1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/* Copyright (c) 2024-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gpuav/core/gpuav.h"
#include "gpuav/resources/gpuav_shader_resources.h"
#include "gpuav/resources/gpuav_state_trackers.h"
namespace gpuav {
// Returns the number of bytes to hold 32 bit aligned array of bits.
static uint32_t BitBufferSize(uint32_t num_bits) {
static constexpr uint32_t kBitsPerWord = 32;
return (((num_bits + (kBitsPerWord - 1)) & ~(kBitsPerWord - 1)) / kBitsPerWord) * sizeof(uint32_t);
}
DescriptorHeap::DescriptorHeap(Validator& gpuav, uint32_t max_descriptors) : max_descriptors_(max_descriptors), buffer_(gpuav) {
// If max_descriptors_ is 0, GPU-AV aborted during vkCreateDevice(). We still need to
// support calls into this class as no-ops if this happens.
if (max_descriptors_ == 0) {
return;
}
VkBufferCreateInfo buffer_info = vku::InitStruct<VkBufferCreateInfo>();
buffer_info.size = BitBufferSize(max_descriptors_ + 1); // add extra entry since 0 is the invalid id.
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
VmaAllocationCreateInfo alloc_info{};
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
const bool success = buffer_.Create(&buffer_info, &alloc_info);
if (!success) {
return;
}
gpu_heap_state_ = (uint32_t*)buffer_.GetMappedPtr();
memset(gpu_heap_state_, 0, static_cast<size_t>(buffer_info.size));
}
DescriptorHeap::~DescriptorHeap() {
if (max_descriptors_ > 0) {
buffer_.Destroy();
gpu_heap_state_ = nullptr;
}
}
DescriptorId DescriptorHeap::NextId(const VulkanTypedHandle& handle) {
if (max_descriptors_ == 0) {
return 0;
}
DescriptorId result;
// NOTE: valid ids are in the range [1, max_descriptors_] (inclusive)
// 0 is the invalid id.
std::lock_guard guard(lock_);
if (alloc_map_.size() >= max_descriptors_) {
return 0;
}
do {
result = next_id_++;
if (next_id_ > max_descriptors_) {
next_id_ = 1;
}
} while (alloc_map_.count(result) > 0);
alloc_map_[result] = handle;
gpu_heap_state_[result / 32] |= 1u << (result & 31);
return result;
}
void DescriptorHeap::DeleteId(DescriptorId id) {
if (max_descriptors_ > 0) {
std::lock_guard guard(lock_);
// Note: We don't mess with next_id_ here because ids should be assigned in LRU order.
gpu_heap_state_[id / 32] &= ~(1u << (id & 31));
alloc_map_.erase(id);
}
}
struct DescriptorChecksCbState {
vko::BufferRange last_bound_desc_sets_state_ssbo;
};
void DescriptorChecksOnFinishDeviceSetup(Validator& gpuav) {
if (!gpuav.gpuav_settings.shader_instrumentation.descriptor_checks) {
gpuav.shared_resources_manager.GetOrCreate<DescriptorHeap>(gpuav, 0);
return;
}
VkPhysicalDeviceDescriptorIndexingProperties desc_indexing_props = vku::InitStructHelper();
VkPhysicalDeviceProperties2 props2 = vku::InitStructHelper(&desc_indexing_props);
DispatchGetPhysicalDeviceProperties2Helper(gpuav.api_version, gpuav.physical_device, &props2);
uint32_t num_descs = desc_indexing_props.maxUpdateAfterBindDescriptorsInAllPools;
if (num_descs == 0 || num_descs > glsl::kDebugInputBindlessMaxDescriptors) {
num_descs = glsl::kDebugInputBindlessMaxDescriptors;
}
gpuav.shared_resources_manager.GetOrCreate<DescriptorHeap>(gpuav, num_descs);
}
void RegisterDescriptorChecksValidation(Validator& gpuav, CommandBufferSubState& cb) {
if (!gpuav.gpuav_settings.shader_instrumentation.descriptor_checks) {
return;
}
DescriptorSetBindings& desc_set_bindings = cb.shared_resources_cache.GetOrCreate<DescriptorSetBindings>();
desc_set_bindings.on_update_bound_descriptor_sets.emplace_back(
[](Validator& gpuav, CommandBufferSubState& cb, DescriptorSetBindings::BindingCommand& desc_binding_cmd) {
DescriptorChecksCbState& dc_cb_state = cb.shared_resources_cache.GetOrCreate<DescriptorChecksCbState>();
dc_cb_state.last_bound_desc_sets_state_ssbo =
cb.gpu_resources_manager.GetHostVisibleBufferRange(sizeof(glsl::BoundDescriptorSetsStateSSBO));
dc_cb_state.last_bound_desc_sets_state_ssbo.Clear();
auto desc_state_ssbo =
static_cast<glsl::BoundDescriptorSetsStateSSBO*>(dc_cb_state.last_bound_desc_sets_state_ssbo.offset_mapped_ptr);
desc_state_ssbo->descriptor_init_status = gpuav.shared_resources_manager.Get<DescriptorHeap>().GetDeviceAddress();
for (size_t bound_ds_i = 0; bound_ds_i < desc_binding_cmd.bound_descriptor_sets.size(); ++bound_ds_i) {
auto& bound_ds = desc_binding_cmd.bound_descriptor_sets[bound_ds_i];
// Account for gaps in descriptor sets bindings
if (!bound_ds) {
continue;
}
if (bound_ds->IsUpdateAfterBind()) {
continue;
}
desc_state_ssbo->descriptor_set_types[bound_ds_i] = SubState(*bound_ds).GetTypeAddress(gpuav);
}
desc_binding_cmd.descritpor_state_ssbo = dc_cb_state.last_bound_desc_sets_state_ssbo;
});
cb.on_instrumentation_desc_set_update_functions.emplace_back(
[dummy_buffer_range = vko::BufferRange{}](CommandBufferSubState& cb, VkPipelineBindPoint,
VkDescriptorBufferInfo& out_buffer_info, uint32_t& out_dst_binding) mutable {
DescriptorChecksCbState* dc_cb_state = cb.shared_resources_cache.TryGet<DescriptorChecksCbState>();
if (dc_cb_state) {
out_buffer_info.buffer = dc_cb_state->last_bound_desc_sets_state_ssbo.buffer;
out_buffer_info.offset = dc_cb_state->last_bound_desc_sets_state_ssbo.offset;
out_buffer_info.range = dc_cb_state->last_bound_desc_sets_state_ssbo.size;
} else {
// Eventually, no descriptor set was bound in command buffer.
// Instrumenation descriptor set is already defined at this point and needs a binding,
// so just provide a dummy buffer
if (dummy_buffer_range.buffer == VK_NULL_HANDLE) {
dummy_buffer_range = cb.gpu_resources_manager.GetDeviceLocalBufferRange(64);
}
out_buffer_info.buffer = dummy_buffer_range.buffer;
out_buffer_info.offset = dummy_buffer_range.offset;
out_buffer_info.range = dummy_buffer_range.size;
}
out_dst_binding = glsl::kBindingInstDescriptorIndexingOOB;
});
// For every descriptor binding command, update a GPU buffer holding the type of each bound descriptor set
cb.on_pre_cb_submission_functions.emplace_back([](Validator& gpuav, CommandBufferSubState& cb, VkCommandBuffer) {
DescriptorSetBindings& desc_set_bindings = cb.shared_resources_cache.Get<DescriptorSetBindings>();
for (DescriptorSetBindings::BindingCommand& desc_binding_cmd : desc_set_bindings.descriptor_set_binding_commands) {
auto desc_state_ssbo_ptr =
static_cast<glsl::BoundDescriptorSetsStateSSBO*>(desc_binding_cmd.descritpor_state_ssbo.offset_mapped_ptr);
for (size_t bound_ds_i = 0; bound_ds_i < desc_binding_cmd.bound_descriptor_sets.size(); ++bound_ds_i) {
auto& bound_ds = desc_binding_cmd.bound_descriptor_sets[bound_ds_i];
// Account for gaps in descriptor sets bindings
if (!bound_ds) {
continue;
}
DescriptorSetSubState& desc_set_state = SubState(*bound_ds);
desc_state_ssbo_ptr->descriptor_set_types[bound_ds_i] = desc_set_state.GetTypeAddress(gpuav);
}
}
});
}
} // namespace gpuav
|