
: encoder_->Encode2D(subres_layout, layer, aspect_index, offset);
const IndexType base = base_address_ + encode_base;
// To deal with compressed formats the span must cover the y-extent of lines (something we resmember in the y_step)
const IndexType span = static_cast<IndexType>(floor(encoder_->TexelSize(aspect_index) * (extent.width * incr_state_.y_step)));
const uint32_t z_count = is_3D ? extent.depth : subres_range_.layerCount;
const IndexType z_pitch = is_3D ? subres_info_->z_step_pitch : subres_layout.arrayPitch;
incr_state_.Set(extent.height, z_count, base, span, subres_info_->y_step_pitch, z_pitch);
}
void ImageRangeGenerator::SetInitialPosFullWidth(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->IsInterleaveY() && (offset_.x == 0));
const auto offset = GetOffset(aspect_index);
const auto extent = GetExtent(aspect_index);
const bool is_3D = encoder_->Is3D();
const auto& subres_layout = subres_info_->layout;
const IndexType encode_base = is_3D ? encoder_->Encode3D(subres_layout, aspect_index, offset)
: encoder_->Encode2D(subres_layout, layer, aspect_index, offset);
const IndexType base = base_address_ + encode_base;
// Height must be in multiples of y_step (the texel dimension)... validated elsewhere
const IndexType span = subres_layout.rowPitch * extent.height;
const uint32_t z_count = is_3D ? extent.depth : subres_range_.layerCount;
const IndexType z_pitch = is_3D ? subres_info_->z_step_pitch : subres_layout.arrayPitch;
incr_state_.Set(1U, z_count, base, span, subres_info_->y_step_pitch, z_pitch);
}
void ImageRangeGenerator::SetInitialPosFullHeight(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset + subres_range_.baseArrayLayer * subres_layout.arrayPitch;
const IndexType span = subres_info_->layer_span;
const IndexType z_step = subres_layout.arrayPitch;
incr_state_.Set(1, subres_range_.layerCount, base, span, span, z_step);
}
void ImageRangeGenerator::SetInitialPosSomeDepth(uint32_t layer, uint32_t aspect_index) {
assert(encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (layer == 0));
const auto offset = GetOffset(aspect_index);
const auto extent = GetExtent(aspect_index);
const auto& subres_layout = subres_info_->layout;
const IndexType encode_base = encoder_->Encode3D(subres_layout, aspect_index, offset);
const IndexType base = base_address_ + encode_base;
// Height must be in multiples of z_step (the texel dimension)... validated elsewhere
const IndexType span = subres_layout.depthPitch * extent.depth;
incr_state_.Set(1, 1, base, span, span, subres_layout.size);
}
void ImageRangeGenerator::SetInitialPosFullDepth(uint32_t layer, uint32_t aspect_index) {
assert(encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (offset_.z == 0) && (layer == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset;
const IndexType span = subres_layout.depthPitch * extent_.depth;
incr_state_.Set(1, 1, base, span, span, span);
}
void ImageRangeGenerator::SetInitialPosSomeLayers(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (offset_.z == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset + layer * subres_layout.arrayPitch;
const IndexType span = subres_layout.arrayPitch * subres_range_.layerCount;
const IndexType z_step = subres_layout.arrayPitch * encoder_->Limits().arrayLayer;
incr_state_.Set(1, 1, base, span, span, z_step);
}
void ImageRangeGenerator::SetInitialPosAllLayers(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (offset_.z == 0) &&
(layer == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset;
const IndexType span = subres_layout.arrayPitch * subres_range_.layerCount;
incr_state_.Set(1, 1, base, span, span, span);
}
void ImageRangeGenerator::SetInitialPosOneAspect(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->IsLinearImage()); // Requires the major minor of "idealized/non-linear" images
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset;
IndexType span = 0;
if (subres_range_.levelCount == encoder_->Limits().mipLevel) {
span = encoder_->GetAspectSize(aspect_index);
} else {
// Add up the mip sizes...
// Assumes subres_info is pointing to index(baseMipLevel, aspect_index)
// Assumes mip major order...
for (uint32_t level = 0; level < subres_range_.levelCount; level++) {
span += subres_info_[level].layout.size;
}
}
incr_mip_ = subres_range_.levelCount;
incr_state_.Set(1, 1, base, span, span, span);
}
void ImageRangeGenerator::SetInitialPosAllSubres(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->IsLinearImage());
const IndexType base = base_address_;
const IndexType span = encoder_->TotalSize();
// Just one range... everything, ++ will short circuit to "end"
single_full_size_range_ = true;
// We don't need to set up the rest of the incrementer, just the starting position
incr_state_.y_base = {base, base + span};
}
bool ImageRangeGenerator::Convert2DCompatibleTo3D() {
if (encoder_->Is3D() && is_depth_sliced_) {
// This only valid for 2D compatible 3D images
// Touch up the extent and the subres to make this look like a depth extent
offset_.z = subres_range_.baseArrayLayer;
subres_range_.baseArrayLayer = 0;
extent_.depth = subres_range_.layerCount;
subres_range_.layerCount = 1;
return true;
}
return false;
}
ImageRangeGenerator::ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range,
VkDeviceSize base_address, bool is_depth_sliced)
: encoder_(&encoder),
subres_range_(GetRemaining(encoder.FullRange(), subres_range)),
offset_(),
extent_(),
base_address_(base_address),
is_depth_sliced_(is_depth_sliced) {
#ifndef NDEBUG
assert(IsValid(*encoder_, subres_range_));
#endif
if (SubresourceRangeIsEmpty(subres_range)) {
// Not robust to empty ranges, so for to "at end" condition.
pos_ = {0, 0};
return;
}
SetUpSubresInfo();
extent_ = subres_info_->extent;
const bool converted = Convert2DCompatibleTo3D();
SetUpIncrementerDefaults();
if (converted && (extent_.depth != subres_info_->extent.depth)) {
SetUpIncrementer(true, true, false);
} else {
SetUpSubresIncrementer();
}
SetInitialPos(subres_range_.baseArrayLayer, aspect_index_);
pos_ = incr_state_.y_base;
}
ImageRangeGenerator::ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range,
const VkOffset3D& offset, const VkExtent3D& extent, VkDeviceSize base_address,
bool is_depth_sliced)
: encoder_(&encoder),
subres_range_(GetRemaining(encoder.FullRange(), subres_range)),
offset_(offset),
extent_(extent),
base_address_(base_address),
is_depth_sliced_(is_depth_sliced) {
#ifndef NDEBUG
assert(IsValid(*encoder_, subres_range_));
#endif
assert(subres_range_.levelCount == 1);
if (SubresourceRangeIsEmpty(subres_range)) {
// Empty range forces empty position -- no operations other than deref for empty check are valid
pos_ = {0, 0};
return;
}
// When passing in an offset and extent, *must* only specify *one* mip level
SetUpSubresInfo();
Convert2DCompatibleTo3D();
const VkExtent3D& subres_extent = subres_info_->extent;
if (ExtentIsEmpty(extent_) || ((extent_.width + offset_.x) > subres_extent.width) ||
((extent_.height + offset_.y) > subres_extent.height) || ((extent_.depth + offset_.z) > subres_extent.depth)) {
// Empty range forces empty position -- no operations other than deref for empty check are valid
pos_ = {0, 0};
return;
}
const bool all_width = (offset.x == 0) && (extent_.width == subres_extent.width);
const bool all_height = (offset.y == 0) && (extent_.height == subres_extent.height);
const bool all_depth = !encoder_->Is3D() || ((offset.z == 0) && (extent_.depth == subres_extent.depth));
SetUpIncrementerDefaults();
SetUpIncrementer(all_width, all_height, all_depth);
SetInitialPos(subres_range_.baseArrayLayer, aspect_index_);
pos_ = incr_state_.y_base;
}
void ImageRangeGenerator::SetUpSubresInfo() {
mip_index_ = 0;
aspect_index_ = encoder_->LowerBoundFromMask(subres_range_.aspectMask);
subres_index_ = encoder_->GetSubresourceIndex(aspect_index_, subres_range_.baseMipLevel);
subres_info_ = &encoder_->GetSubresourceInfo(subres_index_);
}
void ImageRangeGenerator::SetUpIncrementerDefaults() {
// These are safe defaults that most SetInitialPos* will use. Those that need to change them, do.
incr_state_.y_step = encoder_->TexelBlockExtent().height;
incr_state_.layer_z_step = encoder_->Is3D() ? encoder_->TexelBlockExtent().depth : 1U;
incr_mip_ = 1;
single_full_size_range_ = false;
}
// Assumes full extent in width/height/depth(if present)
void ImageRangeGenerator::SetUpSubresIncrementer() {
const auto& full_range = encoder_->FullRange();
const bool linear_image = encoder_->IsLinearImage();
const bool is_3d = encoder_->Is3D();
const bool layers_interleave = linear_image && (subres_info_->layout.arrayPitch > subres_info_->layout.size);
if (layers_interleave) {
// The implementation can interleave arrays, aspects, and mips arbitrarily
if (encoder_->Is3D()) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullDepth;
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullHeight;
}
} else if (is_3d || CoversAllLayers(full_range, subres_range_)) {
if (!linear_image) {
// Linear images are defined by the implementation and so we can't assume the ordering we use here
const bool all_mips = (subres_range_.baseMipLevel == 0) && (subres_range_.levelCount == full_range.levelCount);
const bool all_aspects = subres_range_.aspectMask == full_range.aspectMask;
if (all_aspects && all_mips) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosAllSubres;
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosOneAspect;
}
} else if (is_3d) {
// 3D implies CoversAllLayers
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullDepth;
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosAllLayers;
}
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosSomeLayers;
}
}
void ImageRangeGenerator::SetUpIncrementer(bool all_width, bool all_height, bool all_depth) {
if (!all_width || encoder_->IsInterleaveY()) {
// Dimensional majority is not guaranteed for Linear images except in X
// For tiled images we can use "idealized" addresses
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullOffset;
} else if (!all_height) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullWidth;
} else if (encoder_->Is3D() && !all_depth) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosSomeDepth;
} else {
SetUpSubresIncrementer();
}
}
ImageRangeGenerator& ImageRangeGenerator::operator++() {
// Short circuit
if (single_full_size_range_) {
// Advance directly to end
pos_ = {0, 0};
return *this;
}
incr_state_.y_index += incr_state_.y_step;
if (incr_state_.y_index < incr_state_.y_count) {
incr_state_.y_base += incr_state_.incr_y;
pos_ = incr_state_.y_base;
} else {
incr_state_.layer_z_index += incr_state_.layer_z_step;
if (incr_state_.layer_z_index < incr_state_.layer_z_count) {
incr_state_.layer_z_base += incr_state_.incr_layer_z;
incr_state_.y_base = incr_state_.layer_z_base;
pos_ = incr_state_.y_base;
} else {
// For aspects and mips we need to move to a new subresource layer info
mip_index_ += incr_mip_;
if (mip_index_ < subres_range_.levelCount) {
// NOTE: This means that ImageRangeGenerator is relying on the major/minor ordering of mip and aspect in the
subres_index_ += incr_mip_;
extent_ = subres_info_->extent; // Overwrites input extent, but > 1 MIP isn't valid with input extent
} else {
const auto next_aspect_index = encoder_->LowerBoundFromMask(subres_range_.aspectMask, aspect_index_ + 1);
if (next_aspect_index < encoder_->Limits().aspect_index) {
// SubresourceLayout info in ImageRangeEncoder... it's a cheat, but it was a hotspot.
aspect_index_ = next_aspect_index;
mip_index_ = 0;
subres_index_ = encoder_->GetSubresourceIndex(aspect_index_, subres_range_.baseMipLevel);
} else {
// At End
pos_ = {0, 0};
return *this;
}
}
subres_info_ = &encoder_->GetSubresourceInfo(subres_index_);
SetInitialPos(subres_range_.baseArrayLayer, aspect_index_);
pos_ = incr_state_.y_base;
}
}
return *this;
}
template <typename AspectTraits>
class AspectParametersImpl : public AspectParameters {
public:
VkImageAspectFlags AspectMask() const override { return AspectTraits::kAspectMask; }
uint32_t AspectCount() const override { return AspectTraits::kAspectCount; };
const VkImageAspectFlagBits* AspectBits() const override { return AspectTraits::AspectBits().data(); }
};
struct ColorAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{{VK_IMAGE_ASPECT_COLOR_BIT}};
return k_aspect_bits;
}
};
struct DepthAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{{VK_IMAGE_ASPECT_DEPTH_BIT}};
return k_aspect_bits;
}
};
struct StencilAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{{VK_IMAGE_ASPECT_STENCIL_BIT}};
return k_aspect_bits;
}
};
struct DepthStencilAspectTraits {
// VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002, >> 1 -> 1 -1 -> 0
// VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004, >> 1 -> 2 -1 = 1
static constexpr uint32_t kAspectCount = 2;
static constexpr VkImageAspectFlags kAspectMask = (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{
{VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_STENCIL_BIT}};
return k_aspect_bits;
}
};
struct Multiplane2AspectTraits {
// VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010, >> 4 - 1 -> 0
// VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020, >> 4 - 1 -> 1
static constexpr uint32_t kAspectCount = 2;
static constexpr VkImageAspectFlags kAspectMask = (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT);
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{
{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT}};
return k_aspect_bits;
}
};
struct Multiplane3AspectTraits {
// VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010, >> 4 - 1 -> 0
// VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020, >> 4 - 1 -> 1
// VK_IMAGE_ASPECT_PLANE_2_BIT = 0x00000040, >> 4 - 1 -> 3
static constexpr uint32_t kAspectCount = 3;
static constexpr VkImageAspectFlags kAspectMask =
(VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT);
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{
{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, VK_IMAGE_ASPECT_PLANE_2_BIT}};
return k_aspect_bits;
}
};
// Create the encoder parameter suitable to the full range aspect mask (*must* be canonical)
const AspectParameters* AspectParameters::Get(VkImageAspectFlags aspect_mask) {
// We need a persitent instance of each specialist containing only a VTABLE each
static const AspectParametersImpl<ColorAspectTraits> k_color_param;
static const AspectParametersImpl<DepthAspectTraits> k_depth_param;
static const AspectParametersImpl<StencilAspectTraits> k_stencil_param;
static const AspectParametersImpl<DepthStencilAspectTraits> k_depth_stencil_param;
static const AspectParametersImpl<Multiplane2AspectTraits> k_mutliplane2_param;
static const AspectParametersImpl<Multiplane3AspectTraits> k_mutliplane3_param;
const AspectParameters* param = nullptr;
switch (aspect_mask) {
case ColorAspectTraits::kAspectMask:
param = &k_color_param;
break;
case DepthAspectTraits::kAspectMask:
param = &k_depth_param;
break;
case StencilAspectTraits::kAspectMask:
param = &k_stencil_param;
break;
case DepthStencilAspectTraits::kAspectMask:
param = &k_depth_stencil_param;
break;
case Multiplane2AspectTraits::kAspectMask:
param = &k_mutliplane2_param;
break;
case Multiplane3AspectTraits::kAspectMask:
param = &k_mutliplane3_param;
break;
default:
assert(false);
}
return param;
}
inline ImageRangeEncoder::SubresInfo::SubresInfo(const VkSubresourceLayout& layout_, const VkExtent3D& extent_,
const VkExtent3D& texel_extent, double texel_size)
: layout(layout_),
extent(extent_),
y_step_pitch(layout.rowPitch * texel_extent.height),
z_step_pitch(layout.depthPitch * texel_extent.depth),
layer_span(layout.rowPitch * extent_.height) {}
ImageRangeEncoder::SubresInfo::SubresInfo(const SubresInfo&rhs)
: layout(rhs.layout),
extent(rhs.extent),
y_step_pitch(rhs.y_step_pitch),
z_step_pitch(rhs.z_step_pitch),
layer_span(rhs.layer_span) {}
void ImageRangeGenerator::IncrementerState::Set(uint32_t y_count_, uint32_t layer_z_count_, IndexType base, IndexType span,
IndexType y_step, IndexType z_step) {
y_count = y_count_;
layer_z_count = layer_z_count_;
y_index = 0;
layer_z_index = 0;
y_base.begin = base;
y_base.end = base + span;
layer_z_base = y_base;
incr_y = y_step;
incr_layer_z = z_step;
}
} // namespace subresource_adapter
|