1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
/* Copyright (c) 2024-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debug_printf_pass.h"
#include "generated/spirv_grammar_helper.h"
#include "module.h"
#include "gpuav/shaders/gpuav_error_header.h"
#include <spirv/unified1/NonSemanticDebugPrintf.h>
#include <cstdint>
#include <cstring>
#include <iostream>
#include <spirv/unified1/spirv.hpp>
#include <string>
#include "generated/device_features.h"
namespace gpuav {
namespace spirv {
// All functions are a list of uint32_t
// The difference is just how many are passed in
uint32_t DebugPrintfPass::GetLinkFunctionId(uint32_t argument_count) {
if (auto it = function_id_map_.find(argument_count); it != function_id_map_.end()) {
return it->second;
}
const uint32_t link_function_id = module_.TakeNextId();
function_id_map_[argument_count] = link_function_id;
return link_function_id;
}
bool DebugPrintfPass::RequiresInstrumentation(const Instruction& inst, InstructionMeta& meta) {
if (inst.Opcode() == spv::OpExtInst && inst.Word(3) == ext_import_id_ && inst.Word(4) == NonSemanticDebugPrintfDebugPrintf) {
meta.target_instruction = &inst;
return true;
}
return false;
}
// Takes the various arguments and casts them to a valid uint32_t to be passed as a parameter in the function
void DebugPrintfPass::CreateFunctionParams(uint32_t argument_id, const Type& argument_type, std::vector<uint32_t>& params,
BasicBlock& block, InstructionIt* inst_it, ParamMeta& p_meta) {
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
const uint32_t uint32_type_id = uint32_type.Id();
switch (argument_type.spv_type_) {
case SpvType::kVector: {
const uint32_t component_count = argument_type.inst_.Word(3);
const uint32_t component_type_id = argument_type.inst_.Word(2);
const Type* component_type = module_.type_manager_.FindTypeById(component_type_id);
assert(component_type);
for (uint32_t i = 0; i < component_count; i++) {
const uint32_t extract_id = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {component_type_id, extract_id, argument_id, i}, inst_it);
CreateFunctionParams(extract_id, *component_type, params, block, inst_it, p_meta);
}
break;
}
case SpvType::kInt: {
const uint32_t width = argument_type.inst_.Word(2);
// first thing is to get any signed to unsigned via bitcast
const bool is_signed = argument_type.inst_.Word(3) != 0;
uint32_t incoming_id = argument_id;
if (is_signed) {
const uint32_t bitcast_id = module_.TakeNextId();
const uint32_t unsigned_type_id = module_.type_manager_.GetTypeInt(width, false).Id();
block.CreateInstruction(spv::OpBitcast, {unsigned_type_id, bitcast_id, argument_id}, inst_it);
incoming_id = bitcast_id;
if (width == 8) {
if (p_meta.expanded_parameter_count > 31) {
module_.InternalWarning("DEBUG-PRINTF-SIGNED-8-MASK",
"More than 32 expanded parameters, can't properly detect 8-bit signed ints [Simple "
"fix is to turn long printf() into 2 shorter printf() calls]");
} else {
p_meta.signed_8_bitmask |= 1 << p_meta.expanded_parameter_count;
}
} else if (width == 16) {
if (p_meta.expanded_parameter_count > 31) {
module_.InternalWarning("DEBUG-PRINTF-SIGNED-16-MASK",
"More than 32 expanded parameters, can't properly detect 16-bit signed ints "
"[Simple fix is to turn long printf() into 2 shorter printf() calls]");
} else {
p_meta.signed_16_bitmask |= 1 << p_meta.expanded_parameter_count;
}
}
}
if (width == 8 || width == 16) {
const uint32_t uconvert_id = module_.TakeNextId();
block.CreateInstruction(spv::OpUConvert, {uint32_type_id, uconvert_id, incoming_id}, inst_it);
params.push_back(uconvert_id);
p_meta.expanded_parameter_count++;
} else if (width == 32) {
params.push_back(incoming_id);
p_meta.expanded_parameter_count++;
} else if (width == 64) {
const uint32_t uconvert_high_id = module_.TakeNextId();
block.CreateInstruction(spv::OpUConvert, {uint32_type_id, uconvert_high_id, incoming_id}, inst_it);
params.push_back(uconvert_high_id);
p_meta.expanded_parameter_count++;
const uint32_t uint64_type_id = module_.type_manager_.GetTypeInt(64, false).Id();
const uint32_t shift_right_id = module_.TakeNextId();
const uint32_t constant_32_id = module_.type_manager_.GetConstantUInt32(32).Id();
block.CreateInstruction(spv::OpShiftRightLogical, {uint64_type_id, shift_right_id, incoming_id, constant_32_id},
inst_it);
const uint32_t uconvert_low_id = module_.TakeNextId();
block.CreateInstruction(spv::OpUConvert, {uint32_type_id, uconvert_low_id, shift_right_id}, inst_it);
params.push_back(uconvert_low_id);
} else {
module_.InternalError(Name(), "CreateFunctionParams has unsupported for int width");
}
break;
}
case SpvType::kFloat: {
const uint32_t width = argument_type.inst_.Word(2);
if (width == 16) {
const uint32_t float32_type_id = module_.type_manager_.GetTypeFloat(32).Id();
const uint32_t fconvert_id = module_.TakeNextId();
block.CreateInstruction(spv::OpFConvert, {float32_type_id, fconvert_id, argument_id}, inst_it);
const uint32_t bitcast_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uint32_type_id, bitcast_id, fconvert_id}, inst_it);
params.push_back(bitcast_id);
p_meta.expanded_parameter_count++;
} else if (width == 32) {
const uint32_t bitcast_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uint32_type_id, bitcast_id, argument_id}, inst_it);
params.push_back(bitcast_id);
p_meta.expanded_parameter_count++;
} else if (width == 64) {
if (p_meta.expanded_parameter_count > 31) {
// It is very unlikely to hit this
module_.InternalWarning("DEBUG-PRINTF-DOUBLE-MASK",
"More than 32 expanded parameters, can't properly detect 64-bit float [Simple fix is "
"to turn long printf() into 2 shorter printf() calls]");
} else {
p_meta.double_bitmask |= 1 << p_meta.expanded_parameter_count;
}
if (!module_.enabled_features_.shaderInt64) {
module_.InternalError(
"DEBUG-PRINTF-INT64-SUPPORT",
"shaderInt64 feature is not supported, but is required to cast a 64-bit float to a 64-bit int "
"when writing to the output buffer");
}
module_.AddCapability(spv::CapabilityInt64);
const uint32_t uint64_type_id = module_.type_manager_.GetTypeInt(64, false).Id();
const uint32_t bitcast_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uint64_type_id, bitcast_id, argument_id}, inst_it);
const uint32_t uconvert_high_id = module_.TakeNextId();
block.CreateInstruction(spv::OpUConvert, {uint32_type_id, uconvert_high_id, bitcast_id}, inst_it);
params.push_back(uconvert_high_id);
p_meta.expanded_parameter_count++;
const uint32_t shift_right_id = module_.TakeNextId();
const uint32_t constant_32_id = module_.type_manager_.GetConstantUInt32(32).Id();
block.CreateInstruction(spv::OpShiftRightLogical, {uint64_type_id, shift_right_id, bitcast_id, constant_32_id},
inst_it);
const uint32_t uconvert_low_id = module_.TakeNextId();
block.CreateInstruction(spv::OpUConvert, {uint32_type_id, uconvert_low_id, shift_right_id}, inst_it);
params.push_back(uconvert_low_id);
} else {
module_.InternalError(Name(), "CreateFunctionParams has unsupported for float width");
}
break;
}
case SpvType::kBool: {
// cast to uint32_t via an OpSelect
const uint32_t zero_id = module_.type_manager_.GetConstantZeroUint32().Id();
const uint32_t one_id = module_.type_manager_.GetConstantUInt32(1).Id();
const uint32_t select_id = module_.TakeNextId();
block.CreateInstruction(spv::OpSelect, {uint32_type_id, select_id, argument_id, one_id, zero_id}, inst_it);
params.push_back(select_id);
p_meta.expanded_parameter_count++;
break;
}
case SpvType::kPointer: {
// Cast to a uvec2 first to avoid needing a Int64
const uint32_t uvec2_type_id = module_.type_manager_.GetTypeVector(uint32_type, 2).Id();
const uint32_t bitcast_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uvec2_type_id, bitcast_id, argument_id}, inst_it);
const uint32_t extract_id_0 = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {uint32_type_id, extract_id_0, bitcast_id, 0}, inst_it);
params.push_back(extract_id_0);
p_meta.expanded_parameter_count++;
const uint32_t extract_id_1 = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {uint32_type_id, extract_id_1, bitcast_id, 1}, inst_it);
params.push_back(extract_id_1);
p_meta.expanded_parameter_count++;
break;
}
default:
module_.InternalError(Name(), "CreateFunctionParams has unsupported function param type");
break;
}
}
void DebugPrintfPass::CreateFunctionCall(BasicBlock& block, InstructionIt* inst_it, const InstructionMeta& meta) {
Function& block_func = block.function_;
// need to call to get the underlying 4 IDs (simpler to pass in as 4 uint then a uvec4)
GetStageInfo(block_func, block, *inst_it);
const uint32_t inst_position = meta.target_instruction->GetPositionIndex();
auto inst_position_constant = module_.type_manager_.CreateConstantUInt32(inst_position);
const uint32_t string_id = meta.target_instruction->Word(5);
auto string_id_constant = module_.type_manager_.CreateConstantUInt32(string_id);
const uint32_t void_type = module_.type_manager_.GetTypeVoid().Id();
const uint32_t function_result = module_.TakeNextId();
// We know the first part, then build up the rest from the printf arguments
// except a few slots, we place hold it with zero until we build up the params
const size_t function_def_slot = 2;
const size_t double_bitmask_slot = 5;
const size_t signed_8_bitmask_slot = 6;
const size_t signed_16_bitmask_slot = 7;
std::vector<uint32_t> function_call_params = {void_type,
function_result,
0, // function_def_slot
inst_position_constant.Id(),
string_id_constant.Id(),
0, // double_bitmask_slot,
0, // signed_8_bitmask_slot,
0, // signed_16_bitmask_slot,
block_func.stage_info_x_id_,
block_func.stage_info_y_id_,
block_func.stage_info_z_id_,
block_func.stage_info_w_id_};
ParamMeta param_meta;
// where we find the first arugment in OpExtInst instruction
const uint32_t first_argument_offset = 6;
const uint32_t argument_count = meta.target_instruction->Length() - first_argument_offset;
for (uint32_t i = 0; i < argument_count; i++) {
const uint32_t argument_id = meta.target_instruction->Word(first_argument_offset + i);
const Instruction* argument_inst = nullptr;
const Constant* constant = module_.type_manager_.FindConstantById(argument_id);
if (constant) {
argument_inst = &constant->inst_;
} else {
argument_inst = block.function_.FindInstruction(argument_id);
}
assert(argument_inst); // argument is either constant or found within function block
const Type* argument_type = module_.type_manager_.FindTypeById(argument_inst->TypeId());
assert(argument_type); // type needs to have been declared already
CreateFunctionParams(argument_inst->ResultId(), *argument_type, function_call_params, block, inst_it, param_meta);
}
// 3 params are the [result, function type, and function ID]
const uint32_t ignored_params = 3;
const uint32_t param_count = (uint32_t)function_call_params.size() - ignored_params;
const uint32_t function_def = GetLinkFunctionId(param_count);
// patch in params
function_call_params[function_def_slot] = function_def;
function_call_params[double_bitmask_slot] = module_.type_manager_.GetConstantUInt32(param_meta.double_bitmask).Id();
function_call_params[signed_8_bitmask_slot] = module_.type_manager_.GetConstantUInt32(param_meta.signed_8_bitmask).Id();
function_call_params[signed_16_bitmask_slot] = module_.type_manager_.GetConstantUInt32(param_meta.signed_16_bitmask).Id();
block.CreateInstruction(spv::OpFunctionCall, function_call_params, inst_it);
}
uint32_t DebugPrintfPass::CreateDescriptorSet() {
// Create descriptor set to match output buffer
// The following is what the GLSL would look like
//
// layout(set = kSet, binding = kBinding, std430) buffer SSBO {
// uint written_count;
// uint data[];
// } output_buffer;
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
const uint32_t runtime_array_type_id = module_.type_manager_.GetTypeRuntimeArray(uint32_type).Id();
// if 2 OpTypeRuntimeArray are combined, we can't have ArrayStride twice
bool has_array_stride = false;
for (auto& inst : module_.annotations_) {
if (inst->Opcode() == spv::OpDecorate && inst->Word(1) == runtime_array_type_id &&
inst->Word(2) == spv::DecorationArrayStride) {
has_array_stride = true;
break;
}
}
if (!has_array_stride) {
module_.AddDecoration(runtime_array_type_id, spv::DecorationArrayStride, {4});
}
const uint32_t struct_type_id = module_.TakeNextId();
auto new_struct_inst = std::make_unique<Instruction>(4, spv::OpTypeStruct);
new_struct_inst->Fill({struct_type_id, uint32_type.Id(), runtime_array_type_id});
const Type& struct_type = module_.type_manager_.AddType(std::move(new_struct_inst), SpvType::kStruct);
module_.AddDecoration(struct_type_id, spv::DecorationBlock, {});
module_.AddMemberDecoration(struct_type_id, gpuav::kDebugPrintfOutputBufferDWordsCount, spv::DecorationOffset, {0});
module_.AddMemberDecoration(struct_type_id, gpuav::kDebugPrintfOutputBufferData, spv::DecorationOffset, {4});
// create a storage buffer interface variable
const Type& pointer_type = module_.type_manager_.GetTypePointer(spv::StorageClassStorageBuffer, struct_type);
const uint32_t output_buffer_variable_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpVariable);
new_inst->Fill({pointer_type.Id(), output_buffer_variable_id, spv::StorageClassStorageBuffer});
module_.type_manager_.AddVariable(std::move(new_inst), pointer_type);
module_.AddInterfaceVariables(output_buffer_variable_id, spv::StorageClassStorageBuffer);
module_.AddDecoration(output_buffer_variable_id, spv::DecorationDescriptorSet,
{module_.settings_.output_buffer_descriptor_set});
module_.AddDecoration(output_buffer_variable_id, spv::DecorationBinding, {binding_slot_});
return output_buffer_variable_id;
}
void DebugPrintfPass::CreateBufferWriteFunction(uint32_t argument_count, uint32_t function_id, uint32_t output_buffer_variable_id) {
// Currently this is generated by the number of arguments
// The following is what the GLSL would look like
//
// void inst_debug_printf_5(uint a, uint b, uint c) {
// uint offset = atomicAdd(output_buffer.written_count, 5);
// if ((offset + 5) <= uint(output_buffer.data.length())) {
// output_buffer.data[offset + 0] = 5; // bytes of buffer
// output_buffer.data[offset + 1] = stage_id; // known and not passed in
// output_buffer.data[offset + 2] = a;
// output_buffer.data[offset + 3] = b;
// output_buffer.data[offset + 4] = c;
// }
// }
// Need 1 byte to write the "how many bytes will there be"
// Need 1 byte for the shader stage (which we don't pass in as we know already)
const uint32_t byte_written = argument_count + 2;
// Debug name is matching number of bytes written into the buffer
std::string function_name = "inst_debug_printf_" + std::to_string(byte_written);
module_.AddDebugName(function_name.c_str(), function_id);
// Need to create the function type
const uint32_t function_type_id = module_.TakeNextId();
const uint32_t void_type_id = module_.type_manager_.GetTypeVoid().Id();
const uint32_t uint32_type_id = module_.type_manager_.GetTypeInt(32, false).Id();
{
std::vector<uint32_t> words = {function_type_id, void_type_id};
for (size_t i = 0; i < argument_count; i++) {
words.push_back(uint32_type_id);
}
auto new_inst = std::make_unique<Instruction>((uint32_t)words.size() + 1, spv::OpTypeFunction);
new_inst->Fill(words);
module_.type_manager_.AddType(std::move(new_inst), SpvType::kFunction);
}
auto& new_function = module_.functions_.emplace_back(std::make_unique<Function>(module_));
std::vector<uint32_t> function_param_ids;
{
auto new_inst = std::make_unique<Instruction>(5, spv::OpFunction);
new_inst->Fill({void_type_id, function_id, spv::FunctionControlMaskNone, function_type_id});
new_function->pre_block_inst_.emplace_back(std::move(new_inst));
for (size_t i = 0; i < argument_count; i++) {
const uint32_t new_id = module_.TakeNextId();
auto param_inst = std::make_unique<Instruction>(3, spv::OpFunctionParameter);
param_inst->Fill({uint32_type_id, new_id});
new_function->pre_block_inst_.emplace_back(std::move(param_inst));
function_param_ids.push_back(new_id);
}
}
BasicBlock& check_block = new_function->InsertNewBlockEnd();
BasicBlock& store_block = new_function->InsertNewBlockEnd();
BasicBlock& merge_block = new_function->InsertNewBlockEnd();
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
const uint32_t pointer_type_id = module_.type_manager_.GetTypePointer(spv::StorageClassStorageBuffer, uint32_type).Id();
const uint32_t zero_id = module_.type_manager_.GetConstantZeroUint32().Id();
const uint32_t one_id = module_.type_manager_.GetConstantUInt32(1).Id();
const uint32_t byte_written_id = module_.type_manager_.GetConstantUInt32(byte_written).Id();
uint32_t atomic_add_id = 0;
// Atomically get a write index in the output buffer, and check if this index is with buffer's bounds
{
const uint32_t access_chain_id = module_.TakeNextId();
check_block.CreateInstruction(spv::OpAccessChain, {pointer_type_id, access_chain_id, output_buffer_variable_id, zero_id});
atomic_add_id = module_.TakeNextId();
const uint32_t scope_invok_id = module_.type_manager_.GetConstantUInt32(spv::ScopeInvocation).Id();
const uint32_t mask_none_id = module_.type_manager_.GetConstantUInt32(spv::MemoryAccessMaskNone).Id();
check_block.CreateInstruction(
spv::OpAtomicIAdd, {uint32_type_id, atomic_add_id, access_chain_id, scope_invok_id, mask_none_id, byte_written_id});
const uint32_t int_add_id = module_.TakeNextId();
check_block.CreateInstruction(spv::OpIAdd, {uint32_type_id, int_add_id, atomic_add_id, byte_written_id});
const uint32_t array_length_id = module_.TakeNextId();
check_block.CreateInstruction(spv::OpArrayLength, {uint32_type_id, array_length_id, output_buffer_variable_id, 1});
const uint32_t less_than_equal_id = module_.TakeNextId();
const uint32_t bool_type_id = module_.type_manager_.GetTypeBool().Id();
check_block.CreateInstruction(spv::OpULessThanEqual, {bool_type_id, less_than_equal_id, int_add_id, array_length_id});
const uint32_t merge_block_label_id = merge_block.GetLabelId();
check_block.CreateInstruction(spv::OpSelectionMerge, {merge_block_label_id, spv::SelectionControlMaskNone});
const uint32_t store_block_label_id = store_block.GetLabelId();
check_block.CreateInstruction(spv::OpBranchConditional, {less_than_equal_id, store_block_label_id, merge_block_label_id});
}
// Store how many 32-bit words
{
const uint32_t int_add_id = module_.TakeNextId();
store_block.CreateInstruction(spv::OpIAdd, {uint32_type_id, int_add_id, atomic_add_id, zero_id});
const uint32_t access_chain_id = module_.TakeNextId();
store_block.CreateInstruction(spv::OpAccessChain,
{pointer_type_id, access_chain_id, output_buffer_variable_id, one_id, int_add_id});
store_block.CreateInstruction(spv::OpStore, {access_chain_id, byte_written_id});
}
// Store Shader Stage ID
{
const uint32_t int_add_id = module_.TakeNextId();
store_block.CreateInstruction(spv::OpIAdd, {uint32_type_id, int_add_id, atomic_add_id, one_id});
const uint32_t access_chain_id = module_.TakeNextId();
store_block.CreateInstruction(spv::OpAccessChain,
{pointer_type_id, access_chain_id, output_buffer_variable_id, one_id, int_add_id});
const uint32_t shader_id = module_.type_manager_.GetConstantUInt32(module_.settings_.shader_id).Id();
store_block.CreateInstruction(spv::OpStore, {access_chain_id, shader_id});
}
// Write a 32-bit word to the output buffer for each argument
const uint32_t argument_id_offset = 2;
for (uint32_t i = 0; i < argument_count; i++) {
const uint32_t int_add_id = module_.TakeNextId();
const uint32_t offset_id = module_.type_manager_.GetConstantUInt32(i + argument_id_offset).Id();
store_block.CreateInstruction(spv::OpIAdd, {uint32_type_id, int_add_id, atomic_add_id, offset_id});
const uint32_t access_chain_id = module_.TakeNextId();
store_block.CreateInstruction(spv::OpAccessChain,
{pointer_type_id, access_chain_id, output_buffer_variable_id, one_id, int_add_id});
store_block.CreateInstruction(spv::OpStore, {access_chain_id, function_param_ids[i]});
}
// merge block of the above if() check
{
store_block.CreateInstruction(spv::OpBranch, {merge_block.GetLabelId()});
merge_block.CreateInstruction(spv::OpReturn, {});
}
{
auto new_inst = std::make_unique<Instruction>(1, spv::OpFunctionEnd);
new_function->post_block_inst_.emplace_back(std::move(new_inst));
}
}
bool DebugPrintfPass::Instrument() {
for (const auto& inst : module_.ext_inst_imports_) {
const char* import_string = inst->GetAsString(2);
if (strcmp(import_string, "NonSemantic.DebugPrintf") == 0) {
ext_import_id_ = inst->ResultId();
break;
}
}
if (ext_import_id_ == 0) {
return false; // no printf strings found, early return
}
for (const auto& function : module_.functions_) {
for (auto block_it = function->blocks_.begin(); block_it != function->blocks_.end(); ++block_it) {
BasicBlock& current_block = **block_it;
cf_.Update(current_block);
if (debug_disable_loops_ && cf_.in_loop) continue;
auto& block_instructions = current_block.instructions_;
for (auto inst_it = block_instructions.begin(); inst_it != block_instructions.end(); ++inst_it) {
InstructionMeta meta;
if (!RequiresInstrumentation(*(inst_it->get()), meta)) continue;
if (!Validate(*(function.get()), meta)) continue; // if not valid, don't attempt to instrument it
instrumentations_count_++;
// Save the OpString here so we can use it later
if (function->instrumentation_added_) {
for (const auto& debug_inst : module_.debug_source_) {
const uint32_t string_id = (*inst_it)->Word(5);
if (debug_inst->Opcode() == spv::OpString && debug_inst->ResultId() == string_id) {
intenral_only_debug_printf_.emplace_back(
InternalOnlyDebugPrintf{module_.settings_.shader_id, string_id, debug_inst->GetAsString(2)});
}
}
}
CreateFunctionCall(current_block, &inst_it, meta);
// remove the OpExtInst incase they don't support VK_KHR_non_semantic_info
if (!module_.settings_.support_non_semantic_info) {
inst_it = block_instructions.erase(inst_it);
inst_it--;
}
}
}
}
if (instrumentations_count_ == 0) {
return false;
}
const uint32_t output_buffer_variable_id = CreateDescriptorSet();
// Here we "link" the functions, but since it is all generated, no need to go through the LinkInfo flow
for (const auto& [number_of_args, function_id] : function_id_map_) {
CreateBufferWriteFunction(number_of_args, function_id, output_buffer_variable_id);
}
// remove the everything else possible incase they don't support VK_KHR_non_semantic_info
if (!module_.settings_.support_non_semantic_info) {
bool other_non_semantic = false;
for (auto inst_it = module_.ext_inst_imports_.begin(); inst_it != module_.ext_inst_imports_.end(); ++inst_it) {
const char* import_string = (inst_it->get())->GetAsString(2);
if (strcmp(import_string, "NonSemantic.DebugPrintf") == 0) {
module_.ext_inst_imports_.erase(inst_it);
break;
} else if (strncmp(import_string, "NonSemantic.", 12) == 0) {
other_non_semantic = true;
}
}
if (!other_non_semantic) {
for (auto inst_it = module_.extensions_.begin(); inst_it != module_.extensions_.end(); ++inst_it) {
const char* import_string = (inst_it->get())->GetAsString(1);
if (strcmp(import_string, "SPV_KHR_non_semantic_info") == 0) {
module_.extensions_.erase(inst_it);
break;
}
}
}
}
return true;
}
void DebugPrintfPass::PrintDebugInfo() const {
std::cout << "DebugPrintfPass instrumentation count: " << instrumentations_count_ << '\n';
}
// Strictly speaking - the format given in GLSL_EXT_debug_printf is a client side implementation of SPIR-V
// NonSemantic.DebugPrintf There is nothing stopping someone from creating a debug printf implementation
// that goes `printf("Use this &q to print int", myInt)` but this requires both having
// a different HLL and Tool consuming it.
// Currently RenderDoc and the Validation Layers both follow the same syntax, but that also could possibly change.
// Therefore, we validate these here based on the VVL implementation only
bool DebugPrintfPass::Validate(const Function& current_function, const InstructionMeta& meta) {
static const char* tag = "DEBUG-PRINTF-FORMATTING";
struct ParamInfo {
bool is_float = false; // else int (don't attempt to validate unsigned vs signed here)
bool is_64_bit = false;
bool is_pointer = false;
uint32_t vector_size = 0; // zero == scalar
char modifier[32];
};
// where we find the first arugment in OpExtInst instruction
const uint32_t first_argument_offset = 6;
if (meta.target_instruction->Length() < first_argument_offset) {
module_.InternalError(tag, "OpExtInst in a invalid SPIR-V format and should have been caught in spirv-val");
return false;
}
uint32_t string_id = meta.target_instruction->Word(5);
const char* op_string = nullptr;
for (const auto& inst : module_.debug_source_) {
if (inst->Opcode() == spv::OpString && inst->ResultId() == string_id) {
op_string = inst->GetAsString(2);
break;
}
}
if (!op_string) {
module_.InternalError(tag, "OpExtInst points to an empty/invalid OpString, this should have been caught in spirv-val");
return false;
}
const size_t op_string_len = strlen(op_string);
if (op_string_len == 0) {
module_.InternalError(tag, "OpString is empty (string was found, but is empty)");
return false;
}
// If we are going to print the OpString to the user for an error/warning, we need to process it first
auto print_op_string = [&op_string]() {
// If there is a '\n' we want to print it like we see in the shader, so need to escape the backslash
std::string result;
for (const char* p = op_string; *p != '\0'; ++p) {
if (*p == '\n') {
result += "\\n";
} else if (*p == '\t') {
result += "\\t";
} else {
result += *p;
}
}
return result;
};
bool valid = true;
std::vector<ParamInfo> param_infos;
// No reason to start checking at the last character, since always need % and something following it
for (size_t i = 0; i < op_string_len - 1; i++) {
if (op_string[i] != '%') continue;
const size_t starting_i = i;
i++;
char modifier = op_string[i];
if (modifier == '%') continue; // skip "%%"
if (modifier == ' ') {
std::string err_msg =
"OpString \"" + print_op_string() + "\" contains a isolated % which is missing the modifier (to escape use %%)";
module_.InternalError(tag, err_msg);
valid = false;
break;
}
bool found_specifier = false;
ParamInfo param_info;
while (i < op_string_len && modifier != ' ' && valid && !found_specifier) {
switch (modifier) {
case 'i':
case 'd':
case 'o':
case 'X':
case 'x':
found_specifier = true;
break;
case 'u':
if (i + 1 < op_string_len && op_string[i + 1] == 'l') {
param_info.is_64_bit = true;
}
found_specifier = true;
break;
case 'p':
param_info.is_pointer = true;
found_specifier = true;
break;
case 'a':
case 'A':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
found_specifier = true;
param_info.is_float = true;
break;
case 'l':
param_info.is_64_bit = true;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '*':
case '.':
break; // expected for precision
case 'v': {
if (i + 1 >= op_string_len) {
std::string err_msg = "OpString \"" + print_op_string() +
"\" contains a %v at the end, but vectors require a width and type after it";
module_.InternalError(tag, err_msg);
valid = false;
} else {
i++;
const char vec_size = op_string[i];
if (vec_size == '2') {
param_info.vector_size = 2;
} else if (vec_size == '3') {
param_info.vector_size = 3;
} else if (vec_size == '4') {
param_info.vector_size = 4;
} else {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a %v" + vec_size +
" needs to be valid vector width (v2, v3, or v4)";
module_.InternalError(tag, err_msg);
valid = false;
}
}
break;
}
default:
// Need to escape, other error makes no sense
std::string err_modifier = (modifier == '\n') ? "\\n" : (modifier == '\t') ? "\\t" : std::to_string(modifier);
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a \"" + err_modifier +
"\" modifier which is an unknown modifier.";
if (param_info.vector_size > 0) {
// Help explain our custom vector format rules
err_msg += " (for vectors you need something like %v3f which is just %f with a special v3 prefix)";
}
module_.InternalError(tag, err_msg);
valid = false;
break; // unknown
};
i++;
modifier = op_string[i];
}
if (valid) {
// Get for other error messages
strncpy(param_info.modifier, &op_string[starting_i], i - starting_i);
param_info.modifier[i - starting_i] = '\0';
if (!found_specifier) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains \"" + std::string(param_info.modifier) +
"\" which is missing a valid specifier (d, i, o, u, x, X, a, A, e, E, f, F, g, or G).";
module_.InternalError(tag, err_msg);
valid = false;
}
}
if (!valid) break;
param_infos.push_back(param_info);
}
if (!valid) return false;
const uint32_t argument_count = meta.target_instruction->Length() - first_argument_offset;
if (argument_count > param_infos.size()) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains only " + std::to_string(param_infos.size()) +
" modifiers, but " + std::to_string(argument_count) +
" arguments were passed in and some will be ignored";
module_.InternalWarning(tag, err_msg);
} else if (argument_count < param_infos.size()) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains " + std::to_string(param_infos.size()) +
" modifiers, but only " + std::to_string(argument_count) +
" arguments were passed in and garbage data might start to occur";
module_.InternalError(tag, err_msg);
return false;
}
const uint32_t count = std::min(argument_count, (uint32_t)param_infos.size());
for (uint32_t i = 0; i < count; i++) {
const ParamInfo& param = param_infos[i];
const uint32_t argument_id = meta.target_instruction->Word(first_argument_offset + i);
const Type* argument_type = nullptr;
if (const Constant* constant = module_.type_manager_.FindConstantById(argument_id)) {
argument_type = &constant->type_;
} else {
const Instruction* inst = current_function.FindInstruction(argument_id);
if (!inst) {
module_.InternalWarning(tag, "Unable to find OpExtInst ID inside function block");
return true; // possibily our error, so leave a warning
}
argument_type = module_.type_manager_.FindTypeById(inst->TypeId());
}
if (!argument_type) {
module_.InternalWarning(tag, "Unable find OpExtInst ID type");
return true; // possibily our error, so leave a warning
}
// first strip/validate vectors
if (param.vector_size != 0) {
if (argument_type->spv_type_ != SpvType::kVector) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a vector modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") is not a vector";
module_.InternalError(tag, err_msg);
return false;
}
const uint32_t vector_size = argument_type->inst_.Word(3);
if (vector_size != param.vector_size) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a " + std::to_string(param.vector_size) +
"-wide vector modifier \"" + param.modifier + "\", but the argument (SPIR-V Id " +
std::to_string(argument_id) + ") is a " + std::to_string(vector_size) +
"-wide vector (values might be truncated or padded)";
module_.InternalWarning(tag, err_msg);
}
// Get the underlying type (float or int)
argument_type = module_.type_manager_.FindTypeById(argument_type->inst_.Word(2));
assert(argument_type);
} else {
if (argument_type->spv_type_ == SpvType::kVector) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a non-vector modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") is a vector";
module_.InternalError(tag, err_msg);
return false;
}
}
const bool is_pointer_type = argument_type->spv_type_ == SpvType::kPointer &&
(argument_type->inst_.StorageClass() == spv::StorageClassPhysicalStorageBuffer);
// this is after stripping the vector
// Pointers are handled by themselves
if (argument_type->spv_type_ != SpvType::kFloat && argument_type->spv_type_ != SpvType::kInt &&
argument_type->spv_type_ != SpvType::kBool && !is_pointer_type && !param.is_pointer) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) +
") is not a float, int, or bool";
module_.InternalError(tag, err_msg);
return false;
}
const bool type_is_64 = argument_type->spv_type_ != SpvType::kBool && argument_type->inst_.Word(2) == 64;
// Do Pointer errors first for better message if it is related to a badly formatted pointer
if (!param.is_pointer && is_pointer_type) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a non-pointer modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) +
") is a pointer and should use %p instead";
module_.InternalError(tag, err_msg);
} else if (param.is_pointer && !is_pointer_type) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a pointer modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") is not a pointer";
module_.InternalError(tag, err_msg);
} else if (!param.is_64_bit && type_is_64 && !param.is_pointer) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a non-64-bit modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") a 64-bit";
module_.InternalWarning(tag, err_msg);
} else if (param.is_64_bit && !type_is_64 && !is_pointer_type) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a 64-bit modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") is not 64-bit";
module_.InternalWarning(tag, err_msg);
} else if (!param.is_float && argument_type->spv_type_ == SpvType::kFloat) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a non-float modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") is a float";
module_.InternalWarning(tag, err_msg);
} else if (param.is_float && argument_type->spv_type_ != SpvType::kFloat) {
std::string err_msg = "OpString \"" + print_op_string() + "\" contains a float modifier \"" + param.modifier +
"\", but the argument (SPIR-V Id " + std::to_string(argument_id) + ") is not a float";
module_.InternalWarning(tag, err_msg);
}
}
return true;
}
} // namespace spirv
} // namespace gpuav
|