1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
|
/* Copyright (c) 2020-2025 The Khronos Group Inc.
* Copyright (c) 2020-2025 Valve Corporation
* Copyright (c) 2020-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gpuav/instrumentation/gpuav_shader_instrumentor.h"
#include <vulkan/vulkan_core.h>
#include <cstdint>
#include "error_message/error_location.h"
#include "generated/vk_extension_helper.h"
#include "generated/dispatch_functions.h"
#include "chassis/chassis_modification_state.h"
#include "utils/shader_utils.h"
#include "gpuav/shaders/gpuav_shaders_constants.h"
#include "gpuav/shaders/gpuav_error_codes.h"
#include "gpuav/spirv/log_error_pass.h"
#include "error_message/spirv_logging.h"
#include <spirv/unified1/NonSemanticShaderDebugInfo100.h>
#include <spirv/unified1/spirv.hpp>
#include "state_tracker/pipeline_state.h"
#include "state_tracker/descriptor_sets.h"
#include "state_tracker/shader_object_state.h"
#include "gpuav/resources/gpuav_state_trackers.h"
#include "gpuav/spirv/module.h"
#include "gpuav/spirv/descriptor_indexing_oob_pass.h"
#include "gpuav/spirv/buffer_device_address_pass.h"
#include "gpuav/spirv/descriptor_indexing_oob_pass.h"
#include "gpuav/spirv/descriptor_class_general_buffer_pass.h"
#include "gpuav/spirv/descriptor_class_texel_buffer_pass.h"
#include "gpuav/spirv/ray_query_pass.h"
#include "gpuav/spirv/debug_printf_pass.h"
#include "gpuav/spirv/post_process_descriptor_indexing_pass.h"
#include "gpuav/spirv/vertex_attribute_fetch_oob.h"
#include <filesystem>
#include <cassert>
#include <filesystem>
namespace fs = std::filesystem;
#include <string>
namespace gpuav {
ReadLockGuard GpuShaderInstrumentor::ReadLock() const {
if (global_settings.fine_grained_locking) {
return ReadLockGuard(validation_object_mutex, std::defer_lock);
} else {
return ReadLockGuard(validation_object_mutex);
}
}
WriteLockGuard GpuShaderInstrumentor::WriteLock() {
if (global_settings.fine_grained_locking) {
return WriteLockGuard(validation_object_mutex, std::defer_lock);
} else {
return WriteLockGuard(validation_object_mutex);
}
}
// In charge of getting things for shader instrumentation that both GPU-AV and DebugPrintF will need
void GpuShaderInstrumentor::FinishDeviceSetup(const VkDeviceCreateInfo *pCreateInfo, const Location &loc) {
BaseClass::FinishDeviceSetup(pCreateInfo, loc);
// Update feature and extension state based on changes made to the create info.
GetEnabledDeviceFeatures(pCreateInfo, &modified_features, api_version);
modified_extensions = DeviceExtensions(extensions, api_version, pCreateInfo);
// Check hard requirements for GPU-AV against what we enabled.
if (!modified_features.fragmentStoresAndAtomics) {
InternalError(
device, loc,
"GPU Shader Instrumentation requires fragmentStoresAndAtomics to allow witting out data inside the fragment shader.");
return;
}
if (!modified_features.vertexPipelineStoresAndAtomics) {
InternalError(device, loc,
"GPU Shader Instrumentation requires vertexPipelineStoresAndAtomics to allow witting out data inside the "
"vertex shader.");
return;
}
if (!modified_features.timelineSemaphore) {
InternalError(device, loc,
"GPU Shader Instrumentation requires timelineSemaphore to manage when command buffers are submitted at queue "
"submit time.");
return;
}
if (!modified_features.bufferDeviceAddress) {
InternalError(device, loc, "GPU Shader Instrumentation requires bufferDeviceAddress to manage witting out of the shader.");
return;
}
if (modified_features.vulkanMemoryModel && !modified_features.vulkanMemoryModelDeviceScope) {
InternalError(device, loc,
"GPU Shader Instrumentation requires vulkanMemoryModelDeviceScope feature (if vulkanMemoryModel is enabled) "
"to let us call atomicAdd to the output buffer.");
return;
}
// maxBoundDescriptorSets limit, but possibly adjusted
const uint32_t adjusted_max_desc_sets_limit =
std::min(kMaxAdjustedBoundDescriptorSet, phys_dev_props.limits.maxBoundDescriptorSets);
// If gpu_validation_reserve_binding_slot: the max slot is where we reserved
// else: always use the last possible set as least likely to be used
instrumentation_desc_set_bind_index_ = adjusted_max_desc_sets_limit - 1;
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (adjusted_max_desc_sets_limit == 1) {
InternalError(device, loc, "Device can bind only a single descriptor set.");
return;
}
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
static_cast<uint32_t>(instrumentation_bindings_.size()),
instrumentation_bindings_.data()};
VkResult result = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, nullptr, &instrumentation_desc_layout_);
if (result != VK_SUCCESS) {
InternalError(device, loc, "vkCreateDescriptorSetLayout failed for internal descriptor set");
Cleanup();
return;
}
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
0, nullptr};
result = DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, nullptr, &dummy_desc_layout_);
if (result != VK_SUCCESS) {
InternalError(device, loc, "vkCreateDescriptorSetLayout failed for internal dummy descriptor set");
Cleanup();
return;
}
std::vector<VkDescriptorSetLayout> debug_layouts;
for (uint32_t j = 0; j < instrumentation_desc_set_bind_index_; ++j) {
debug_layouts.push_back(dummy_desc_layout_);
}
debug_layouts.push_back(instrumentation_desc_layout_);
const VkPipelineLayoutCreateInfo debug_pipeline_layout_info = {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
nullptr,
0u,
static_cast<uint32_t>(debug_layouts.size()),
debug_layouts.data(),
0u,
nullptr};
result = DispatchCreatePipelineLayout(device, &debug_pipeline_layout_info, nullptr, &instrumentation_pipeline_layout_);
if (result != VK_SUCCESS) {
InternalError(device, loc, "vkCreateDescriptorSetLayout failed for internal pipeline layout");
Cleanup();
return;
}
}
void GpuShaderInstrumentor::Cleanup() {
if (instrumentation_desc_layout_) {
DispatchDestroyDescriptorSetLayout(device, instrumentation_desc_layout_, nullptr);
instrumentation_desc_layout_ = VK_NULL_HANDLE;
}
if (dummy_desc_layout_) {
DispatchDestroyDescriptorSetLayout(device, dummy_desc_layout_, nullptr);
dummy_desc_layout_ = VK_NULL_HANDLE;
}
if (instrumentation_pipeline_layout_) {
DispatchDestroyPipelineLayout(device, instrumentation_pipeline_layout_, nullptr);
instrumentation_pipeline_layout_ = VK_NULL_HANDLE;
}
}
void GpuShaderInstrumentor::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator,
const RecordObject &record_obj) {
Cleanup();
BaseClass::PreCallRecordDestroyDevice(device, pAllocator, record_obj);
}
// Just gives a warning about a possible deadlock.
bool GpuShaderInstrumentor::ValidateCmdWaitEvents(VkCommandBuffer command_buffer, VkPipelineStageFlags2 src_stage_mask,
const Location &loc) const {
if (src_stage_mask & VK_PIPELINE_STAGE_2_HOST_BIT) {
std::ostringstream error_msg;
error_msg << loc.Message()
<< " recorded with VK_PIPELINE_STAGE_HOST_BIT set. GPU-Assisted validation waits on queue completion. This wait "
"could block the host's signaling of this event, resulting in deadlock.";
InternalError(command_buffer, loc, error_msg.str().c_str());
}
return false;
}
bool GpuShaderInstrumentor::PreCallValidateCmdWaitEvents(
VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers, const ErrorObject &error_obj) const {
return ValidateCmdWaitEvents(commandBuffer, static_cast<VkPipelineStageFlags2>(srcStageMask), error_obj.location);
}
bool GpuShaderInstrumentor::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount,
const VkEvent *pEvents, const VkDependencyInfoKHR *pDependencyInfos,
const ErrorObject &error_obj) const {
return PreCallValidateCmdWaitEvents2(commandBuffer, eventCount, pEvents, pDependencyInfos, error_obj);
}
bool GpuShaderInstrumentor::PreCallValidateCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount,
const VkEvent *pEvents, const VkDependencyInfo *pDependencyInfos,
const ErrorObject &error_obj) const {
VkPipelineStageFlags2 src_stage_mask = 0;
for (uint32_t i = 0; i < eventCount; i++) {
auto exec_scopes = sync_utils::GetExecScopes(pDependencyInfos[i]);
src_stage_mask |= exec_scopes.src;
}
return ValidateCmdWaitEvents(commandBuffer, src_stage_mask, error_obj.location);
}
void GpuShaderInstrumentor::PreCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipelineLayout *pPipelineLayout, const RecordObject &record_obj,
chassis::CreatePipelineLayout &chassis_state) {
if (gpuav_settings.IsSpirvModified()) {
if (chassis_state.modified_create_info.setLayoutCount > instrumentation_desc_set_bind_index_) {
std::ostringstream strm;
strm << "pCreateInfo::setLayoutCount (" << chassis_state.modified_create_info.setLayoutCount
<< ") will conflicts with validation's descriptor set at slot " << instrumentation_desc_set_bind_index_ << ". "
<< "This Pipeline Layout has too many descriptor sets that will not allow GPU shader instrumentation to be setup "
"for pipelines created with it, therefore no validation error will be repored for them by GPU-AV at runtime.";
InternalWarning(device, record_obj.location, strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
chassis_state.new_layouts.reserve(instrumentation_desc_set_bind_index_ + 1);
chassis_state.new_layouts.insert(chassis_state.new_layouts.end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < instrumentation_desc_set_bind_index_; ++i) {
chassis_state.new_layouts.push_back(dummy_desc_layout_);
}
chassis_state.new_layouts.push_back(instrumentation_desc_layout_);
chassis_state.modified_create_info.pSetLayouts = chassis_state.new_layouts.data();
chassis_state.modified_create_info.setLayoutCount = instrumentation_desc_set_bind_index_ + 1;
}
}
}
void GpuShaderInstrumentor::PostCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
const RecordObject &record_obj,
chassis::CreateShaderModule &chassis_state) {
if (record_obj.result != VK_SUCCESS) {
return;
}
// By default, we instrument everything, but if the setting is enabled, we only will instrument the shaders the app picks
if (gpuav_settings.select_instrumented_shaders && IsSelectiveInstrumentationEnabled(pCreateInfo->pNext)) {
// If this is being filled up, likely only a few shaders and the app scope is narrowed down, so no need to spend time
// removing these later
selected_instrumented_shaders.insert(*pShaderModule);
};
}
// We on the spot create a VkShaderEXT without instrumentation to return to the user
// We assume people are not trying to use GPU-AV while calling vkGetShaderBinaryDataEXT
// But this is needed for things like CTS that are using this to mock a fake Binary Shader Object
void GpuShaderInstrumentor::PreCallRecordGetShaderBinaryDataEXT(VkDevice device, VkShaderEXT shader, size_t *pDataSize, void *pData,
const RecordObject &record_obj,
chassis::ShaderBinaryData &chassis_state) {
const auto &shader_object_state = Get<vvl::ShaderObject>(shader);
ASSERT_AND_RETURN(shader_object_state);
auto &sub_state = SubState(*shader_object_state);
VkShaderEXT original_handle = VK_NULL_HANDLE;
auto it = instrumented_shaders_map_.find(sub_state.unique_shader_id);
if (it == instrumented_shaders_map_.end() || it->second.original_spirv.empty()) {
// This will occur if the shader was so simple we didn't even instrument anything
return;
}
// The original pCode might be gone, so need to make a shallow copy and put original SPIR-V inside
VkShaderCreateInfoEXT create_info_copy = *sub_state.original_create_info.ptr();
// The pCode doesn't live in the safe struct, we need to grab it from our other map
const gpuav::InstrumentedShader *instrumented_shader = &it->second;
create_info_copy.pCode = instrumented_shader->original_spirv.data();
create_info_copy.codeSize = instrumented_shader->original_spirv.size() * sizeof(uint32_t);
// Only warn on the first call to query the size
if (pData == nullptr) {
LogWarning("WARNING-vkGetShaderBinaryDataEXT-GPU-AV", shader, record_obj.location,
"GPU-AV instruments all shaders at vkCreateShadersEXT time, this means there are embedded descriptors bound "
"that we can't detect if needed or not later.\nWe will be calling vkCreateShadersEXT again now to create the "
"original shader to pass down to the drivere.");
}
// vkGetShaderBinaryDataEXT will be called twice, only need to re-created once
if (sub_state.original_handle == VK_NULL_HANDLE) {
DispatchCreateShadersEXT(device, 1, &create_info_copy, nullptr, &original_handle);
sub_state.original_handle = original_handle; // will be destroyed later
}
chassis_state.modified_shader_handle = sub_state.original_handle;
}
bool GpuShaderInstrumentor::PreCallRecordShaderObjectInstrumentation(
vku::safe_VkShaderCreateInfoEXT &modified_create_info, const Location &create_info_loc,
chassis::ShaderObjectInstrumentationData &instrumentation_data) {
if (gpuav_settings.select_instrumented_shaders && !IsSelectiveInstrumentationEnabled(modified_create_info.pNext)) {
return false;
}
std::vector<uint32_t> &instrumented_spirv = instrumentation_data.instrumented_spirv;
InstrumentationDescriptorSetLayouts instrumentation_dsl;
BuildDescriptorSetLayoutInfo(modified_create_info, instrumentation_dsl);
const uint32_t unique_shader_id = unique_shader_module_id_++;
const bool is_shader_instrumented = InstrumentShader(
vvl::make_span(static_cast<const uint32_t *>(modified_create_info.pCode), modified_create_info.codeSize / sizeof(uint32_t)),
unique_shader_id, instrumentation_dsl, create_info_loc, instrumented_spirv);
if (is_shader_instrumented) {
instrumentation_data.unique_shader_id = unique_shader_id;
modified_create_info.pCode = instrumented_spirv.data();
modified_create_info.codeSize = instrumented_spirv.size() * sizeof(uint32_t);
}
return is_shader_instrumented;
}
void GpuShaderInstrumentor::PreCallRecordCreateShadersEXT(VkDevice device, uint32_t createInfoCount,
const VkShaderCreateInfoEXT *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkShaderEXT *pShaders,
const RecordObject &record_obj, chassis::ShaderObject &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) return;
// Resize here so if using just CoreCheck we don't waste time allocating this
chassis_state.instrumentations_data.resize(createInfoCount);
chassis_state.modified_create_infos.resize(createInfoCount);
for (uint32_t i = 0; i < createInfoCount; ++i) {
// Need deep copy as there might be pNext items
vku::safe_VkShaderCreateInfoEXT &new_create_info = chassis_state.modified_create_infos[i];
new_create_info.initialize(&pCreateInfos[i]);
const Location &create_info_loc = record_obj.location.dot(vvl::Field::pCreateInfos, i);
auto &instrumentation_data = chassis_state.instrumentations_data[i];
if (new_create_info.codeType != VK_SHADER_CODE_TYPE_SPIRV_EXT) {
continue;
}
// See pipeline version for explanation
if (new_create_info.flags & VK_SHADER_CREATE_INDIRECT_BINDABLE_BIT_EXT) {
InternalError(device, create_info_loc,
"Unable to instrument shader using VkIndirectExecutionSetEXT validly, things might work, but likely will "
"not because of GPU-AV's usage of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC (If you don't "
"need VK_SHADER_CREATE_INDIRECT_BINDABLE_BIT_EXT, turn it off).");
}
if (new_create_info.setLayoutCount > instrumentation_desc_set_bind_index_) {
std::ostringstream strm;
strm << "pCreateInfos[" << i << "]::setLayoutCount (" << new_create_info.setLayoutCount
<< ") will conflicts with validation's descriptor set at slot " << instrumentation_desc_set_bind_index_ << ". "
<< "This Shader Object has too many descriptor sets that will not allow GPU shader instrumentation to be setup "
"for VkShaderEXT created with it, therefore no validation error will be repored for them by GPU-AV at "
"runtime.";
InternalWarning(device, record_obj.location, strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
const VkShaderCreateInfoEXT &original_create_info = pCreateInfos[i];
// We need to remove the old layouts we copied in safe_VkShaderCreateInfoEXT::initialize
if (new_create_info.pSetLayouts) {
delete[] new_create_info.pSetLayouts;
}
new_create_info.setLayoutCount = instrumentation_desc_set_bind_index_ + 1;
new_create_info.pSetLayouts = new VkDescriptorSetLayout[new_create_info.setLayoutCount];
for (uint32_t k = 0; k < original_create_info.setLayoutCount; ++k) {
new_create_info.pSetLayouts[k] = original_create_info.pSetLayouts[k];
}
for (uint32_t k = original_create_info.setLayoutCount; k < instrumentation_desc_set_bind_index_; ++k) {
new_create_info.pSetLayouts[k] = dummy_desc_layout_;
}
new_create_info.pSetLayouts[instrumentation_desc_set_bind_index_] = instrumentation_desc_layout_;
chassis_state.is_modified |=
PreCallRecordShaderObjectInstrumentation(new_create_info, create_info_loc, instrumentation_data);
}
}
chassis_state.pCreateInfos = reinterpret_cast<VkShaderCreateInfoEXT *>(chassis_state.modified_create_infos.data());
}
void GpuShaderInstrumentor::PostCallRecordCreateShadersEXT(VkDevice device, uint32_t createInfoCount,
const VkShaderCreateInfoEXT *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkShaderEXT *pShaders,
const RecordObject &record_obj, chassis::ShaderObject &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) {
return;
}
// This can occur if the driver failed to compile the instrumented shader or if a PreCall step failed
if (!chassis_state.is_modified) {
return;
}
for (uint32_t i = 0; i < createInfoCount; ++i) {
// If there are multiple shaders being created, and one is bad, will return a non VK_SUCCESS but we need to check if the
// VkShaderEXT was null or not to actually know if it was created
const VkShaderEXT shader_handle = pShaders[i];
if (shader_handle == VK_NULL_HANDLE) {
continue;
}
auto &instrumentation_data = chassis_state.instrumentations_data[i];
// if the shader for some reason was not instrumented, there is nothing to save
// (like not using VK_SHADER_CODE_TYPE_SPIRV_EXT)
if (!instrumentation_data.IsInstrumented()) {
continue;
}
const auto &shader_object_state = Get<vvl::ShaderObject>(shader_handle);
ASSERT_AND_CONTINUE(shader_object_state);
auto &sub_state = SubState(*shader_object_state);
sub_state.was_instrumented = true;
sub_state.unique_shader_id = instrumentation_data.unique_shader_id;
// Note - this doesn't make a deep copy of the pCode, but does of the DescriptorSetLayout which we
sub_state.original_create_info.initialize(&pCreateInfos[i]);
// We currently need to store a copy of the original, non-instrumented shader so if there is debug information.
std::vector<uint32_t> code;
if (shader_object_state->spirv) {
code = shader_object_state->spirv->words_;
}
instrumented_shaders_map_.insert_or_assign(instrumentation_data.unique_shader_id, VK_NULL_HANDLE, VK_NULL_HANDLE,
shader_handle, std::move(code));
}
}
void GpuShaderInstrumentor::PreCallRecordDestroyShaderEXT(VkDevice device, VkShaderEXT shader,
const VkAllocationCallbacks *pAllocator, const RecordObject &record_obj) {
if (auto shader_object_state = Get<vvl::ShaderObject>(shader)) {
auto &sub_state = SubState(*shader_object_state);
instrumented_shaders_map_.pop(sub_state.unique_shader_id);
if (sub_state.original_handle != VK_NULL_HANDLE) {
DispatchDestroyShaderEXT(device, sub_state.original_handle, nullptr);
}
}
}
void GpuShaderInstrumentor::PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, PipelineStates &pipeline_states,
chassis::CreateGraphicsPipelines &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) return;
chassis_state.shader_instrumentations_metadata.resize(count);
chassis_state.modified_create_infos.resize(count);
for (uint32_t i = 0; i < count; ++i) {
const auto &pipeline_state = pipeline_states[i];
const Location create_info_loc = record_obj.location.dot(vvl::Field::pCreateInfos, i);
// Need to make a deep copy so if SPIR-V is inlined, user doesn't see it after the call
auto &new_pipeline_ci = chassis_state.modified_create_infos[i];
new_pipeline_ci.initialize(&pipeline_state->GraphicsCreateInfo());
if (!NeedPipelineCreationShaderInstrumentation(*pipeline_state, create_info_loc)) {
continue;
}
auto &shader_instrumentation_metadata = chassis_state.shader_instrumentations_metadata[i];
bool success = false;
if (pipeline_state->linking_shaders != 0) {
success = PreCallRecordPipelineCreationShaderInstrumentationGPL(pAllocator, *pipeline_state, new_pipeline_ci,
create_info_loc, shader_instrumentation_metadata);
} else {
success = PreCallRecordPipelineCreationShaderInstrumentation(pAllocator, *pipeline_state, new_pipeline_ci,
create_info_loc, shader_instrumentation_metadata);
}
if (!success) {
return;
}
}
chassis_state.is_modified = true;
chassis_state.pCreateInfos = reinterpret_cast<VkGraphicsPipelineCreateInfo *>(chassis_state.modified_create_infos.data());
}
void GpuShaderInstrumentor::PreCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, PipelineStates &pipeline_states,
chassis::CreateComputePipelines &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) return;
chassis_state.shader_instrumentations_metadata.resize(count);
chassis_state.modified_create_infos.resize(count);
for (uint32_t i = 0; i < count; ++i) {
const auto &pipeline_state = pipeline_states[i];
const Location create_info_loc = record_obj.location.dot(vvl::Field::pCreateInfos, i);
// Need to make a deep copy so if SPIR-V is inlined, user doesn't see it after the call
auto &new_pipeline_ci = chassis_state.modified_create_infos[i];
new_pipeline_ci.initialize(&pipeline_state->ComputeCreateInfo());
if (!NeedPipelineCreationShaderInstrumentation(*pipeline_state, create_info_loc)) {
continue;
}
auto &shader_instrumentation_metadata = chassis_state.shader_instrumentations_metadata[i];
bool success = PreCallRecordPipelineCreationShaderInstrumentation(pAllocator, *pipeline_state, new_pipeline_ci,
create_info_loc, shader_instrumentation_metadata);
if (!success) {
return;
}
}
chassis_state.is_modified = true;
chassis_state.pCreateInfos = reinterpret_cast<VkComputePipelineCreateInfo *>(chassis_state.modified_create_infos.data());
}
void GpuShaderInstrumentor::PreCallRecordCreateRayTracingPipelinesKHR(
VkDevice device, VkDeferredOperationKHR deferredOperation, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, PipelineStates &pipeline_states, chassis::CreateRayTracingPipelinesKHR &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) return;
chassis_state.shader_instrumentations_metadata.resize(count);
chassis_state.modified_create_infos.resize(count);
for (uint32_t i = 0; i < count; ++i) {
const auto &pipeline_state = pipeline_states[i];
const Location create_info_loc = record_obj.location.dot(vvl::Field::pCreateInfos, i);
// Need to make a deep copy so if SPIR-V is inlined, user doesn't see it after the call
auto &new_pipeline_ci = chassis_state.modified_create_infos[i];
new_pipeline_ci.initialize(&pipeline_state->RayTracingCreateInfo());
if (!NeedPipelineCreationShaderInstrumentation(*pipeline_state, create_info_loc)) {
continue;
}
auto &shader_instrumentation_metadata = chassis_state.shader_instrumentations_metadata[i];
bool success = PreCallRecordPipelineCreationShaderInstrumentation(pAllocator, *pipeline_state, new_pipeline_ci,
create_info_loc, shader_instrumentation_metadata);
if (!success) {
return;
}
}
chassis_state.is_modified = true;
chassis_state.pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoKHR *>(chassis_state.modified_create_infos.data());
}
template <typename CreateInfos, typename SafeCreateInfos>
static void UtilCopyCreatePipelineFeedbackData(CreateInfos &create_info, SafeCreateInfos &safe_create_info) {
auto src_feedback_struct = vku::FindStructInPNextChain<VkPipelineCreationFeedbackCreateInfo>(safe_create_info.pNext);
if (!src_feedback_struct) return;
auto dst_feedback_struct = const_cast<VkPipelineCreationFeedbackCreateInfo *>(
vku::FindStructInPNextChain<VkPipelineCreationFeedbackCreateInfo>(create_info.pNext));
*dst_feedback_struct->pPipelineCreationFeedback = *src_feedback_struct->pPipelineCreationFeedback;
for (uint32_t j = 0; j < src_feedback_struct->pipelineStageCreationFeedbackCount; j++) {
dst_feedback_struct->pPipelineStageCreationFeedbacks[j] = src_feedback_struct->pPipelineStageCreationFeedbacks[j];
}
}
void GpuShaderInstrumentor::PostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, PipelineStates &pipeline_states,
chassis::CreateGraphicsPipelines &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) return;
// VK_PIPELINE_COMPILE_REQUIRED means that the current pipeline creation call was used to poke the driver cache,
// no pipeline is created in this case
if (record_obj.result == VK_PIPELINE_COMPILE_REQUIRED) return;
// This can occur if the driver failed to compile the instrumented shader or if a PreCall step failed
if (!chassis_state.is_modified) return;
for (uint32_t i = 0; i < count; ++i) {
const VkPipeline pipeline_handle = pPipelines[i];
if (pipeline_handle == VK_NULL_HANDLE) {
continue; // vkspec.html#pipelines-multiple
}
UtilCopyCreatePipelineFeedbackData(pCreateInfos[i], chassis_state.modified_create_infos[i]);
auto pipeline_state = Get<vvl::Pipeline>(pipeline_handle);
ASSERT_AND_CONTINUE(pipeline_state);
// Move all instrumentation until the final linking time
if (pipeline_state->create_flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR) continue;
auto &shader_instrumentation_metadata = chassis_state.shader_instrumentations_metadata[i];
if (pipeline_state->linking_shaders != 0) {
PostCallRecordPipelineCreationShaderInstrumentationGPL(*pipeline_state, pAllocator, shader_instrumentation_metadata);
} else {
PostCallRecordPipelineCreationShaderInstrumentation(*pipeline_state, shader_instrumentation_metadata);
}
}
}
void GpuShaderInstrumentor::PostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, PipelineStates &pipeline_states,
chassis::CreateComputePipelines &chassis_state) {
if (!gpuav_settings.IsSpirvModified()) return;
// VK_PIPELINE_COMPILE_REQUIRED means that the current pipeline creation call was used to poke the driver cache,
// no pipeline is created in this case
if (record_obj.result == VK_PIPELINE_COMPILE_REQUIRED) return;
// This can occur if the driver failed to compile the instrumented shader or if a PreCall step failed
if (!chassis_state.is_modified) return;
for (uint32_t i = 0; i < count; ++i) {
const VkPipeline pipeline_handle = pPipelines[i];
if (pipeline_handle == VK_NULL_HANDLE) {
continue; // vkspec.html#pipelines-multiple
}
UtilCopyCreatePipelineFeedbackData(pCreateInfos[i], chassis_state.modified_create_infos[i]);
auto pipeline_state = Get<vvl::Pipeline>(pipeline_handle);
ASSERT_AND_CONTINUE(pipeline_state);
auto &shader_instrumentation_metadata = chassis_state.shader_instrumentations_metadata[i];
PostCallRecordPipelineCreationShaderInstrumentation(*pipeline_state, shader_instrumentation_metadata);
}
}
void GpuShaderInstrumentor::PostCallRecordCreateRayTracingPipelinesKHR(
VkDevice device, VkDeferredOperationKHR deferredOperation, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, PipelineStates &pipeline_states,
std::shared_ptr<chassis::CreateRayTracingPipelinesKHR> chassis_state) {
// This can occur if the driver failed to compile the instrumented shader or if a PreCall step failed
if (!chassis_state->is_modified) return;
if (!gpuav_settings.IsSpirvModified()) return;
// VK_PIPELINE_COMPILE_REQUIRED means that the current pipeline creation call was used to poke the driver cache,
// no pipeline is created in this case
if (record_obj.result == VK_PIPELINE_COMPILE_REQUIRED) return;
const bool is_operation_deferred = deferredOperation != VK_NULL_HANDLE && record_obj.result == VK_OPERATION_DEFERRED_KHR;
if (is_operation_deferred) {
for (uint32_t i = 0; i < count; ++i) {
UtilCopyCreatePipelineFeedbackData(pCreateInfos[i], chassis_state->modified_create_infos[i]);
}
if (dispatch_device_->wrap_handles) {
deferredOperation = dispatch_device_->Unwrap(deferredOperation);
}
auto found = dispatch_device_->deferred_operation_post_check.pop(deferredOperation);
std::vector<std::function<void(const std::vector<VkPipeline> &)>> deferred_op_post_checks;
if (found->first) {
deferred_op_post_checks = std::move(found->second);
} else {
// vvl::Device::PostCallRecordCreateRayTracingPipelinesKHR should have added a lambda in
// deferred_operation_post_check for the current deferredOperation.
// This lambda is responsible for initializing the pipeline state we maintain,
// this state will be accessed in the following lambda.
// Given how PostCallRecordCreateRayTracingPipelinesKHR is called in
// GpuShaderInstrumentor::PostCallRecordCreateRayTracingPipelinesKHR
// conditions holds as of writing. But it is something we need to be aware of.
assert(false);
return;
}
deferred_op_post_checks.emplace_back(
[this, held_chassis_state = chassis_state](const std::vector<VkPipeline> &vk_pipelines) mutable {
for (size_t i = 0; i < vk_pipelines.size(); ++i) {
std::shared_ptr<vvl::Pipeline> pipeline_state =
((GpuShaderInstrumentor *)this)->Get<vvl::Pipeline>(vk_pipelines[i]);
ASSERT_AND_CONTINUE(pipeline_state);
auto &shader_instrumentation_metadata = held_chassis_state->shader_instrumentations_metadata[i];
PostCallRecordPipelineCreationShaderInstrumentation(*pipeline_state, shader_instrumentation_metadata);
}
});
dispatch_device_->deferred_operation_post_check.insert(deferredOperation, std::move(deferred_op_post_checks));
} else {
for (uint32_t i = 0; i < count; ++i) {
const VkPipeline pipeline_handle = pPipelines[i];
if (pipeline_handle == VK_NULL_HANDLE) {
continue; // vkspec.html#pipelines-multiple
}
UtilCopyCreatePipelineFeedbackData(pCreateInfos[i], chassis_state->modified_create_infos[i]);
auto pipeline_state = Get<vvl::Pipeline>(pipeline_handle);
auto &shader_instrumentation_metadata = chassis_state->shader_instrumentations_metadata[i];
PostCallRecordPipelineCreationShaderInstrumentation(*pipeline_state, shader_instrumentation_metadata);
}
}
}
// Remove all the shader trackers associated with this destroyed pipeline.
void GpuShaderInstrumentor::PreCallRecordDestroyPipeline(VkDevice device, VkPipeline pipeline,
const VkAllocationCallbacks *pAllocator, const RecordObject &record_obj) {
if (auto pipeline_state = Get<vvl::Pipeline>(pipeline)) {
for (auto [unique_shader_id, shader_module_handle] : pipeline_state->instrumentation_data.instrumented_shader_modules) {
instrumented_shaders_map_.pop(unique_shader_id);
DispatchDestroyShaderModule(device, shader_module_handle, pAllocator);
}
if (pipeline_state->instrumentation_data.pre_raster_lib != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, pipeline_state->instrumentation_data.pre_raster_lib, pAllocator);
}
if (pipeline_state->instrumentation_data.frag_out_lib != VK_NULL_HANDLE) {
DispatchDestroyPipeline(device, pipeline_state->instrumentation_data.frag_out_lib, pAllocator);
}
}
}
template <typename CreateInfo>
VkShaderModule GetShaderModule(const CreateInfo &create_info, VkShaderStageFlagBits stage) {
for (uint32_t i = 0; i < create_info.stageCount; ++i) {
if (create_info.pStages[i].stage == stage) {
return create_info.pStages[i].module;
}
}
return {};
}
template <>
VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &create_info, VkShaderStageFlagBits) {
return create_info.stage.module;
}
template <typename SafeType>
void SetShaderModule(SafeType &create_info, const vku::safe_VkPipelineShaderStageCreateInfo &stage_info,
VkShaderModule shader_module, uint32_t stage_ci_index) {
create_info.pStages[stage_ci_index] = stage_info;
create_info.pStages[stage_ci_index].module = shader_module;
}
template <>
void SetShaderModule(vku::safe_VkComputePipelineCreateInfo &create_info,
const vku::safe_VkPipelineShaderStageCreateInfo &stage_info, VkShaderModule shader_module,
uint32_t stage_ci_index) {
assert(stage_ci_index == 0);
create_info.stage = stage_info;
create_info.stage.module = shader_module;
}
template <typename CreateInfo, typename StageInfo>
StageInfo &GetShaderStageCI(CreateInfo &ci, VkShaderStageFlagBits stage) {
static StageInfo null_stage{};
for (uint32_t i = 0; i < ci.stageCount; ++i) {
if (ci.pStages[i].stage == stage) {
return ci.pStages[i];
}
}
return null_stage;
}
template <>
vku::safe_VkPipelineShaderStageCreateInfo &GetShaderStageCI(vku::safe_VkComputePipelineCreateInfo &ci, VkShaderStageFlagBits) {
return ci.stage;
}
bool GpuShaderInstrumentor::IsSelectiveInstrumentationEnabled(const void *pNext) {
if (auto features = vku::FindStructInPNextChain<VkValidationFeaturesEXT>(pNext)) {
for (uint32_t i = 0; i < features->enabledValidationFeatureCount; i++) {
if (features->pEnabledValidationFeatures[i] == VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT) {
return true;
}
}
}
return false;
}
bool GpuShaderInstrumentor::NeedPipelineCreationShaderInstrumentation(vvl::Pipeline &pipeline_state, const Location &loc) {
// Currently there is a VU (VUID-VkIndirectExecutionSetPipelineInfoEXT-initialPipeline-11019) that prevents
// VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC in the pipeline layout, but we need it currently for GPU-AV.
// As a temporary solution, we will just not support people using DGC with IES
if (pipeline_state.create_flags & VK_PIPELINE_CREATE_2_INDIRECT_BINDABLE_BIT_EXT) {
InternalError(device, loc,
"Unable to instrument shader using VkIndirectExecutionSetEXT validly, things might work, but likely will not "
"because of GPU-AV's usage of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC (If you don't need "
"VK_PIPELINE_CREATE_2_INDIRECT_BINDABLE_BIT_EXT, turn it off).");
// don't return false, some drivers seem to not care and app might get away with it
}
// will hit with using GPL without shaders in them (ex. fragment output)
if (pipeline_state.stage_states.empty()) {
return false;
}
// Move all instrumentation until the final linking time
// This still needs to create a copy of the create_info (we *could* have a mix of GPL and non-GPL)
if (pipeline_state.create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
return false;
}
// If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the
// already instrumented shaders need to be replaced with uninstrumented shaders
if (pipeline_state.active_slots.find(instrumentation_desc_set_bind_index_) != pipeline_state.active_slots.end()) {
return false;
}
const auto pipeline_layout = pipeline_state.PipelineLayoutState();
if (pipeline_layout && pipeline_layout->set_layouts.size() > instrumentation_desc_set_bind_index_) {
return false;
}
return true;
}
void GpuShaderInstrumentor::BuildDescriptorSetLayoutInfo(const vvl::Pipeline &pipeline_state,
InstrumentationDescriptorSetLayouts &out_instrumentation_dsl) {
const auto pipeline_layout = pipeline_state.PipelineLayoutState();
if (!pipeline_layout) return;
out_instrumentation_dsl.set_index_to_bindings_layout_lut.resize(pipeline_layout->set_layouts.size());
for (uint32_t set_layout_index = 0; set_layout_index < pipeline_layout->set_layouts.size(); set_layout_index++) {
if (const auto set_layout_state = pipeline_layout->set_layouts[set_layout_index]) {
BuildDescriptorSetLayoutInfo(*set_layout_state, set_layout_index, out_instrumentation_dsl);
}
}
}
void GpuShaderInstrumentor::BuildDescriptorSetLayoutInfo(const vku::safe_VkShaderCreateInfoEXT &modified_create_info,
InstrumentationDescriptorSetLayouts &out_instrumentation_dsl) {
out_instrumentation_dsl.set_index_to_bindings_layout_lut.resize(modified_create_info.setLayoutCount);
for (const auto [set_layout_index, set_layout] :
vvl::enumerate(modified_create_info.pSetLayouts, modified_create_info.setLayoutCount)) {
if (auto set_layout_state = Get<vvl::DescriptorSetLayout>(set_layout)) {
BuildDescriptorSetLayoutInfo(*set_layout_state, set_layout_index, out_instrumentation_dsl);
}
}
}
void GpuShaderInstrumentor::BuildDescriptorSetLayoutInfo(const vvl::DescriptorSetLayout &set_layout_state,
const uint32_t set_layout_index,
InstrumentationDescriptorSetLayouts &out_instrumentation_dsl) {
if (set_layout_state.GetBindingCount() == 0) return;
const uint32_t binding_count = set_layout_state.GetMaxBinding() + 1;
auto &binding_layouts = out_instrumentation_dsl.set_index_to_bindings_layout_lut[set_layout_index];
binding_layouts.resize(binding_count);
uint32_t start = 0;
auto dsl_bindings = set_layout_state.GetBindings();
for (uint32_t binding_index = 0; binding_index < dsl_bindings.size(); binding_index++) {
auto &dsl_binding = dsl_bindings[binding_index];
if (dsl_binding.descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
binding_layouts[dsl_binding.binding] = {start, 1};
start += 1;
} else {
binding_layouts[dsl_binding.binding] = {start, dsl_binding.descriptorCount};
start += dsl_binding.descriptorCount;
}
const VkDescriptorBindingFlags flags = set_layout_state.GetDescriptorBindingFlagsFromBinding(binding_index);
if (vvl::IsBindless(flags)) {
out_instrumentation_dsl.has_bindless_descriptors = true;
}
}
}
bool GpuShaderInstrumentor::IsPipelineSelectedForInstrumentation(VkPipeline pipeline, const Location &loc) {
if (!gpuav_settings.select_instrumented_shaders) {
return true;
}
bool should_instrument_pipeline = false;
{
std::string pipeline_debug_name;
{
std::unique_lock<std::mutex> lock(debug_report->debug_output_mutex);
pipeline_debug_name = debug_report->GetUtilsObjectNameNoLock(HandleToUint64(pipeline));
}
should_instrument_pipeline = gpuav_settings.MatchesAnyShaderSelectionRegex(pipeline_debug_name);
}
if (should_instrument_pipeline) {
LogInfo("GPU-AV::Selective shader instrumentation", LogObjectList(), loc, "(%s) will be instrumented for validation.",
FormatHandle(pipeline).c_str());
}
return should_instrument_pipeline;
}
bool GpuShaderInstrumentor::IsShaderSelectedForInstrumentation(vku::safe_VkShaderModuleCreateInfo *modified_shader_module_ci,
VkShaderModule modified_shader, const Location &loc) {
if (!gpuav_settings.select_instrumented_shaders) {
return true;
}
bool should_instrument_shader = false;
{
if (modified_shader_module_ci && IsSelectiveInstrumentationEnabled(modified_shader_module_ci->pNext)) {
should_instrument_shader = true;
} else if (selected_instrumented_shaders.find(modified_shader) != selected_instrumented_shaders.end()) {
should_instrument_shader = true;
} else {
std::string shader_debug_name;
{
std::unique_lock<std::mutex> lock(debug_report->debug_output_mutex);
shader_debug_name = debug_report->GetUtilsObjectNameNoLock(HandleToUint64(modified_shader));
}
should_instrument_shader = gpuav_settings.MatchesAnyShaderSelectionRegex(shader_debug_name);
}
if (should_instrument_shader) {
LogInfo("GPU-AV::Selective shader instrumentation", LogObjectList(), loc, "(%s) will be instrumented for validation.",
FormatHandle(modified_shader).c_str());
}
}
return should_instrument_shader;
}
// Instrument all SPIR-V that is sent through pipeline. This can be done in various ways
// 1. VkCreateShaderModule and passed in VkShaderModule.
// For this we create our own VkShaderModule with instrumented shader and manage it inside the pipeline state
// 2. GPL
// We defer until linking time, otherwise we will instrument many libraries that might never be used.
// (this also spreads the compile time cost evenly instead of a huge spike on startup)
// 3. Inlined via VkPipelineShaderStageCreateInfo pNext
// We just instrument the shader and update the inlined SPIR-V
// 4. VK_EXT_shader_module_identifier
// We will skip these as we don't know the incoming SPIR-V
// Note: Shader Objects are handled in their own path as they don't use pipelines
template <typename SafeCreateInfo>
bool GpuShaderInstrumentor::PreCallRecordPipelineCreationShaderInstrumentation(
const VkAllocationCallbacks *pAllocator, vvl::Pipeline &pipeline_state, SafeCreateInfo &modified_pipeline_ci,
const Location &loc, std::vector<chassis::ShaderInstrumentationMetadata> &shader_instrumentation_metadata) {
// Init here instead of in chassis so we don't pay cost when GPU-AV is not used
const size_t total_stages = pipeline_state.stage_states.size();
shader_instrumentation_metadata.resize(total_stages);
InstrumentationDescriptorSetLayouts instrumentation_dsl;
BuildDescriptorSetLayoutInfo(pipeline_state, instrumentation_dsl);
for (uint32_t stage_state_i = 0; stage_state_i < static_cast<uint32_t>(pipeline_state.stage_states.size()); ++stage_state_i) {
const auto &stage_state = pipeline_state.stage_states[stage_state_i];
auto modified_module_state = std::const_pointer_cast<vvl::ShaderModule>(stage_state.module_state);
ASSERT_AND_CONTINUE(modified_module_state);
auto &instrumentation_metadata = shader_instrumentation_metadata[stage_state_i];
// Check pNext for inlined SPIR-V
// ---
vku::safe_VkShaderModuleCreateInfo *modified_shader_module_ci = nullptr;
{
const VkShaderStageFlagBits stage = stage_state.GetStage();
auto &stage_ci =
GetShaderStageCI<SafeCreateInfo, vku::safe_VkPipelineShaderStageCreateInfo>(modified_pipeline_ci, stage);
modified_shader_module_ci =
const_cast<vku::safe_VkShaderModuleCreateInfo *>(reinterpret_cast<const vku::safe_VkShaderModuleCreateInfo *>(
vku::FindStructInPNextChain<VkShaderModuleCreateInfo>(stage_ci.pNext)));
if (!IsShaderSelectedForInstrumentation(modified_shader_module_ci, modified_module_state->VkHandle(),
loc.dot(vvl::Field::pStages, stage_state_i).dot(vvl::Field::module))) {
continue;
}
}
std::vector<uint32_t> instrumented_spirv;
const uint32_t unique_shader_id = unique_shader_module_id_++;
const bool is_shader_instrumented =
InstrumentShader(modified_module_state->spirv->words_, unique_shader_id, instrumentation_dsl, loc, instrumented_spirv);
if (is_shader_instrumented) {
instrumentation_metadata.unique_shader_id = unique_shader_id;
if (modified_module_state->VkHandle() != VK_NULL_HANDLE) {
// If the user used vkCreateShaderModule, we create a new VkShaderModule to replace with the instrumented
// shader
VkShaderModuleCreateInfo instrumented_shader_module_ci = vku::InitStructHelper();
instrumented_shader_module_ci.pCode = instrumented_spirv.data();
instrumented_shader_module_ci.codeSize = instrumented_spirv.size() * sizeof(uint32_t);
VkShaderModule instrumented_shader_module = VK_NULL_HANDLE;
VkResult result =
DispatchCreateShaderModule(device, &instrumented_shader_module_ci, pAllocator, &instrumented_shader_module);
if (result == VK_SUCCESS) {
SetShaderModule(modified_pipeline_ci, *stage_state.pipeline_create_info, instrumented_shader_module,
stage_state_i);
pipeline_state.instrumentation_data.instrumented_shader_modules.emplace_back(
std::pair<uint32_t, VkShaderModule>{unique_shader_id, instrumented_shader_module});
} else {
InternalError(device, loc, "Unable to replace non-instrumented shader with instrumented one.");
return false;
}
} else if (modified_shader_module_ci) {
// The user is inlining the Shader Module into the pipeline, so just need to update the spirv
instrumentation_metadata.passed_in_shader_stage_ci = true;
// TODO - This makes a copy, but could save on Chassis stack instead (then remove function from VUL).
// The core issue is we always use std::vector<uint32_t> but Safe Struct manages its own version of the pCode
// memory. It would be much harder to change everything from std::vector and instead to adjust Safe Struct to not
// double-free the memory on us. If making any changes, we have to consider a case where the user inlines the
// fragment shader, but use a normal VkShaderModule in the vertex shader.
modified_shader_module_ci->SetCode(instrumented_spirv);
} else {
assert(false);
return false;
}
}
}
return true;
}
// Now that we have created the pipeline (and have its handle) build up the shader map for each shader we instrumented
void GpuShaderInstrumentor::PostCallRecordPipelineCreationShaderInstrumentation(
vvl::Pipeline &pipeline_state, std::vector<chassis::ShaderInstrumentationMetadata> &shader_instrumentation_metadata) {
// if we return early from NeedPipelineCreationShaderInstrumentation, will need to skip at this point in PostCall
if (shader_instrumentation_metadata.empty()) return;
for (uint32_t stage_state_i = 0; stage_state_i < static_cast<uint32_t>(pipeline_state.stage_states.size()); ++stage_state_i) {
auto &instrumentation_metadata = shader_instrumentation_metadata[stage_state_i];
// if the shader for some reason was not instrumented, there is nothing to save
if (!instrumentation_metadata.IsInstrumented()) {
continue;
}
pipeline_state.instrumentation_data.was_instrumented = true;
const auto &stage_state = pipeline_state.stage_states[stage_state_i];
auto &module_state = stage_state.module_state;
// We currently need to store a copy of the original, non-instrumented shader so if there is debug information,
// we can reference it by the instruction number printed out in the shader. Since the application can destroy the
// original VkShaderModule, there is a chance this will be gone, we need to copy it now.
// TODO - in the instrumentation, instead of printing the instruction number only, if we print out debug info, we
// can remove this copy
std::vector<uint32_t> code;
if (module_state && module_state->spirv) code = module_state->spirv->words_;
VkShaderModule shader_module_handle = module_state->VkHandle();
if (shader_module_handle == VK_NULL_HANDLE && instrumentation_metadata.passed_in_shader_stage_ci) {
shader_module_handle = kPipelineStageInfoHandle;
}
instrumented_shaders_map_.insert_or_assign(instrumentation_metadata.unique_shader_id, pipeline_state.VkHandle(),
shader_module_handle, VK_NULL_HANDLE, std::move(code));
}
}
// While have an almost duplicated function is not ideal, the core issue is we have a single, templated function designed for
// Graphics, Compute, and Ray Tracing. GPL is only for graphics, so we end up needing this "side code path" for graphics only and it
// doesn't fit in the "all pipeline" templated flow.
bool GpuShaderInstrumentor::PreCallRecordPipelineCreationShaderInstrumentationGPL(
const VkAllocationCallbacks *pAllocator, vvl::Pipeline &pipeline_state,
vku::safe_VkGraphicsPipelineCreateInfo &modified_pipeline_ci, const Location &loc,
std::vector<chassis::ShaderInstrumentationMetadata> &shader_instrumentation_metadata) {
// Init here instead of in chassis so we don't pay cost when GPU-AV is not used
const size_t total_stages = pipeline_state.stage_states.size();
shader_instrumentation_metadata.resize(total_stages);
InstrumentationDescriptorSetLayouts instrumentation_dsl;
BuildDescriptorSetLayoutInfo(pipeline_state, instrumentation_dsl);
auto modified_pipeline_lib_ci = const_cast<VkPipelineLibraryCreateInfoKHR *>(
vku::FindStructInPNextChain<VkPipelineLibraryCreateInfoKHR>(modified_pipeline_ci.pNext));
// the "pStages[]" is spread across libraries, so build it up in the double for loop
uint32_t shader_i = 0;
// This outer loop is the main difference between the GPL and non-GPL version and why its hard to merge them
for (uint32_t modified_lib_i = 0; modified_lib_i < modified_pipeline_lib_ci->libraryCount; ++modified_lib_i) {
const auto modified_lib = Get<vvl::Pipeline>(modified_pipeline_lib_ci->pLibraries[modified_lib_i]);
if (!modified_lib) {
continue;
}
if (modified_lib->stage_states.empty()) {
continue;
}
vku::safe_VkGraphicsPipelineCreateInfo modified_pipeline_ci(modified_lib->GraphicsCreateInfo());
// If the application supplied pipeline might be interested in failing to be created
// if the driver does not find it in its cache, GPU-AV needs to succeed in the instrumented pipeline library
// creation process no matter caching state.
modified_pipeline_ci.flags &= ~VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT;
bool need_new_pipeline = false;
// If pipeline library is selected for instrumentation, force instrumentation of all its shaders
const bool should_instrument_pipeline =
IsPipelineSelectedForInstrumentation(modified_lib->VkHandle(), loc.dot(vvl::Field::pLibraries, modified_lib_i));
for (uint32_t stage_state_i = 0; stage_state_i < static_cast<uint32_t>(modified_lib->stage_states.size());
++stage_state_i) {
const ShaderStageState &modified_stage_state = modified_lib->stage_states[stage_state_i];
auto modified_module_state = std::const_pointer_cast<vvl::ShaderModule>(modified_stage_state.module_state);
ASSERT_AND_CONTINUE(modified_module_state);
chassis::ShaderInstrumentationMetadata &instrumentation_metadata = shader_instrumentation_metadata[shader_i++];
// Check pNext for inlined SPIR-V
// ---
vku::safe_VkShaderModuleCreateInfo *modified_shader_module_ci = nullptr;
{
vku::safe_VkPipelineShaderStageCreateInfo *modified_stage_ci = nullptr;
const VkShaderStageFlagBits stage = modified_stage_state.GetStage();
for (uint32_t i = 0; i < modified_pipeline_ci.stageCount; ++i) {
if (modified_pipeline_ci.pStages[i].stage == stage) {
modified_stage_ci = &modified_pipeline_ci.pStages[i];
}
}
assert(modified_stage_ci);
modified_shader_module_ci =
const_cast<vku::safe_VkShaderModuleCreateInfo *>(reinterpret_cast<const vku::safe_VkShaderModuleCreateInfo *>(
vku::FindStructInPNextChain<VkShaderModuleCreateInfo>(modified_stage_ci->pNext)));
// TODO - this is in need of testing, when only selecting various library as well as selecting everything
if (!should_instrument_pipeline &&
!IsShaderSelectedForInstrumentation(modified_shader_module_ci, modified_module_state->VkHandle(),
loc.dot(vvl::Field::pStages, stage_state_i).dot(vvl::Field::module))) {
continue;
}
}
// Instrument shader
// ---
std::vector<uint32_t> instrumented_spirv;
const uint32_t unique_shader_id = unique_shader_module_id_++;
const bool is_shader_instrumented = InstrumentShader(modified_module_state->spirv->words_, unique_shader_id,
instrumentation_dsl, loc, instrumented_spirv);
if (is_shader_instrumented) {
instrumentation_metadata.unique_shader_id = unique_shader_id;
need_new_pipeline = true;
}
if (modified_module_state->VkHandle() != VK_NULL_HANDLE) {
// If the user used vkCreateShaderModule, we create a new VkShaderModule to replace with the instrumented
// shader
VkShaderModule instrumented_shader_module;
VkShaderModuleCreateInfo create_info = vku::InitStructHelper();
if (is_shader_instrumented) {
create_info.pCode = instrumented_spirv.data();
create_info.codeSize = instrumented_spirv.size() * sizeof(uint32_t);
} else {
// We need to replace the shader regardless as the user may have destroyed the original VkShaderModule and
// we will crash trying to unwrap it. So just make a duplicate VkShaderModule. (This is rare we hit this,
// only when the user has a shader with nothing to instrument, which tends to be passthrough vertex shaders
// which are quick enough to re-create)
create_info.pCode = modified_module_state->spirv->words_.data();
create_info.codeSize = modified_module_state->spirv->words_.size() * sizeof(uint32_t);
}
VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &instrumented_shader_module);
if (result == VK_SUCCESS) {
modified_pipeline_ci.pStages[stage_state_i] = *modified_stage_state.pipeline_create_info;
modified_pipeline_ci.pStages[stage_state_i].module = instrumented_shader_module;
modified_lib->instrumentation_data.instrumented_shader_modules.emplace_back(
std::pair<uint32_t, VkShaderModule>{unique_shader_id, instrumented_shader_module});
} else {
InternalError(device, loc, "Unable to replace non-instrumented shader with instrumented one.");
return false;
}
} else if (modified_shader_module_ci) {
// If inlining and not instrumented, leave it alone
if (is_shader_instrumented) {
// The user is inlining the Shader Module into the pipeline, so just need to update the spirv
instrumentation_metadata.passed_in_shader_stage_ci = true;
// TODO - This makes a copy, but could save on Chassis stack instead (then remove function from VUL).
// The core issue is we always use std::vector<uint32_t> but Safe Struct manages its own version of the pCode
// memory. It would be much harder to change everything from std::vector and instead to adjust Safe Struct to
// not double-free the memory on us. If making any changes, we have to consider a case where the user inlines
// the fragment shader, but use a normal VkShaderModule in the vertex shader.
modified_shader_module_ci->SetCode(instrumented_spirv);
}
} else {
assert(false);
return false;
}
}
// Create instrumented pipeline library if we have instrumented one of the libraries inside of it
if (need_new_pipeline) {
VkPipeline instrumented_pipeline_lib = VK_NULL_HANDLE;
const VkResult result = DispatchCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, modified_pipeline_ci.ptr(),
pAllocator, &instrumented_pipeline_lib);
if (result != VK_SUCCESS || instrumented_pipeline_lib == VK_NULL_HANDLE) {
// could just check result, but being extra cautious around GPL and checking handle as well
InternalError(device, loc, "Failed to recreate instrumented pipeline library.");
return false;
}
// Even if active_shaders has both a vertex and fragment, this is ok because as the goal is just to destroy these later
if (modified_lib->active_shaders & VK_SHADER_STAGE_FRAGMENT_BIT) {
pipeline_state.instrumentation_data.frag_out_lib = instrumented_pipeline_lib;
} else {
pipeline_state.instrumentation_data.pre_raster_lib = instrumented_pipeline_lib;
}
const_cast<VkPipeline *>(modified_pipeline_lib_ci->pLibraries)[modified_lib_i] = instrumented_pipeline_lib;
}
}
return true;
}
void GpuShaderInstrumentor::PostCallRecordPipelineCreationShaderInstrumentationGPL(
vvl::Pipeline &pipeline_state, const VkAllocationCallbacks *pAllocator,
std::vector<chassis::ShaderInstrumentationMetadata> &shader_instrumentation_metadata) {
// if we return early from NeedPipelineCreationShaderInstrumentation, will need to skip at this point in PostCall
if (shader_instrumentation_metadata.empty()) return;
uint32_t shader_index = 0;
// This outer loop is the main difference between the GPL and non-GPL version and why its hard to merge them
for (uint32_t library_i = 0; library_i < pipeline_state.library_create_info->libraryCount; ++library_i) {
const auto lib = Get<vvl::Pipeline>(pipeline_state.library_create_info->pLibraries[library_i]);
if (!lib) continue;
if (lib->stage_states.empty()) continue;
vku::safe_VkGraphicsPipelineCreateInfo new_lib_pipeline_ci(lib->GraphicsCreateInfo());
for (uint32_t stage_state_i = 0; stage_state_i < static_cast<uint32_t>(lib->stage_states.size()); ++stage_state_i) {
auto &instrumentation_metadata = shader_instrumentation_metadata[shader_index++];
// if the shader for some reason was not instrumented, there is nothing to save
if (!instrumentation_metadata.IsInstrumented()) continue;
pipeline_state.instrumentation_data.was_instrumented = true;
const auto &stage_state = lib->stage_states[stage_state_i];
auto &module_state = stage_state.module_state;
// We currently need to store a copy of the original, non-instrumented shader so if there is debug information,
// we can reference it by the instruction number printed out in the shader. Since the application can destroy the
// original VkShaderModule, there is a chance this will be gone, we need to copy it now.
// TODO - in the instrumentation, instead of printing the instruction number only, if we print out debug info, we
// can remove this copy
std::vector<uint32_t> code;
if (module_state && module_state->spirv) code = module_state->spirv->words_;
VkShaderModule shader_module_handle = module_state->VkHandle();
if (shader_module_handle == VK_NULL_HANDLE && instrumentation_metadata.passed_in_shader_stage_ci) {
shader_module_handle = kPipelineStageInfoHandle;
}
instrumented_shaders_map_.insert_or_assign(instrumentation_metadata.unique_shader_id, lib->VkHandle(),
shader_module_handle, VK_NULL_HANDLE, std::move(code));
}
}
}
static bool GpuValidateShader(const std::vector<uint32_t> &input, bool SetRelaxBlockLayout, bool SetScalarBlockLayout,
spv_target_env target_env, std::string &error) {
// Use SPIRV-Tools validator to try and catch any issues with the module
spv_context ctx = spvContextCreate(target_env);
spv_const_binary_t binary{input.data(), input.size()};
spv_diagnostic diag = nullptr;
spv_validator_options options = spvValidatorOptionsCreate();
spvValidatorOptionsSetRelaxBlockLayout(options, SetRelaxBlockLayout);
spvValidatorOptionsSetScalarBlockLayout(options, SetScalarBlockLayout);
spv_result_t result = spvValidateWithOptions(ctx, options, &binary, &diag);
if (result != SPV_SUCCESS && diag) error = diag->error;
return (result == SPV_SUCCESS);
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool GpuShaderInstrumentor::InstrumentShader(const vvl::span<const uint32_t> &input_spirv, uint32_t unique_shader_id,
const InstrumentationDescriptorSetLayouts &instrumentation_dsl, const Location &loc,
std::vector<uint32_t> &out_instrumented_spirv) {
if (input_spirv[0] != spv::MagicNumber) return false;
if (unique_shader_id >= glsl::kMaxInstrumentedShaders) {
InternalWarning(device, loc, "kMaxInstrumentedShaders limit has been hit, no shaders can be instrumented.");
return false;
}
if (gpuav_settings.debug_dump_instrumented_shaders) {
const auto non_instrumented_spirv_file = fs::absolute("dump_" + std::to_string(unique_shader_id) + "_before.spv");
DumpSpirvToFile(non_instrumented_spirv_file.string(), input_spirv.data(), input_spirv.size());
}
spirv::Settings module_settings(loc);
// Use the unique_shader_id as a shader ID so we can look up its handle later in the shader_map.
module_settings.shader_id = unique_shader_id;
module_settings.output_buffer_descriptor_set = instrumentation_desc_set_bind_index_;
module_settings.safe_mode = gpuav_settings.safe_mode;
module_settings.print_debug_info = gpuav_settings.debug_print_instrumentation_info;
module_settings.max_instrumentations_count = gpuav_settings.debug_max_instrumentations_count;
module_settings.support_non_semantic_info =
IsExtEnabled(extensions.vk_khr_shader_non_semantic_info) && !IsExtEnabled(extensions.vk_khr_portability_subset);
module_settings.has_bindless_descriptors = instrumentation_dsl.has_bindless_descriptors;
spirv::Module module(input_spirv, debug_report, module_settings, modified_features,
instrumentation_dsl.set_index_to_bindings_layout_lut);
bool modified = false;
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
if (gpuav_settings.shader_instrumentation.descriptor_checks) {
// Will wrap descriptor indexing with if/else to prevent crashing if OOB
spirv::DescriptorIndexingOOBPass oob_pass(module);
modified |= oob_pass.Run();
// Depending on the DescriptorClass, will add dedicated check
if (!modified_features.robustBufferAccess) {
// This check is for catching OOB in a UBO/SSBO which is caught with robustBufferAccess
spirv::DescriptorClassGeneralBufferPass general_buffer_pass(module);
modified |= general_buffer_pass.Run();
// Details being worked out in https://gitlab.khronos.org/vulkan/vulkan/-/issues/3977
// But for what we are checking for, can rely on robustBufferAccess
spirv::DescriptorClassTexelBufferPass texel_buffer_pass(module);
modified |= texel_buffer_pass.Run();
}
}
if (gpuav_settings.shader_instrumentation.buffer_device_address) {
spirv::BufferDeviceAddressPass pass(module);
modified |= pass.Run();
}
if (gpuav_settings.shader_instrumentation.ray_query) {
spirv::RayQueryPass pass(module);
modified |= pass.Run();
}
// Post Process instrumentation passes assume the things inside are valid, but putting at the end, things above will wrap checks
// in a if/else, this means they will be gaurded as if they were inside the above passes
if (gpuav_settings.shader_instrumentation.post_process_descriptor_indexing) {
spirv::PostProcessDescriptorIndexingPass pass(module);
modified |= pass.Run();
}
if (gpuav_settings.shader_instrumentation.vertex_attribute_fetch_oob) {
if (!modified_features.robustBufferAccess) {
spirv::VertexAttributeFetchOob pass(module);
modified |= pass.Run();
}
}
// If we have passes that require inject LogError before the shader end we do it now.
// We have a dedicated pass to ensure the LogError is only added once
if (module.need_log_error_) {
spirv::LogErrorPass log_error_pass(module);
modified |= log_error_pass.Run();
}
// If there were GLSL written function injected, we will grab them and link them in here
for (const auto &info : module.link_infos_) {
module.LinkFunctions(info);
}
// DebugPrintf goes at the end for 2 reasons:
// 1. We use buffer device address in it and we don't want to validate the inside of this pass
// 2. We might want to debug the above passes and want to inject our own debug printf calls
if (gpuav_settings.debug_printf_enabled) {
// binding slot allows debug printf to be slotted in the same set as GPU-AV if needed
spirv::DebugPrintfPass pass(module, intenral_only_debug_printf_, glsl::kBindingInstDebugPrintf);
modified |= pass.Run();
}
// If nothing was instrumented, leave early to save time
if (!modified) {
return false;
}
// some small cleanup to make sure SPIR-V is legal
module.PostProcess();
// translate internal representation of SPIR-V into legal SPIR-V binary
module.ToBinary(out_instrumented_spirv);
spv_target_env target_env = PickSpirvEnv(api_version, IsExtEnabled(extensions.vk_khr_spirv_1_4));
// (Maybe) validate the instrumented and linked shader
bool is_instrumented_spirv_valid = true;
if (gpuav_settings.debug_validate_instrumented_shaders) {
std::string spirv_val_error;
is_instrumented_spirv_valid = GpuValidateShader(out_instrumented_spirv, extensions.vk_khr_relaxed_block_layout,
extensions.vk_ext_scalar_block_layout, target_env, spirv_val_error);
if (!is_instrumented_spirv_valid) {
if (!gpuav_settings.debug_dump_instrumented_shaders) {
const auto non_instrumented_spirv_file = fs::absolute("dump_" + std::to_string(unique_shader_id) + "_before.spv");
DumpSpirvToFile(non_instrumented_spirv_file.string(), input_spirv.data(), input_spirv.size());
}
const auto instrumented_spirv_file = fs::absolute("dump_" + std::to_string(unique_shader_id) + "_after_invalid.spv");
DumpSpirvToFile(instrumented_spirv_file.string(), out_instrumented_spirv.data(), out_instrumented_spirv.size());
std::ostringstream strm;
const auto invalid_file_path = std::filesystem::absolute(instrumented_spirv_file);
strm << "Instrumented shader (id " << unique_shader_id << ") is invalid, spirv-val error:\n"
<< spirv_val_error << "\nInvalid spirv dumped to " << invalid_file_path
<< "\nProceeding with non instrumented shader.";
InternalError(device, loc, strm.str().c_str());
return false;
}
}
if (is_instrumented_spirv_valid && gpuav_settings.debug_dump_instrumented_shaders) {
const auto instrumented_spirv_file = fs::absolute("dump_" + std::to_string(unique_shader_id) + "_after.spv");
DumpSpirvToFile(instrumented_spirv_file.string(), out_instrumented_spirv.data(), out_instrumented_spirv.size());
}
return true;
}
void GpuShaderInstrumentor::InternalError(LogObjectList objlist, const Location &loc, const char *const specific_message) const {
aborted_ = true;
std::string error_message = specific_message;
char const *layer_name = gpuav_settings.debug_printf_only ? "DebugPrintf" : "GPU-AV";
char const *vuid = gpuav_settings.debug_printf_only ? "UNASSIGNED-DEBUG-PRINTF" : "UNASSIGNED-GPU-Assisted-Validation";
LogError(vuid, objlist, loc, "Internal Error, %s is being disabled. Details:\n%s", layer_name, error_message.c_str());
// Once we encounter an internal issue disconnect everything.
// This prevents need to check "if (aborted)" (which is awful when we easily forget to check somewhere and the user gets spammed
// with errors making it hard to see the first error with the real source of the problem).
dispatch_device_->ReleaseValidationObject(LayerObjectTypeGpuAssisted);
}
void GpuShaderInstrumentor::InternalWarning(LogObjectList objlist, const Location &loc, const char *const specific_message) const {
char const *vuid = gpuav_settings.debug_printf_only ? "WARNING-DEBUG-PRINTF" : "WARNING-GPU-Assisted-Validation";
LogWarning(vuid, objlist, loc, "Internal Warning: %s", specific_message);
}
void GpuShaderInstrumentor::InternalInfo(LogObjectList objlist, const Location &loc, const char *const specific_message) const {
char const *vuid = gpuav_settings.debug_printf_only ? "INFO-DEBUG-PRINTF" : "INFO-GPU-Assisted-Validation";
LogInfo(vuid, objlist, loc, "Internal Info: %s", specific_message);
}
// The lock (debug_output_mutex) is held by the caller,
// because the latter has code paths that make multiple calls of this function,
// and all such calls have to access the same debug reporting state to ensure consistency of output information.
static std::string LookupDebugUtilsNameNoLock(const DebugReport *debug_report, const uint64_t object) {
auto object_label = debug_report->GetUtilsObjectNameNoLock(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate the stage-specific part of the message.
static void GenerateStageMessage(std::ostringstream &ss, const GpuShaderInstrumentor::ShaderMessageInfo &shader_info,
const std::vector<uint32_t> &instructions) {
switch (shader_info.stage_id) {
case glsl::kExecutionModelMultiEntryPoint: {
ss << "Stage has multiple OpEntryPoint (";
::spirv::GetExecutionModelNames(instructions, ss);
ss << ") and could not detect stage. ";
} break;
case glsl::kExecutionModelVertex: {
ss << "Stage = Vertex. Vertex Index = " << shader_info.stage_info_0 << " Instance Index = " << shader_info.stage_info_1
<< ". ";
} break;
case glsl::kExecutionModelTessellationControl: {
ss << "Stage = Tessellation Control. Invocation ID = " << shader_info.stage_info_0
<< ", Primitive ID = " << shader_info.stage_info_1;
} break;
case glsl::kExecutionModelTessellationEvaluation: {
ss << "Stage = Tessellation Eval. Primitive ID = " << shader_info.stage_info_0 << ", TessCoord (u, v) = ("
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelGeometry: {
ss << "Stage = Geometry. Primitive ID = " << shader_info.stage_info_0
<< " Invocation ID = " << shader_info.stage_info_1 << ". ";
} break;
case glsl::kExecutionModelFragment: {
// Should use std::bit_cast but requires c++20
float x_coord;
float y_coord;
std::memcpy(&x_coord, &shader_info.stage_info_0, sizeof(float));
std::memcpy(&y_coord, &shader_info.stage_info_1, sizeof(float));
ss << "Stage = Fragment. Fragment coord (x,y) = (" << x_coord << ", " << y_coord << "). ";
} break;
case glsl::kExecutionModelGLCompute: {
ss << "Stage = Compute. Global invocation ID (x, y, z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << ")";
} break;
case glsl::kExecutionModelRayGenerationKHR: {
ss << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelIntersectionKHR: {
ss << "Stage = Intersection. Global Launch ID (x,y,z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelAnyHitKHR: {
ss << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << shader_info.stage_info_0 << ", " << shader_info.stage_info_1
<< ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelClosestHitKHR: {
ss << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelMissKHR: {
ss << "Stage = Miss. Global Launch ID (x,y,z) = (" << shader_info.stage_info_0 << ", " << shader_info.stage_info_1
<< ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelCallableKHR: {
ss << "Stage = Callable. Global Launch ID (x,y,z) = (" << shader_info.stage_info_0 << ", " << shader_info.stage_info_1
<< ", " << shader_info.stage_info_2 << "). ";
} break;
case glsl::kExecutionModelTaskEXT: {
ss << "Stage = TaskEXT. Global invocation ID (x, y, z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << ")";
} break;
case glsl::kExecutionModelMeshEXT: {
ss << "Stage = MeshEXT. Global invocation ID (x, y, z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << ")";
} break;
case glsl::kExecutionModelTaskNV: {
ss << "Stage = TaskNV. Global invocation ID (x, y, z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << ")";
} break;
case glsl::kExecutionModelMeshNV: {
ss << "Stage = MeshNV. Global invocation ID (x, y, z) = (" << shader_info.stage_info_0 << ", "
<< shader_info.stage_info_1 << ", " << shader_info.stage_info_2 << ")";
} break;
default: {
ss << "Internal Error (unexpected stage = " << shader_info.stage_id << "). ";
assert(false);
} break;
}
ss << '\n';
}
// There are 2 ways to inject source into a shader:
// 1. The "old" way using OpLine/OpSource
// 2. The "new" way using NonSemantic Shader DebugInfo
static std::string FindShaderSource(std::ostringstream &ss, const std::vector<uint32_t> &instructions,
uint32_t instruction_position, bool debug_printf_only) {
ss << "SPIR-V Instruction Index = " << instruction_position << '\n';
const uint32_t last_line_inst_offset = ::spirv::GetDebugLineOffset(instructions, instruction_position);
if (last_line_inst_offset != 0) {
Instruction last_line_inst(instructions.data() + last_line_inst_offset);
ss << (debug_printf_only ? "Debug shader printf message generated at " : "Shader validation error occurred at ");
GetShaderSourceInfo(ss, instructions, last_line_inst);
} else {
ss << "Unable to source. Build shader with debug info to get source information.\n";
}
return ss.str();
}
// Where we build up the error message with all the useful debug information about where the error occured
std::string GpuShaderInstrumentor::GenerateDebugInfoMessage(VkCommandBuffer commandBuffer, const ShaderMessageInfo &shader_info,
const InstrumentedShader *instrumented_shader,
VkPipelineBindPoint pipeline_bind_point,
uint32_t operation_index) const {
std::ostringstream ss;
if (!instrumented_shader || instrumented_shader->original_spirv.empty()) {
ss << "[Internal Error] - Can't get instructions from shader_map\n";
return ss.str();
}
GenerateStageMessage(ss, shader_info, instrumented_shader->original_spirv);
ss << std::hex << std::showbase;
if (instrumented_shader->shader_module == VK_NULL_HANDLE && instrumented_shader->shader_object == VK_NULL_HANDLE) {
std::unique_lock<std::mutex> lock(debug_report->debug_output_mutex);
ss << "[Internal Error] - Unable to locate shader/pipeline handles used in command buffer "
<< LookupDebugUtilsNameNoLock(debug_report, HandleToUint64(commandBuffer)) << "(" << HandleToUint64(commandBuffer)
<< ")\n";
assert(true);
} else {
std::unique_lock<std::mutex> lock(debug_report->debug_output_mutex);
ss << "Command buffer " << LookupDebugUtilsNameNoLock(debug_report, HandleToUint64(commandBuffer)) << "("
<< HandleToUint64(commandBuffer) << ")\n";
ss << std::dec << std::noshowbase;
ss << '\t'; // helps to show that the index is expressed with respect to the command buffer
if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
ss << "Draw ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
ss << "Compute Dispatch ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
ss << "Ray Trace ";
} else {
assert(false);
ss << "Unknown Pipeline Operation ";
}
ss << "Index " << operation_index << '\n';
ss << std::hex << std::noshowbase;
if (instrumented_shader->shader_module == VK_NULL_HANDLE) {
ss << "Shader Object " << LookupDebugUtilsNameNoLock(debug_report, HandleToUint64(instrumented_shader->shader_object))
<< "(0x" << HandleToUint64(instrumented_shader->shader_object) << ") (internal ID " << std::dec
<< shader_info.shader_id << ")\n";
} else {
ss << "Pipeline " << LookupDebugUtilsNameNoLock(debug_report, HandleToUint64(instrumented_shader->pipeline)) << "(0x"
<< HandleToUint64(instrumented_shader->pipeline) << ")";
if (instrumented_shader->shader_module == kPipelineStageInfoHandle) {
ss << " (internal ID " << std::dec << shader_info.shader_id
<< ")\nShader Module was passed in via VkPipelineShaderStageCreateInfo::pNext\n";
} else {
ss << "\nShader Module "
<< LookupDebugUtilsNameNoLock(debug_report, HandleToUint64(instrumented_shader->shader_module)) << "(0x"
<< HandleToUint64(instrumented_shader->shader_module) << ") (internal ID " << std::dec << shader_info.shader_id
<< ")\n";
}
}
}
ss << std::dec << std::noshowbase;
FindShaderSource(ss, instrumented_shader->original_spirv, shader_info.instruction_position, gpuav_settings.debug_printf_only);
return ss.str();
}
} // namespace gpuav
|