1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/* Copyright (c) 2024-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "buffer_device_address_pass.h"
#include "link.h"
#include "module.h"
#include <spirv/unified1/spirv.hpp>
#include <iostream>
#include "utils/math_utils.h"
#include "gpuav/shaders/gpuav_error_header.h"
#include "generated/gpuav_offline_spirv.h"
namespace gpuav {
namespace spirv {
const static OfflineModule kOfflineModule = {instrumentation_buffer_device_address_comp,
instrumentation_buffer_device_address_comp_size,
ZeroInitializeUintPrivateVariables | UseErrorPayloadVariable};
const static OfflineFunction kOfflineFunctionRange = {"inst_buffer_device_address_range",
instrumentation_buffer_device_address_comp_function_0_offset};
const static OfflineFunction kOfflineFunctionAlign = {"inst_buffer_device_address_align",
instrumentation_buffer_device_address_comp_function_1_offset};
BufferDeviceAddressPass::BufferDeviceAddressPass(Module& module) : Pass(module, kOfflineModule) { module.use_bda_ = true; }
uint32_t BufferDeviceAddressPass::CreateFunctionCall(BasicBlock& block, InstructionIt* inst_it, const InstructionMeta& meta) {
// The Pointer ID Operand is always the first operand for Load/Store/Atomics
// We can just take it and cast to a uint64 here to examine the ptr value
const uint32_t pointer_id = meta.target_instruction->Operand(0);
// Convert reference pointer to uint64
const Type& uint64_type = module_.type_manager_.GetTypeInt(64, 0);
const uint32_t address_id = module_.TakeNextId();
block.CreateInstruction(spv::OpConvertPtrToU, {uint64_type.Id(), address_id, pointer_id}, inst_it);
const uint32_t access_size_id = module_.type_manager_.GetConstantUInt32(meta.access_size).Id();
const uint32_t opcode = meta.target_instruction->Opcode();
uint32_t access_type_value = 0;
if (opcode == spv::OpStore) {
access_type_value |= 1 << glsl::kInstBuffAddrAccessPayloadShiftIsWrite;
}
if (meta.type_is_struct) {
access_type_value |= 1 << glsl::kInstBuffAddrAccessPayloadShiftIsStruct;
}
const Constant& access_type = module_.type_manager_.GetConstantUInt32(access_type_value);
const uint32_t bool_type = module_.type_manager_.GetTypeBool().Id();
const uint32_t inst_position = meta.target_instruction->GetPositionIndex();
const uint32_t inst_position_id = module_.type_manager_.CreateConstantUInt32(inst_position).Id();
uint32_t function_range_result = 0; // only take next ID if needed
const uint32_t function_range_id = GetLinkFunction(function_range_id_, kOfflineFunctionRange);
if (module_.settings_.safe_mode || block_skip_list_.find(inst_position) == block_skip_list_.end()) {
// "normal" check
function_range_result = module_.TakeNextId();
block.CreateInstruction(
spv::OpFunctionCall,
{bool_type, function_range_result, function_range_id, inst_position_id, address_id, access_type.Id(), access_size_id},
inst_it);
} else {
// Find if this is the lowest pointer access in the struct
for (const auto& [struct_id, range] : block_struct_range_map_) {
// This is only for unsafe mode, so we can ignore all other instructions
if (range.min_instruction != inst_position) {
continue;
}
ASSERT_AND_CONTINUE(range.max_struct_offsets >= range.min_struct_offsets);
// If there is only a single access found, range diff is zero and this becomes a "normal" check automatically
const uint32_t full_access_range = (range.max_struct_offsets - range.min_struct_offsets) + meta.access_size;
const uint32_t full_range_id = module_.type_manager_.GetConstantUInt32(full_access_range).Id();
function_range_result = module_.TakeNextId();
block.CreateInstruction(spv::OpFunctionCall,
{bool_type, function_range_result, function_range_id, inst_position_id, address_id,
access_type.Id(), full_range_id},
inst_it);
break;
}
}
const Constant& alignment_constant = module_.type_manager_.GetConstantUInt32(meta.alignment_literal);
const uint32_t function_align_result = module_.TakeNextId();
const uint32_t function_align_id = GetLinkFunction(function_align_id_, kOfflineFunctionAlign);
block.CreateInstruction(spv::OpFunctionCall,
{bool_type, function_align_result, function_align_id, inst_position_id, address_id, access_type.Id(),
alignment_constant.Id()},
inst_it);
module_.need_log_error_ = true;
// Will return bool that will look like (FuncRange() && FuncAlign()) { }
if (module_.settings_.safe_mode) {
const uint32_t logical_and_id = module_.TakeNextId();
block.CreateInstruction(spv::OpLogicalAnd, {bool_type, logical_and_id, function_range_result, function_align_result},
inst_it);
return logical_and_id;
}
return 0; // unsafe mode, we don't care what this is
}
bool BufferDeviceAddressPass::RequiresInstrumentation(const Function& function, const Instruction& inst, InstructionMeta& meta) {
const uint32_t opcode = inst.Opcode();
if (opcode == spv::OpLoad || opcode == spv::OpStore) {
// We only care if there is an Aligned Memory Operands
// VUID-StandaloneSpirv-PhysicalStorageBuffer64-04708 requires there to be an Aligned operand
const uint32_t memory_operand_index = opcode == spv::OpLoad ? 4 : 3;
const uint32_t alignment_word_index = opcode == spv::OpLoad ? 5 : 4; // OpStore is at [4]
if (inst.Length() < alignment_word_index) {
return false;
}
const uint32_t memory_operands = inst.Word(memory_operand_index);
if ((memory_operands & spv::MemoryAccessAlignedMask) == 0) {
return false;
}
// Even if they are other Memory Operands the spec says it is ordered by smallest bit first,
// Luckily |Aligned| is the smallest bit that can have an operand so we know it is here
meta.alignment_literal = inst.Word(alignment_word_index);
// Aligned 0 was not being validated (https://github.com/KhronosGroup/glslang/issues/3893)
// This is nonsense and we should skip (as it should be validated in spirv-val)
if (!IsPowerOfTwo(meta.alignment_literal)) return false;
} else if (AtomicOperation(opcode)) {
// Atomics are naturally aligned and by setting this to 1, it will always pass the alignment check
meta.alignment_literal = 1;
} else {
return false;
}
// While the Pointer Id might not be an OpAccessChain (can be OpLoad, OpCopyObject, etc), we can just examine its result type to
// see if it is a PhysicalStorageBuffer pointer or not
const uint32_t pointer_id = inst.Operand(0);
meta.pointer_inst = function.FindInstruction(pointer_id);
if (!meta.pointer_inst) {
return false; // Can be pointing to a Workgroup variable out of the function
}
// Get the OpTypePointer
const Type* op_type_pointer = module_.type_manager_.FindTypeById(meta.pointer_inst->TypeId());
if (!op_type_pointer || op_type_pointer->spv_type_ != SpvType::kPointer ||
op_type_pointer->inst_.Operand(0) != spv::StorageClassPhysicalStorageBuffer) {
return false;
}
// The OpTypePointer's type
uint32_t accessed_type_id = op_type_pointer->inst_.Operand(1);
const Type* accessed_type = module_.type_manager_.FindTypeById(accessed_type_id);
if (!accessed_type) {
assert(false);
return false;
}
// This might be an OpTypeStruct, even if some compilers are smart enough (know Mesa is) to detect only the first part of a
// struct is loaded, we have to assume the entire struct is loaded and the entire memory is accessed (see
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/8089)
meta.access_size = module_.type_manager_.TypeLength(*accessed_type);
// Will mark this is a struct acess to inform the user
meta.type_is_struct = accessed_type->spv_type_ == SpvType::kStruct;
meta.target_instruction = &inst;
return true;
}
bool BufferDeviceAddressPass::Instrument() {
// Can safely loop function list as there is no injecting of new Functions until linking time
for (const auto& function : module_.functions_) {
if (function->instrumentation_added_) continue;
for (auto block_it = function->blocks_.begin(); block_it != function->blocks_.end(); ++block_it) {
BasicBlock& current_block = **block_it;
cf_.Update(current_block);
if (debug_disable_loops_ && cf_.in_loop) continue;
if (current_block.IsLoopHeader()) {
continue; // Currently can't properly handle injecting CFG logic into a loop header block
}
auto& block_instructions = current_block.instructions_;
if (!module_.settings_.safe_mode) {
// Pre-Pass optimization where we detect statically all the offsets inside a BDA Struct that are accessed.
// From here we can create a range and only do the check once since there is no real way to split a VkBuffer mid
// struct.
block_struct_range_map_.clear();
block_skip_list_.clear();
for (auto inst_it = block_instructions.begin(); inst_it != block_instructions.end(); ++inst_it) {
InstructionMeta meta;
if (!RequiresInstrumentation(*function, *(inst_it->get()), meta)) continue;
if (!meta.pointer_inst->IsAccessChain()) continue;
// OpAccesschain -> OpLoad/OpBitcast -> OpTypePointer (PSB) -> OpTypeStruct
std::vector<const Instruction*> access_chain_insts;
const Instruction* next_inst = meta.pointer_inst;
// First walk back to the outer most access chain
while (next_inst && next_inst->IsAccessChain()) {
access_chain_insts.push_back(next_inst);
const uint32_t access_chain_base_id = next_inst->Operand(0);
next_inst = function->FindInstruction(access_chain_base_id);
}
if (access_chain_insts.empty() || !next_inst) continue;
const Type* load_type_pointer = module_.type_manager_.FindTypeById(next_inst->TypeId());
if (load_type_pointer && load_type_pointer->spv_type_ == SpvType::kPointer &&
load_type_pointer->inst_.StorageClass() == spv::StorageClassPhysicalStorageBuffer) {
const Type* struct_type = module_.type_manager_.FindTypeById(load_type_pointer->inst_.Operand(1));
if (struct_type && struct_type->spv_type_ == SpvType::kStruct) {
const uint32_t struct_offset = FindOffsetInStruct(struct_type->Id(), false, access_chain_insts);
if (struct_offset == 0) continue;
uint32_t inst_position = meta.target_instruction->GetPositionIndex();
block_skip_list_.insert(inst_position);
Range& range = block_struct_range_map_[struct_type->Id()];
// If there is only a single item in the struct used, we want the min/max to be the same.
// The final range is ((max - min) + min_instruction_offset)
if (struct_offset < range.min_struct_offsets) {
range.min_instruction = inst_position;
range.min_struct_offsets = struct_offset;
}
range.max_struct_offsets = std::max(range.max_struct_offsets, struct_offset);
}
}
}
}
for (auto inst_it = block_instructions.begin(); inst_it != block_instructions.end(); ++inst_it) {
InstructionMeta meta;
// Every instruction is analyzed by the specific pass and lets us know if we need to inject a function or not
if (!RequiresInstrumentation(*function, *(inst_it->get()), meta)) continue;
if (IsMaxInstrumentationsCount()) continue;
instrumentations_count_++;
if (!module_.settings_.safe_mode) {
CreateFunctionCall(current_block, &inst_it, meta);
} else {
InjectConditionalData ic_data = InjectFunctionPre(*function.get(), block_it, inst_it);
ic_data.function_result_id = CreateFunctionCall(current_block, nullptr, meta);
InjectFunctionPost(current_block, ic_data);
// Skip the newly added valid and invalid block. Start searching again from newly split merge block
block_it++;
block_it++;
break;
}
}
}
}
return instrumentations_count_ != 0;
}
void BufferDeviceAddressPass::PrintDebugInfo() const {
std::cout << "BufferDeviceAddressPass instrumentation count: " << instrumentations_count_ << '\n';
}
} // namespace spirv
} // namespace gpuav
|