File: buffer_device_address_pass.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (272 lines) | stat: -rw-r--r-- 14,300 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* Copyright (c) 2024-2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "buffer_device_address_pass.h"
#include "link.h"
#include "module.h"
#include <spirv/unified1/spirv.hpp>
#include <iostream>
#include "utils/math_utils.h"
#include "gpuav/shaders/gpuav_error_header.h"

#include "generated/gpuav_offline_spirv.h"

namespace gpuav {
namespace spirv {

const static OfflineModule kOfflineModule = {instrumentation_buffer_device_address_comp,
                                             instrumentation_buffer_device_address_comp_size,
                                             ZeroInitializeUintPrivateVariables | UseErrorPayloadVariable};

const static OfflineFunction kOfflineFunctionRange = {"inst_buffer_device_address_range",
                                                      instrumentation_buffer_device_address_comp_function_0_offset};
const static OfflineFunction kOfflineFunctionAlign = {"inst_buffer_device_address_align",
                                                      instrumentation_buffer_device_address_comp_function_1_offset};

BufferDeviceAddressPass::BufferDeviceAddressPass(Module& module) : Pass(module, kOfflineModule) { module.use_bda_ = true; }

uint32_t BufferDeviceAddressPass::CreateFunctionCall(BasicBlock& block, InstructionIt* inst_it, const InstructionMeta& meta) {
    // The Pointer ID Operand is always the first operand for Load/Store/Atomics
    // We can just take it and cast to a uint64 here to examine the ptr value
    const uint32_t pointer_id = meta.target_instruction->Operand(0);

    // Convert reference pointer to uint64
    const Type& uint64_type = module_.type_manager_.GetTypeInt(64, 0);
    const uint32_t address_id = module_.TakeNextId();
    block.CreateInstruction(spv::OpConvertPtrToU, {uint64_type.Id(), address_id, pointer_id}, inst_it);

    const uint32_t access_size_id = module_.type_manager_.GetConstantUInt32(meta.access_size).Id();
    const uint32_t opcode = meta.target_instruction->Opcode();

    uint32_t access_type_value = 0;
    if (opcode == spv::OpStore) {
        access_type_value |= 1 << glsl::kInstBuffAddrAccessPayloadShiftIsWrite;
    }
    if (meta.type_is_struct) {
        access_type_value |= 1 << glsl::kInstBuffAddrAccessPayloadShiftIsStruct;
    }
    const Constant& access_type = module_.type_manager_.GetConstantUInt32(access_type_value);
    const uint32_t bool_type = module_.type_manager_.GetTypeBool().Id();

    const uint32_t inst_position = meta.target_instruction->GetPositionIndex();
    const uint32_t inst_position_id = module_.type_manager_.CreateConstantUInt32(inst_position).Id();

    uint32_t function_range_result = 0;  // only take next ID if needed
    const uint32_t function_range_id = GetLinkFunction(function_range_id_, kOfflineFunctionRange);

    if (module_.settings_.safe_mode || block_skip_list_.find(inst_position) == block_skip_list_.end()) {
        // "normal" check
        function_range_result = module_.TakeNextId();
        block.CreateInstruction(
            spv::OpFunctionCall,
            {bool_type, function_range_result, function_range_id, inst_position_id, address_id, access_type.Id(), access_size_id},
            inst_it);
    } else {
        // Find if this is the lowest pointer access in the struct
        for (const auto& [struct_id, range] : block_struct_range_map_) {
            // This is only for unsafe mode, so we can ignore all other instructions
            if (range.min_instruction != inst_position) {
                continue;
            }
            ASSERT_AND_CONTINUE(range.max_struct_offsets >= range.min_struct_offsets);

            // If there is only a single access found, range diff is zero and this becomes a "normal" check automatically
            const uint32_t full_access_range = (range.max_struct_offsets - range.min_struct_offsets) + meta.access_size;
            const uint32_t full_range_id = module_.type_manager_.GetConstantUInt32(full_access_range).Id();
            function_range_result = module_.TakeNextId();
            block.CreateInstruction(spv::OpFunctionCall,
                                    {bool_type, function_range_result, function_range_id, inst_position_id, address_id,
                                     access_type.Id(), full_range_id},
                                    inst_it);
            break;
        }
    }

    const Constant& alignment_constant = module_.type_manager_.GetConstantUInt32(meta.alignment_literal);

    const uint32_t function_align_result = module_.TakeNextId();
    const uint32_t function_align_id = GetLinkFunction(function_align_id_, kOfflineFunctionAlign);
    block.CreateInstruction(spv::OpFunctionCall,
                            {bool_type, function_align_result, function_align_id, inst_position_id, address_id, access_type.Id(),
                             alignment_constant.Id()},
                            inst_it);

    module_.need_log_error_ = true;

    // Will return bool that will look like (FuncRange() && FuncAlign()) { }
    if (module_.settings_.safe_mode) {
        const uint32_t logical_and_id = module_.TakeNextId();
        block.CreateInstruction(spv::OpLogicalAnd, {bool_type, logical_and_id, function_range_result, function_align_result},
                                inst_it);
        return logical_and_id;
    }
    return 0;  // unsafe mode, we don't care what this is
}

bool BufferDeviceAddressPass::RequiresInstrumentation(const Function& function, const Instruction& inst, InstructionMeta& meta) {
    const uint32_t opcode = inst.Opcode();
    if (opcode == spv::OpLoad || opcode == spv::OpStore) {
        // We only care if there is an Aligned Memory Operands
        // VUID-StandaloneSpirv-PhysicalStorageBuffer64-04708 requires there to be an Aligned operand
        const uint32_t memory_operand_index = opcode == spv::OpLoad ? 4 : 3;
        const uint32_t alignment_word_index = opcode == spv::OpLoad ? 5 : 4;  // OpStore is at [4]
        if (inst.Length() < alignment_word_index) {
            return false;
        }
        const uint32_t memory_operands = inst.Word(memory_operand_index);
        if ((memory_operands & spv::MemoryAccessAlignedMask) == 0) {
            return false;
        }
        // Even if they are other Memory Operands the spec says it is ordered by smallest bit first,
        // Luckily |Aligned| is the smallest bit that can have an operand so we know it is here
        meta.alignment_literal = inst.Word(alignment_word_index);

        // Aligned 0 was not being validated (https://github.com/KhronosGroup/glslang/issues/3893)
        // This is nonsense and we should skip (as it should be validated in spirv-val)
        if (!IsPowerOfTwo(meta.alignment_literal)) return false;
    } else if (AtomicOperation(opcode)) {
        // Atomics are naturally aligned and by setting this to 1, it will always pass the alignment check
        meta.alignment_literal = 1;
    } else {
        return false;
    }

    // While the Pointer Id might not be an OpAccessChain (can be OpLoad, OpCopyObject, etc), we can just examine its result type to
    // see if it is a PhysicalStorageBuffer pointer or not
    const uint32_t pointer_id = inst.Operand(0);
    meta.pointer_inst = function.FindInstruction(pointer_id);
    if (!meta.pointer_inst) {
        return false;  // Can be pointing to a Workgroup variable out of the function
    }

    // Get the OpTypePointer
    const Type* op_type_pointer = module_.type_manager_.FindTypeById(meta.pointer_inst->TypeId());
    if (!op_type_pointer || op_type_pointer->spv_type_ != SpvType::kPointer ||
        op_type_pointer->inst_.Operand(0) != spv::StorageClassPhysicalStorageBuffer) {
        return false;
    }

    // The OpTypePointer's type
    uint32_t accessed_type_id = op_type_pointer->inst_.Operand(1);
    const Type* accessed_type = module_.type_manager_.FindTypeById(accessed_type_id);
    if (!accessed_type) {
        assert(false);
        return false;
    }

    // This might be an OpTypeStruct, even if some compilers are smart enough (know Mesa is) to detect only the first part of a
    // struct is loaded, we have to assume the entire struct is loaded and the entire memory is accessed (see
    // https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/8089)
    meta.access_size = module_.type_manager_.TypeLength(*accessed_type);
    // Will mark this is a struct acess to inform the user
    meta.type_is_struct = accessed_type->spv_type_ == SpvType::kStruct;

    meta.target_instruction = &inst;
    return true;
}

bool BufferDeviceAddressPass::Instrument() {
    // Can safely loop function list as there is no injecting of new Functions until linking time
    for (const auto& function : module_.functions_) {
        if (function->instrumentation_added_) continue;
        for (auto block_it = function->blocks_.begin(); block_it != function->blocks_.end(); ++block_it) {
            BasicBlock& current_block = **block_it;

            cf_.Update(current_block);
            if (debug_disable_loops_ && cf_.in_loop) continue;

            if (current_block.IsLoopHeader()) {
                continue;  // Currently can't properly handle injecting CFG logic into a loop header block
            }
            auto& block_instructions = current_block.instructions_;

            if (!module_.settings_.safe_mode) {
                // Pre-Pass optimization where we detect statically all the offsets inside a BDA Struct that are accessed.
                // From here we can create a range and only do the check once since there is no real way to split a VkBuffer mid
                // struct.
                block_struct_range_map_.clear();
                block_skip_list_.clear();
                for (auto inst_it = block_instructions.begin(); inst_it != block_instructions.end(); ++inst_it) {
                    InstructionMeta meta;
                    if (!RequiresInstrumentation(*function, *(inst_it->get()), meta)) continue;

                    if (!meta.pointer_inst->IsAccessChain()) continue;
                    // OpAccesschain -> OpLoad/OpBitcast -> OpTypePointer (PSB) -> OpTypeStruct
                    std::vector<const Instruction*> access_chain_insts;

                    const Instruction* next_inst = meta.pointer_inst;
                    // First walk back to the outer most access chain
                    while (next_inst && next_inst->IsAccessChain()) {
                        access_chain_insts.push_back(next_inst);
                        const uint32_t access_chain_base_id = next_inst->Operand(0);
                        next_inst = function->FindInstruction(access_chain_base_id);
                    }
                    if (access_chain_insts.empty() || !next_inst) continue;

                    const Type* load_type_pointer = module_.type_manager_.FindTypeById(next_inst->TypeId());
                    if (load_type_pointer && load_type_pointer->spv_type_ == SpvType::kPointer &&
                        load_type_pointer->inst_.StorageClass() == spv::StorageClassPhysicalStorageBuffer) {
                        const Type* struct_type = module_.type_manager_.FindTypeById(load_type_pointer->inst_.Operand(1));
                        if (struct_type && struct_type->spv_type_ == SpvType::kStruct) {
                            const uint32_t struct_offset = FindOffsetInStruct(struct_type->Id(), false, access_chain_insts);
                            if (struct_offset == 0) continue;
                            uint32_t inst_position = meta.target_instruction->GetPositionIndex();
                            block_skip_list_.insert(inst_position);

                            Range& range = block_struct_range_map_[struct_type->Id()];
                            // If there is only a single item in the struct used, we want the min/max to be the same.
                            // The final range is ((max - min) + min_instruction_offset)
                            if (struct_offset < range.min_struct_offsets) {
                                range.min_instruction = inst_position;
                                range.min_struct_offsets = struct_offset;
                            }
                            range.max_struct_offsets = std::max(range.max_struct_offsets, struct_offset);
                        }
                    }
                }
            }

            for (auto inst_it = block_instructions.begin(); inst_it != block_instructions.end(); ++inst_it) {
                InstructionMeta meta;
                // Every instruction is analyzed by the specific pass and lets us know if we need to inject a function or not
                if (!RequiresInstrumentation(*function, *(inst_it->get()), meta)) continue;

                if (IsMaxInstrumentationsCount()) continue;
                instrumentations_count_++;

                if (!module_.settings_.safe_mode) {
                    CreateFunctionCall(current_block, &inst_it, meta);
                } else {
                    InjectConditionalData ic_data = InjectFunctionPre(*function.get(), block_it, inst_it);
                    ic_data.function_result_id = CreateFunctionCall(current_block, nullptr, meta);
                    InjectFunctionPost(current_block, ic_data);
                    // Skip the newly added valid and invalid block. Start searching again from newly split merge block
                    block_it++;
                    block_it++;
                    break;
                }
            }
        }
    }

    return instrumentations_count_ != 0;
}

void BufferDeviceAddressPass::PrintDebugInfo() const {
    std::cout << "BufferDeviceAddressPass instrumentation count: " << instrumentations_count_ << '\n';
}

}  // namespace spirv
}  // namespace gpuav