File: gpuav_setup.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (424 lines) | stat: -rw-r--r-- 23,573 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* Copyright (c) 2018-2025 The Khronos Group Inc.
 * Copyright (c) 2018-2025 Valve Corporation
 * Copyright (c) 2018-2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <array>
#include <cmath>
#include <cstring>
#include <string>
#if defined(__linux__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__GNU__)
#include <unistd.h>
#endif
#include "chassis/dispatch_object.h"
#include "gpuav/core/gpuav.h"
#include "gpuav/core/gpuav_constants.h"
#include "gpuav/instrumentation/descriptor_checks.h"
#include "gpuav/resources/gpuav_state_trackers.h"
#include "gpuav/shaders/gpuav_error_header.h"
#include "gpuav/shaders/gpuav_shaders_constants.h"
#include "utils/dispatch_utils.h"

namespace gpuav {

// Location to add per-queue submit debug info if built with -D DEBUG_CAPTURE_KEYBOARD=ON
void Validator::DebugCapture() {}

void Validator::Created(vvl::DescriptorSet &set) {
    set.SetSubState(container_type, std::make_unique<DescriptorSetSubState>(set, *this));
}

void Validator::Created(vvl::CommandBuffer &cb_state) {
    cb_state.SetSubState(container_type, std::make_unique<CommandBufferSubState>(*this, cb_state));
}

void Validator::Created(vvl::Queue &queue) { queue.SetSubState(container_type, std::make_unique<QueueSubState>(*this, queue)); }

void Validator::Created(vvl::Image &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<ImageSubState>(obj, desc_heap));
}
void Validator::Created(vvl::ImageView &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<ImageViewSubState>(obj, desc_heap));
}
void Validator::Created(vvl::Buffer &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<BufferSubState>(obj, desc_heap));
}
void Validator::Created(vvl::BufferView &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<BufferViewSubState>(obj, desc_heap));
}
void Validator::Created(vvl::Sampler &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<SamplerSubState>(obj, desc_heap));
}
void Validator::Created(vvl::AccelerationStructureNV &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<AccelerationStructureNVSubState>(obj, desc_heap));
}
void Validator::Created(vvl::AccelerationStructureKHR &obj) {
    DescriptorHeap &desc_heap = shared_resources_manager.Get<DescriptorHeap>();
    obj.SetSubState(container_type, std::make_unique<AccelerationStructureKHRSubState>(obj, desc_heap));
}
void Validator::Created(vvl::ShaderObject &obj) { obj.SetSubState(container_type, std::make_unique<ShaderObjectSubState>(obj)); }

// Trampolines to make VMA call Dispatch for Vulkan calls
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL gpuVkGetInstanceProcAddr(VkInstance inst, const char *name) {
    return DispatchGetInstanceProcAddr(inst, name);
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL gpuVkGetDeviceProcAddr(VkDevice dev, const char *name) {
    return DispatchGetDeviceProcAddr(dev, name);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
                                                                   VkPhysicalDeviceProperties *pProperties) {
    DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
                                                                         VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
    DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
                                                          const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
    return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
    DispatchFreeMemory(device, memory, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
                                                     VkMemoryMapFlags flags, void **ppData) {
    return DispatchMapMemory(device, memory, offset, size, flags, ppData);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
                                                                   const VkMappedMemoryRange *pMemoryRanges) {
    return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
                                                                        const VkMappedMemoryRange *pMemoryRanges) {
    return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
                                                            VkDeviceSize memoryOffset) {
    return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
                                                           VkDeviceSize memoryOffset) {
    return DispatchBindImageMemory(device, image, memory, memoryOffset);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
                                                                   VkMemoryRequirements *pMemoryRequirements) {
    DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
                                                                  VkMemoryRequirements *pMemoryRequirements) {
    DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
                                                        const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
    return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
    return DispatchDestroyBuffer(device, buffer, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
                                                       const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
    return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
    DispatchDestroyImage(device, image, pAllocator);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
                                                     uint32_t regionCount, const VkBufferCopy *pRegions) {
    DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}

static VkResult UtilInitializeVma(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device,
                                  VmaAllocator *pAllocator) {
    VmaVulkanFunctions functions;
    VmaAllocatorCreateInfo allocator_info = {};
    allocator_info.instance = instance;
    allocator_info.device = device;
    allocator_info.physicalDevice = physical_device;

    allocator_info.flags |= VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT;

    functions.vkGetInstanceProcAddr = static_cast<PFN_vkGetInstanceProcAddr>(gpuVkGetInstanceProcAddr);
    functions.vkGetDeviceProcAddr = static_cast<PFN_vkGetDeviceProcAddr>(gpuVkGetDeviceProcAddr);
    functions.vkGetPhysicalDeviceProperties = static_cast<PFN_vkGetPhysicalDeviceProperties>(gpuVkGetPhysicalDeviceProperties);
    functions.vkGetPhysicalDeviceMemoryProperties =
        static_cast<PFN_vkGetPhysicalDeviceMemoryProperties>(gpuVkGetPhysicalDeviceMemoryProperties);
    functions.vkAllocateMemory = static_cast<PFN_vkAllocateMemory>(gpuVkAllocateMemory);
    functions.vkFreeMemory = static_cast<PFN_vkFreeMemory>(gpuVkFreeMemory);
    functions.vkMapMemory = static_cast<PFN_vkMapMemory>(gpuVkMapMemory);
    functions.vkUnmapMemory = static_cast<PFN_vkUnmapMemory>(gpuVkUnmapMemory);
    functions.vkFlushMappedMemoryRanges = static_cast<PFN_vkFlushMappedMemoryRanges>(gpuVkFlushMappedMemoryRanges);
    functions.vkInvalidateMappedMemoryRanges = static_cast<PFN_vkInvalidateMappedMemoryRanges>(gpuVkInvalidateMappedMemoryRanges);
    functions.vkBindBufferMemory = static_cast<PFN_vkBindBufferMemory>(gpuVkBindBufferMemory);
    functions.vkBindImageMemory = static_cast<PFN_vkBindImageMemory>(gpuVkBindImageMemory);
    functions.vkGetBufferMemoryRequirements = static_cast<PFN_vkGetBufferMemoryRequirements>(gpuVkGetBufferMemoryRequirements);
    functions.vkGetImageMemoryRequirements = static_cast<PFN_vkGetImageMemoryRequirements>(gpuVkGetImageMemoryRequirements);
    functions.vkCreateBuffer = static_cast<PFN_vkCreateBuffer>(gpuVkCreateBuffer);
    functions.vkDestroyBuffer = static_cast<PFN_vkDestroyBuffer>(gpuVkDestroyBuffer);
    functions.vkCreateImage = static_cast<PFN_vkCreateImage>(gpuVkCreateImage);
    functions.vkDestroyImage = static_cast<PFN_vkDestroyImage>(gpuVkDestroyImage);
    functions.vkCmdCopyBuffer = static_cast<PFN_vkCmdCopyBuffer>(gpuVkCmdCopyBuffer);
    allocator_info.pVulkanFunctions = &functions;

    return vmaCreateAllocator(&allocator_info, pAllocator);
}

void Instance::PreCallRecordCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
                                         const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, const RecordObject &record_obj,
                                         vku::safe_VkDeviceCreateInfo *modified_create_info) {
    BaseClass::PreCallRecordCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice, record_obj, modified_create_info);

    // GPU-AV requirements not met, exit early or future Vulkan calls may be invalid
    if (api_version < VK_API_VERSION_1_1) {
        return;
    }

    AddFeatures(physicalDevice, modified_create_info, record_obj.location);
}

// Perform initializations that can be done at Create Device time.
void Validator::FinishDeviceSetup(const VkDeviceCreateInfo *pCreateInfo, const Location &loc) {
    // GPU-AV not supported, exit early to prevent errors inside Validator::PostCallRecordCreateDevice
    if (api_version < VK_API_VERSION_1_1) {
        InternalError(device, loc, "GPU Shader Instrumentation requires Vulkan 1.1 or later.");
        return;
    }

    instrumentation_bindings_ = {
        // DebugPrintf Output buffer
        {glsl::kBindingInstDebugPrintf, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Error output buffer
        {glsl::kBindingInstErrorBuffer, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Buffer holding output from GPU to do processing on the CPU
        {glsl::kBindingInstPostProcess, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Buffer holding input from CPU into the shader for descriptor indexing
        {glsl::kBindingInstDescriptorIndexingOOB, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Buffer holding buffer device addresses
        {glsl::kBindingInstBufferDeviceAddress, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Buffer holding action command index in command buffer
        {glsl::kBindingInstActionIndex, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Buffer holding a resource index from the per command buffer command resources list
        {glsl::kBindingInstCmdResourceIndex, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Commands errors counts buffer
        {glsl::kBindingInstCmdErrorsCount, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr},
        // Vertex attribute fetch limits
        {glsl::kBindingInstVertexAttributeFetchLimits, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT, nullptr},
    };

    // TODO - Now that GPU-AV and DebugPrintf are merged, we should just have a single FinishDeviceSetup if possible (or at least
    // better divide what belongs where as it is easy to mess)
    BaseClass::FinishDeviceSetup(pCreateInfo, loc);
    // We might fail in parent class device creation if global requirements are not met
    if (aborted_) {
        return;
    }

    // Need the device to be created before we can query features for settings
    InitSettings(loc);

    VkResult result = UtilInitializeVma(instance, physical_device, device, &vma_allocator_);
    if (result != VK_SUCCESS) {
        InternalVmaError(device, result, "Could not initialize VMA");
        return;
    }

    desc_set_manager_ =
        std::make_unique<vko::DescriptorSetManager>(device, static_cast<uint32_t>(instrumentation_bindings_.size()));

    // If api version 1.1 or later, SetDeviceLoaderData will be in the loader
    {
        auto chain_info = GetChainInfo(pCreateInfo, VK_LOADER_DATA_CALLBACK);
        assert(chain_info->u.pfnSetDeviceLoaderData);
        vk_set_device_loader_data_ = chain_info->u.pfnSetDeviceLoaderData;
    }

    DescriptorChecksOnFinishDeviceSetup(*this);

    // Create error logging buffer allocation pool
    {
        VkBufferCreateInfo error_buffer_ci = vku::InitStructHelper();
        error_buffer_ci.size = glsl::kErrorBufferByteSize;
        error_buffer_ci.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
        VmaAllocationCreateInfo error_buffer_alloc_ci = {};
        error_buffer_alloc_ci.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
        error_buffer_alloc_ci.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
        uint32_t mem_type_index;
        result = vmaFindMemoryTypeIndexForBufferInfo(vma_allocator_, &error_buffer_ci, &error_buffer_alloc_ci, &mem_type_index);
        if (result != VK_SUCCESS) {
            InternalVmaError(device, result, "Unable to find memory type index.");
            return;
        }
    }

    // Create command indices buffer
    {
        indices_buffer_alignment_ = sizeof(uint32_t) * static_cast<uint32_t>(phys_dev_props.limits.minStorageBufferOffsetAlignment);
        VkBufferCreateInfo buffer_info = vku::InitStructHelper();
        buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
        buffer_info.size = cst::indices_count * indices_buffer_alignment_;
        VmaAllocationCreateInfo alloc_info = {};
        alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
        alloc_info.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
        const bool success = indices_buffer_.Create(&buffer_info, &alloc_info);
        if (!success) {
            return;
        }

        auto indices_ptr = (uint32_t *)indices_buffer_.GetMappedPtr();

        for (uint32_t i = 0; i < buffer_info.size / sizeof(uint32_t); ++i) {
            indices_ptr[i] = i / (indices_buffer_alignment_ / sizeof(uint32_t));
        }
    }
}

namespace setting {

// Each setting in GPU-AV has a common interface to make adding a new setting easier
struct Setting {
    virtual bool IsEnabled(const GpuAVSettings &settings) = 0;
    virtual bool HasRequiredFeatures(const DeviceFeatures &features) = 0;
    virtual void Disable(GpuAVSettings &settings) = 0;
    virtual std::string DisableMessage() = 0;
};

struct BufferDeviceAddress : public Setting {
    bool IsEnabled(const GpuAVSettings &settings) { return settings.shader_instrumentation.buffer_device_address; }
    bool HasRequiredFeatures(const DeviceFeatures &features) { return features.shaderInt64; }
    void Disable(GpuAVSettings &settings) { settings.shader_instrumentation.buffer_device_address = false; }
    std::string DisableMessage() {
        return "Buffer Device Address validation option was enabled, but the shaderInt64 feature was not supported [Disabling "
               "gpuav_buffer_address_oob]";
    }
};

struct RayQuery : public Setting {
    bool IsEnabled(const GpuAVSettings &settings) { return settings.shader_instrumentation.ray_query; }
    bool HasRequiredFeatures(const DeviceFeatures &features) { return features.rayQuery; }
    void Disable(GpuAVSettings &settings) { settings.shader_instrumentation.ray_query = false; }
    std::string DisableMessage() {
        return "Ray Query validation option was enabled, but the rayQuery feature was not supported [Disabling "
               "gpuav_validate_ray_query]";
    }
};
struct BufferCopies : public Setting {
    bool IsEnabled(const GpuAVSettings &settings) { return settings.validate_buffer_copies; }
    // copy_buffer_to_image.comp relies on uint8_t buffers to perform validation
    bool HasRequiredFeatures(const DeviceFeatures &features) { return features.storageBuffer8BitAccess; }
    void Disable(GpuAVSettings &settings) { settings.validate_buffer_copies = false; }
    std::string DisableMessage() {
        return "Buffer copies option was enabled, but the storageBuffer8BitAccess feature was not supported [Disabling "
               "gpuav_buffer_copies]";
    }
};
struct BufferContent : public Setting {
    bool IsEnabled(const GpuAVSettings &settings) { return settings.IsBufferValidationEnabled(); }
    bool HasRequiredFeatures(const DeviceFeatures &features) { return features.shaderInt64; }
    void Disable(GpuAVSettings &settings) { settings.SetBufferValidationEnabled(false); }
    std::string DisableMessage() {
        return "Buffer content validation option was enabled, but the shaderInt64 feature was not supported [Disabling "
               "gpuav_buffers_validation]";
    }
};
}  // namespace setting

// At this point extensions/features may have been turned on by us in PreCallRecord.
// Now that we have all the information, here is where we might disable GPU-AV settings that are missing requirements
void Validator::InitSettings(const Location &loc) {
    setting::BufferDeviceAddress buffer_device_address;
    setting::RayQuery ray_query;
    setting::BufferCopies buffer_copies;
    setting::BufferContent buffer_content;
    std::array<setting::Setting *, 4> all_settings = {&buffer_device_address, &ray_query, &buffer_copies, &buffer_content};

    for (auto &setting_object : all_settings) {
        if (setting_object->IsEnabled(gpuav_settings) && !setting_object->HasRequiredFeatures(modified_features)) {
            setting_object->Disable(gpuav_settings);
            InternalWarning(device, loc, setting_object->DisableMessage().c_str());
        }
    }

    if (IsExtEnabled(extensions.vk_ext_descriptor_buffer)) {
        InternalWarning(
            device, loc,
            "VK_EXT_descriptor_buffer is enabled, but GPU-AV does not currently support validation of descriptor buffers. "
            "[Disabling all shader instrumentation checks]");
        // Because of VUs like VUID-VkPipelineLayoutCreateInfo-pSetLayouts-08008 we currently would need to rework the entire shader
        // instrumentation logic
        gpuav_settings.DisableShaderInstrumentationAndOptions();

        if (gpuav_settings.debug_printf_enabled) {
            InternalWarning(device, loc,
                            "VK_EXT_descriptor_buffer is enabled, but DebugPrintf uses a normal descriptor and currently can't "
                            "exist with descriptor buffers. [Disabling debug_printf]");
            gpuav_settings.debug_printf_enabled = false;
        }
    }

    // If we have turned off all the possible things to instrument, turn off everything fully
    if (!gpuav_settings.IsShaderInstrumentationEnabled()) {
        gpuav_settings.DisableShaderInstrumentationAndOptions();
    }

    gpuav_settings.TracyLogSettings();
}

void Validator::InternalVmaError(LogObjectList objlist, VkResult result, const char *const specific_message) const {
    aborted_ = true;
    std::string error_message = specific_message;

    char *stats_string;
    vmaBuildStatsString(vma_allocator_, &stats_string, false);
    error_message += " VMA statistics = ";
    error_message += stats_string;
    vmaFreeStatsString(vma_allocator_, stats_string);

    char const *layer_name = gpuav_settings.debug_printf_only ? "DebugPrintf" : "GPU-AV";
    char const *vuid = gpuav_settings.debug_printf_only ? "UNASSIGNED-DEBUG-PRINTF" : "UNASSIGNED-GPU-Assisted-Validation";

    LogError(vuid, objlist, Location(vvl::Func::Empty), "Internal VMA Error (%s), %s is being disabled. Details:\n%s",
             string_VkResult(result), layer_name, error_message.c_str());

    // Once we encounter an internal issue disconnect everything.
    // This prevents need to check "if (aborted)" (which is awful when we easily forget to check somewhere and the user gets spammed
    // with errors making it hard to see the first error with the real source of the problem).
    dispatch_device_->ReleaseValidationObject(LayerObjectTypeGpuAssisted);
}

// Things like DescriptorHeap are singleton class that lives in GPU-AV, but are used when state tracking adds/destroy new resources
// we need to track. One issue is on vkDestroyDevice we need to teardown the GPU-AV class, then after we try and destroy leaked
// state objects (ex. user forgot to call vkDestroySampler).
void Validator::DestroySubstate() {
    if (!dispatch_device_ || aborted_) {
        return;
    }

    // While this is not ideal, it is more important to keep normal code fast and do extra cleanup on teardown
    for (auto object_it = dispatch_device_->object_dispatch.begin(); object_it != dispatch_device_->object_dispatch.end();
         object_it++) {
        if ((*object_it)->container_type == LayerObjectTypeStateTracker) {
            auto &state_tracker = dynamic_cast<vvl::DeviceState &>(**object_it);
            state_tracker.RemoveSubState(LayerObjectTypeGpuAssisted);
        }
    }
}

}  // namespace gpuav