1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
|
/* Copyright (c) 2024-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pass.h"
#include <cstdint>
#include <spirv/unified1/spirv.hpp>
#include "function_basic_block.h"
#include "generated/spirv_grammar_helper.h"
#include "link.h"
#include "state_tracker/shader_instruction.h"
#include "module.h"
#include "gpuav/shaders/gpuav_error_codes.h"
namespace gpuav {
namespace spirv {
bool Pass::Run() {
const bool modified = Instrument();
if (module_.settings_.print_debug_info) {
PrintDebugInfo();
}
// Detect if any functions were applied that we need to add now
if (modified && !link_info_.functions.empty()) {
module_.link_infos_.emplace_back(link_info_);
}
return modified;
}
const Variable& Pass::GetBuiltinVariable(uint32_t built_in) {
uint32_t variable_id = 0;
for (const auto& annotation : module_.annotations_) {
if (annotation->Opcode() == spv::OpDecorate && annotation->Word(2) == spv::DecorationBuiltIn &&
annotation->Word(3) == built_in) {
variable_id = annotation->Word(1);
break;
}
}
if (variable_id == 0) {
variable_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpDecorate);
new_inst->Fill({variable_id, spv::DecorationBuiltIn, built_in});
module_.annotations_.emplace_back(std::move(new_inst));
}
// Currently we only ever needed Input variables and the built-ins we are using are not those that can be used by both Input and
// Output storage classes
const Variable* built_in_variable = module_.type_manager_.FindVariableById(variable_id);
if (!built_in_variable) {
const Type& pointer_type = module_.type_manager_.GetTypePointerBuiltInInput(spv::BuiltIn(built_in));
auto new_inst = std::make_unique<Instruction>(4, spv::OpVariable);
new_inst->Fill({pointer_type.Id(), variable_id, spv::StorageClassInput});
built_in_variable = &module_.type_manager_.AddVariable(std::move(new_inst), pointer_type);
module_.AddInterfaceVariables(built_in_variable->Id(), spv::StorageClassInput);
}
return *built_in_variable;
}
// To reduce having to load this information everytime we do a OpFunctionCall, instead just create it once per Function block and
// reference it each time
uint32_t Pass::GetStageInfo(Function& function, const BasicBlock& target_block_it, InstructionIt& out_inst_it) {
// Cached so only need to compute this once
if (function.stage_info_id_ != 0) {
return function.stage_info_id_;
}
// Save original for later to restore
const Instruction& target_instruction = *out_inst_it->get();
BasicBlock& block = function.GetFirstBlock();
InstructionIt inst_it = block.GetFirstInjectableInstrution();
// Stage info is always passed in as a uvec4
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
const Type& uvec4_type = module_.type_manager_.GetTypeVector(uint32_type, 4);
const uint32_t uint32_0_id = module_.type_manager_.GetConstantZeroUint32().Id();
uint32_t stage_info[4] = {uint32_0_id, uint32_0_id, uint32_0_id, uint32_0_id};
if (module_.entry_points_.size() > 1) {
// For Multi Entry Points it currently a lot of work to scan every function to see where it will be called from
// For now we will just report it is "unknown" and skip printing that part of the error message
stage_info[0] = module_.type_manager_.GetConstantUInt32(glsl::kExecutionModelMultiEntryPoint).Id();
} else {
spv::ExecutionModel execution_model = spv::ExecutionModel(module_.entry_points_.begin()->get()->Operand(0));
// Need to map how GenerateStageMessage() will consume it
uint32_t normalized_execution_model = execution_model;
if (execution_model == spv::ExecutionModelTaskNV) {
normalized_execution_model = glsl::kExecutionModelTaskNV;
} else if (execution_model == spv::ExecutionModelMeshNV) {
normalized_execution_model = glsl::kExecutionModelMeshNV;
} else if (execution_model == spv::ExecutionModelRayGenerationKHR) {
normalized_execution_model = glsl::kExecutionModelRayGenerationKHR;
} else if (execution_model == spv::ExecutionModelIntersectionKHR) {
normalized_execution_model = glsl::kExecutionModelIntersectionKHR;
} else if (execution_model == spv::ExecutionModelAnyHitKHR) {
normalized_execution_model = glsl::kExecutionModelAnyHitKHR;
} else if (execution_model == spv::ExecutionModelClosestHitKHR) {
normalized_execution_model = glsl::kExecutionModelClosestHitKHR;
} else if (execution_model == spv::ExecutionModelMissKHR) {
normalized_execution_model = glsl::kExecutionModelMissKHR;
} else if (execution_model == spv::ExecutionModelCallableKHR) {
normalized_execution_model = glsl::kExecutionModelCallableKHR;
} else if (execution_model == spv::ExecutionModelCallableKHR) {
normalized_execution_model = glsl::kExecutionModelCallableKHR;
} else if (execution_model == spv::ExecutionModelTaskEXT) {
normalized_execution_model = glsl::kExecutionModelTaskEXT;
} else if (execution_model == spv::ExecutionModelMeshEXT) {
normalized_execution_model = glsl::kExecutionModelMeshEXT;
}
stage_info[0] = module_.type_manager_.GetConstantUInt32(normalized_execution_model).Id();
// Gets BuiltIn variable and creates a valid OpLoad of it
auto create_load = [this, &block, &inst_it](spv::BuiltIn built_in) {
const Variable& variable = GetBuiltinVariable(built_in);
const Type* pointer_type = variable.PointerType(module_.type_manager_);
const uint32_t load_id = module_.TakeNextId();
block.CreateInstruction(spv::OpLoad, {pointer_type->Id(), load_id, variable.Id()}, &inst_it);
return load_id;
};
switch (execution_model) {
case spv::ExecutionModelVertex: {
uint32_t load_id = create_load(spv::BuiltInVertexIndex);
stage_info[1] = CastToUint32(load_id, block, &inst_it);
load_id = create_load(spv::BuiltInInstanceIndex);
stage_info[2] = CastToUint32(load_id, block, &inst_it);
} break;
case spv::ExecutionModelFragment: {
const uint32_t load_id = create_load(spv::BuiltInFragCoord);
// convert vec4 to uvec4
const uint32_t bitcast_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uvec4_type.Id(), bitcast_id, load_id}, &inst_it);
for (uint32_t i = 0; i < 2; i++) {
const uint32_t extract_id = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {uint32_type.Id(), extract_id, bitcast_id, i}, &inst_it);
stage_info[i + 1] = extract_id;
}
} break;
case spv::ExecutionModelRayGenerationKHR:
case spv::ExecutionModelIntersectionKHR:
case spv::ExecutionModelAnyHitKHR:
case spv::ExecutionModelClosestHitKHR:
case spv::ExecutionModelMissKHR:
case spv::ExecutionModelCallableKHR: {
const uint32_t load_id = create_load(spv::BuiltInLaunchIdKHR);
for (uint32_t i = 0; i < 3; i++) {
const uint32_t extract_id = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {uint32_type.Id(), extract_id, load_id, i}, &inst_it);
stage_info[i + 1] = extract_id;
}
} break;
case spv::ExecutionModelGLCompute:
case spv::ExecutionModelTaskNV:
case spv::ExecutionModelMeshNV:
case spv::ExecutionModelTaskEXT:
case spv::ExecutionModelMeshEXT: {
// This can be both a uvec3 or ivec3 so need to cast if ivec3
const Variable& variable = GetBuiltinVariable(spv::BuiltInGlobalInvocationId);
const Type* pointer_type = variable.PointerType(module_.type_manager_);
const uint32_t load_id = module_.TakeNextId();
block.CreateInstruction(spv::OpLoad, {pointer_type->Id(), load_id, variable.Id()}, &inst_it);
uint32_t final_load_id = load_id;
if (pointer_type->IsIVec3(module_.type_manager_)) {
const Type& vec3_type = module_.type_manager_.GetTypeVector(uint32_type, 3);
final_load_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {vec3_type.Id(), final_load_id, load_id}, &inst_it);
}
for (uint32_t i = 0; i < 3; i++) {
const uint32_t extract_id = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {uint32_type.Id(), extract_id, final_load_id, i}, &inst_it);
stage_info[i + 1] = extract_id;
}
} break;
case spv::ExecutionModelGeometry: {
const uint32_t primitive_id = create_load(spv::BuiltInPrimitiveId);
stage_info[1] = CastToUint32(primitive_id, block, &inst_it);
const uint32_t load_id = create_load(spv::BuiltInInvocationId);
stage_info[2] = CastToUint32(load_id, block, &inst_it);
} break;
case spv::ExecutionModelTessellationControl: {
const uint32_t load_id = create_load(spv::BuiltInInvocationId);
stage_info[1] = CastToUint32(load_id, block, &inst_it);
const uint32_t primitive_id = create_load(spv::BuiltInPrimitiveId);
stage_info[2] = CastToUint32(primitive_id, block, &inst_it);
} break;
case spv::ExecutionModelTessellationEvaluation: {
const uint32_t primitive_id = create_load(spv::BuiltInPrimitiveId);
stage_info[1] = CastToUint32(primitive_id, block, &inst_it);
// convert vec3 to uvec3
const Type& uvec3_type = module_.type_manager_.GetTypeVector(uint32_type, 3);
const uint32_t load_id = create_load(spv::BuiltInTessCoord);
const uint32_t bitcast_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uvec3_type.Id(), bitcast_id, load_id}, &inst_it);
// TessCoord.uv values from it
for (uint32_t i = 0; i < 2; i++) {
const uint32_t extract_id = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeExtract, {uint32_type.Id(), extract_id, bitcast_id, i}, &inst_it);
stage_info[i + 2] = extract_id;
}
} break;
default:
module_.InternalError(Name(), "GetStageInfo has unsupported stage");
break;
}
}
function.stage_info_id_ = module_.TakeNextId();
block.CreateInstruction(spv::OpCompositeConstruct,
{uvec4_type.Id(), function.stage_info_id_, stage_info[0], stage_info[1], stage_info[2], stage_info[3]},
&inst_it);
function.stage_info_x_id_ = stage_info[0];
function.stage_info_y_id_ = stage_info[1];
function.stage_info_z_id_ = stage_info[2];
function.stage_info_w_id_ = stage_info[3];
// because we are injecting things in the first block, there is a chance we just destroyed the iterator if the target
// instruction was also in the first block, so need to regain it for the caller
if (target_block_it.GetLabelId() == block.GetLabelId()) {
out_inst_it = FindTargetInstruction(block, target_instruction);
}
return function.stage_info_id_;
}
const Instruction* Pass::GetDecoration(uint32_t id, spv::Decoration decoration) const {
for (const auto& annotation : module_.annotations_) {
if (annotation->Opcode() == spv::OpDecorate && annotation->Word(1) == id &&
spv::Decoration(annotation->Word(2)) == decoration) {
return annotation.get();
}
}
return nullptr;
}
const Instruction* Pass::GetMemberDecoration(uint32_t id, uint32_t member_index, spv::Decoration decoration) const {
for (const auto& annotation : module_.annotations_) {
if (annotation->Opcode() == spv::OpMemberDecorate && annotation->Word(1) == id && annotation->Word(2) == member_index &&
spv::Decoration(annotation->Word(3)) == decoration) {
return annotation.get();
}
}
return nullptr;
}
// In an ideal world, this would be baked into the Type class when we construct it. The core issue is OpTypeMatrix size can be
// different depending where it is used. Because of this, we need to have a higher level view what is going on in order to correctly
// figure out the size of a given type.
uint32_t Pass::FindTypeByteSize(uint32_t type_id, uint32_t matrix_stride, bool col_major, bool in_matrix) const {
const Type& type = *module_.type_manager_.FindTypeById(type_id);
switch (type.spv_type_) {
case SpvType::kPointer:
return 8; // Assuming PhysicalStorageBuffer pointer
break;
case SpvType::kMatrix: {
if (matrix_stride == 0) {
module_.InternalError("FindTypeByteSize", "missing matrix stride");
}
if (col_major) {
return type.inst_.Word(3) * matrix_stride;
} else {
const Type* vector_type = module_.type_manager_.FindTypeById(type.inst_.Word(2));
return vector_type->inst_.Word(3) * matrix_stride;
}
}
case SpvType::kVector: {
uint32_t size = type.inst_.Word(3);
const Type* component_type = module_.type_manager_.FindTypeById(type.inst_.Word(2));
// if vector in row major matrix, the vector is strided so return the number of bytes spanned by the vector
if (in_matrix && !col_major && matrix_stride > 0) {
return (size - 1) * matrix_stride + FindTypeByteSize(component_type->Id());
} else if (component_type->spv_type_ == SpvType::kFloat || component_type->spv_type_ == SpvType::kInt) {
const uint32_t width = component_type->inst_.Word(2);
size *= width;
} else {
module_.InternalError("FindTypeByteSize", "unexpected vector type");
}
return size / 8;
}
case SpvType::kFloat:
case SpvType::kInt: {
const uint32_t width = type.inst_.Word(2);
return width / 8;
}
case SpvType::kArray: {
const uint32_t array_stride = GetDecoration(type_id, spv::DecorationArrayStride)->Word(3);
const Constant* count = module_.type_manager_.FindConstantById(type.inst_.Operand(1));
// TODO - Need to handle spec constant here, for now return one to have things not blowup
assert(count && !count->is_spec_constant_);
const uint32_t array_length = (count && !count->is_spec_constant_) ? count->inst_.Operand(0) : 1;
return array_length * array_stride;
}
case SpvType::kStruct: {
const uint32_t struct_length = type.inst_.Length() - 2;
const uint32_t struct_id = type.inst_.ResultId();
// We do our best to find the "size" of the struct (see https://gitlab.khronos.org/spirv/SPIR-V/-/issues/763)
uint32_t highest_element_index = 0;
uint32_t highest_element_offset = 0;
for (uint32_t i = 0; i < struct_length; i++) {
for (const auto& annotation : module_.annotations_) {
if (annotation->Opcode() == spv::OpMemberDecorate && annotation->Word(1) == struct_id &&
annotation->Word(2) == i && spv::Decoration(annotation->Word(3)) == spv::DecorationOffset) {
const uint32_t member_offset = annotation->Word(4);
if (member_offset > highest_element_offset) {
highest_element_index = i;
highest_element_offset = member_offset;
}
break;
}
}
}
const uint32_t last_offset_id = type.inst_.Operand(highest_element_index);
const Type* last_offset_type = module_.type_manager_.FindTypeById(last_offset_id);
uint32_t highest_element_size = 0;
if (last_offset_type->spv_type_ == SpvType::kMatrix) {
// TODO - We need a better way to handle Matrix at the end of structs
const Instruction* decoration_matrix_stride =
GetMemberDecoration(struct_id, highest_element_index, spv::DecorationMatrixStride);
matrix_stride = decoration_matrix_stride ? decoration_matrix_stride->Word(4) : 0;
const Instruction* decoration_col_major =
GetMemberDecoration(struct_id, highest_element_index, spv::DecorationColMajor);
col_major = decoration_col_major != nullptr;
highest_element_size = FindTypeByteSize(last_offset_id, matrix_stride, col_major, true);
} else {
highest_element_size = FindTypeByteSize(last_offset_id);
}
return highest_element_offset + highest_element_size;
}
default:
break;
}
return 1;
}
// Find outermost buffer type and its access chain index.
// Because access chains indexes can be runtime values, we need to build arithmetic logic in the SPIR-V to get the runtime value of
// the indexing
uint32_t Pass::GetLastByte(const Type& descriptor_type, const std::vector<const Instruction*>& access_chain_insts,
BasicBlock& block, InstructionIt* inst_it) {
assert(!access_chain_insts.empty());
uint32_t current_type_id = 0;
const uint32_t reset_ac_word = 4; // points to first "Index" operand of an OpAccessChain
uint32_t ac_word_index = reset_ac_word;
if (descriptor_type.IsArray()) {
current_type_id = descriptor_type.inst_.Operand(0);
ac_word_index++; // this jumps over the array of descriptors so we first start on the descriptor itself
} else if (descriptor_type.spv_type_ == SpvType::kStruct) {
current_type_id = descriptor_type.Id();
} else {
module_.InternalError(Name(), "GetLastByte has unexpected descriptor type");
return 0;
}
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
// instruction that will have calculated the sum of the byte offset
uint32_t sum_id = 0;
uint32_t matrix_stride = 0;
bool col_major = false;
uint32_t matrix_stride_id = 0;
bool in_matrix = false;
// This loop gets use to the last element, so if we have something like
//
// Struct foo {
// uint a; // 4 bytes
// vec4 b; // 16 bytes
// float c; <--- accessing
// }
//
// it will get us to 20 bytes
auto access_chain_iter = access_chain_insts.rbegin();
// This occurs in things like Slang where they have a single OpAccessChain for the descriptor
// (GLSL/HLSL will combine 2 indexes into the last OpAccessChain)
if (ac_word_index >= (*access_chain_iter)->Length()) {
++access_chain_iter;
ac_word_index = reset_ac_word;
}
while (access_chain_iter != access_chain_insts.rend()) {
const uint32_t ac_index_id = (*access_chain_iter)->Word(ac_word_index);
uint32_t current_offset_id = 0;
const Type* current_type = module_.type_manager_.FindTypeById(current_type_id);
switch (current_type->spv_type_) {
case SpvType::kArray:
case SpvType::kRuntimeArray: {
// Get array stride and multiply by current index
const uint32_t array_stride = GetDecoration(current_type_id, spv::DecorationArrayStride)->Word(3);
const uint32_t array_stride_id = module_.type_manager_.GetConstantUInt32(array_stride).Id();
const uint32_t ac_index_id_32 = ConvertTo32(ac_index_id, block, inst_it);
current_offset_id = module_.TakeNextId();
block.CreateInstruction(spv::OpIMul, {uint32_type.Id(), current_offset_id, array_stride_id, ac_index_id_32},
inst_it);
// Get element type for next step
current_type_id = current_type->inst_.Operand(0);
} break;
case SpvType::kMatrix: {
if (matrix_stride == 0) {
module_.InternalError(Name(), "GetLastByte is missing matrix stride");
}
matrix_stride_id = module_.type_manager_.GetConstantUInt32(matrix_stride).Id();
uint32_t vec_type_id = current_type->inst_.Operand(0);
// If column major, multiply column index by matrix stride, otherwise by vector component size and save matrix
// stride for vector (row) index
uint32_t col_stride_id = 0;
if (col_major) {
col_stride_id = matrix_stride_id;
} else {
const uint32_t component_type_id = module_.type_manager_.FindTypeById(vec_type_id)->inst_.Operand(0);
const uint32_t col_stride = FindTypeByteSize(component_type_id);
col_stride_id = module_.type_manager_.GetConstantUInt32(col_stride).Id();
}
const uint32_t ac_index_id_32 = ConvertTo32(ac_index_id, block, inst_it);
current_offset_id = module_.TakeNextId();
block.CreateInstruction(spv::OpIMul, {uint32_type.Id(), current_offset_id, col_stride_id, ac_index_id_32}, inst_it);
// Get element type for next step
current_type_id = vec_type_id;
in_matrix = true;
} break;
case SpvType::kVector: {
// If inside a row major matrix type, multiply index by matrix stride,
// else multiply by component size
const uint32_t component_type_id = current_type->inst_.Operand(0);
const uint32_t ac_index_id_32 = ConvertTo32(ac_index_id, block, inst_it);
if (in_matrix && !col_major) {
current_offset_id = module_.TakeNextId();
block.CreateInstruction(spv::OpIMul, {uint32_type.Id(), current_offset_id, matrix_stride_id, ac_index_id_32},
inst_it);
} else {
const uint32_t component_type_size = FindTypeByteSize(component_type_id);
const uint32_t size_id = module_.type_manager_.GetConstantUInt32(component_type_size).Id();
current_offset_id = module_.TakeNextId();
block.CreateInstruction(spv::OpIMul, {uint32_type.Id(), current_offset_id, size_id, ac_index_id_32}, inst_it);
}
// Get element type for next step
current_type_id = component_type_id;
} break;
case SpvType::kStruct: {
// Get buffer byte offset for the referenced member
const Constant* member_constant = module_.type_manager_.FindConstantById(ac_index_id);
assert(!member_constant->is_spec_constant_);
uint32_t member_index = member_constant->inst_.Operand(0);
uint32_t member_offset = GetMemberDecoration(current_type_id, member_index, spv::DecorationOffset)->Word(4);
current_offset_id = module_.type_manager_.GetConstantUInt32(member_offset).Id();
// Look for matrix stride for this member if there is one. The matrix
// stride is not on the matrix type, but in a OpMemberDecorate on the
// enclosing struct type at the member index. If none found, reset
// stride to 0.
const Instruction* decoration_matrix_stride =
GetMemberDecoration(current_type_id, member_index, spv::DecorationMatrixStride);
matrix_stride = decoration_matrix_stride ? decoration_matrix_stride->Word(4) : 0;
const Instruction* decoration_col_major =
GetMemberDecoration(current_type_id, member_index, spv::DecorationColMajor);
col_major = decoration_col_major != nullptr;
// Get element type for next step
current_type_id = current_type->inst_.Operand(member_index);
} break;
default: {
module_.InternalError(Name(), "GetLastByte has unexpected non-composite type");
} break;
}
if (sum_id == 0) {
sum_id = current_offset_id;
} else {
const uint32_t new_sum_id = module_.TakeNextId();
block.CreateInstruction(spv::OpIAdd, {uint32_type.Id(), new_sum_id, sum_id, current_offset_id}, inst_it);
sum_id = new_sum_id;
}
ac_word_index++;
if (ac_word_index >= (*access_chain_iter)->Length()) {
++access_chain_iter;
ac_word_index = reset_ac_word;
}
}
// Add in offset of last byte of referenced object
const uint32_t accessed_type_size = FindTypeByteSize(current_type_id, matrix_stride, col_major, in_matrix);
const uint32_t last_byte_index = accessed_type_size - 1;
const uint32_t last_byte_index_id = module_.type_manager_.GetConstantUInt32(last_byte_index).Id();
const uint32_t new_sum_id = module_.TakeNextId();
block.CreateInstruction(spv::OpIAdd, {uint32_type.Id(), new_sum_id, sum_id, last_byte_index_id}, inst_it);
return new_sum_id;
}
// Finds the upper bound offset into the struct an instruction would access
// If it is a non-constant value, will return zero to indicate its a runtime value
//
// If shader looks for 'b' in a descriptor like
//
// struct X {
// uint a;
// uint b;
// uint c;
// }
//
// it will return `7` because it covers [4, 7] bytes of the descriptor
// (This matches the GetLastByte() check)
uint32_t Pass::FindOffsetInStruct(uint32_t struct_id, bool is_descriptor_array,
const std::vector<const Instruction*>& access_chain_insts) const {
assert(!access_chain_insts.empty());
uint32_t last_byte_offset = 0;
const uint32_t reset_ac_word = 4; // points to first "Index" operand of an OpAccessChain
uint32_t ac_word_index = reset_ac_word;
if (is_descriptor_array) {
ac_word_index++; // this jumps over the array of descriptors so we first start on the descriptor itself
}
uint32_t matrix_stride = 0;
bool col_major = false;
bool in_matrix = false;
auto access_chain_iter = access_chain_insts.rbegin();
// This occurs in things like Slang where they have a single OpAccessChain for the descriptor
// (GLSL/HLSL will combine 2 indexes into the last OpAccessChain)
if (ac_word_index >= (*access_chain_iter)->Length()) {
++access_chain_iter;
ac_word_index = reset_ac_word;
}
uint32_t current_type_id = struct_id;
// Walk down access chains to build up the offset
while (access_chain_iter != access_chain_insts.rend()) {
const uint32_t ac_index_id = (*access_chain_iter)->Word(ac_word_index);
const Constant* index_constant = module_.type_manager_.FindConstantById(ac_index_id);
if (!index_constant || index_constant->inst_.Opcode() != spv::OpConstant) {
return 0; // Access Chain has dynamic value
}
const uint32_t constant_value = index_constant->GetValueUint32();
uint32_t current_offset = 0;
const Type* current_type = module_.type_manager_.FindTypeById(current_type_id);
switch (current_type->spv_type_) {
case SpvType::kArray:
case SpvType::kRuntimeArray: {
// Get array stride and multiply by current index
const uint32_t array_stride = GetDecoration(current_type_id, spv::DecorationArrayStride)->Word(3);
current_offset = constant_value * array_stride;
current_type_id = current_type->inst_.Operand(0); // Get element type for next step
} break;
case SpvType::kMatrix: {
if (matrix_stride == 0) {
module_.InternalError(Name(), "FindOffsetInStruct is missing matrix stride");
}
in_matrix = true;
uint32_t vec_type_id = current_type->inst_.Operand(0);
// If column major, multiply column index by matrix stride, otherwise by vector component size and save matrix
// stride for vector (row) index
uint32_t col_stride = 0;
if (col_major) {
col_stride = matrix_stride;
} else {
const uint32_t component_type_id = module_.type_manager_.FindTypeById(vec_type_id)->inst_.Operand(0);
col_stride = FindTypeByteSize(component_type_id);
}
current_offset = constant_value * col_stride;
current_type_id = vec_type_id; // Get element type for next step
} break;
case SpvType::kVector: {
// If inside a row major matrix type, multiply index by matrix stride,
// else multiply by component size
const uint32_t component_type_id = current_type->inst_.Operand(0);
if (in_matrix && !col_major) {
current_offset = constant_value * matrix_stride;
} else {
const uint32_t component_type_size = FindTypeByteSize(component_type_id);
current_offset = constant_value * component_type_size;
}
current_type_id = component_type_id; // Get element type for next step
} break;
case SpvType::kStruct: {
// Get buffer byte offset for the referenced member
current_offset = GetMemberDecoration(current_type_id, constant_value, spv::DecorationOffset)->Word(4);
// Look for matrix stride for this member if there is one. The matrix
// stride is not on the matrix type, but in a OpMemberDecorate on the
// enclosing struct type at the member index. If none is found, reset
// stride to 0.
const Instruction* decoration_matrix_stride =
GetMemberDecoration(current_type_id, constant_value, spv::DecorationMatrixStride);
matrix_stride = decoration_matrix_stride ? decoration_matrix_stride->Word(4) : 0;
const Instruction* decoration_col_major =
GetMemberDecoration(current_type_id, constant_value, spv::DecorationColMajor);
col_major = decoration_col_major != nullptr;
current_type_id = current_type->inst_.Operand(constant_value); // Get element type for next step
} break;
default: {
module_.InternalError(Name(), "FindOffsetInStruct has unexpected non-composite type");
} break;
}
last_byte_offset += current_offset;
ac_word_index++;
if (ac_word_index >= (*access_chain_iter)->Length()) {
++access_chain_iter;
ac_word_index = reset_ac_word;
}
}
// Add in offset of last byte of referenced object
const uint32_t accessed_type_size = FindTypeByteSize(current_type_id, matrix_stride, col_major, in_matrix);
const uint32_t last_byte_index = accessed_type_size - 1;
last_byte_offset += last_byte_index;
return last_byte_offset;
}
// Generate code to convert integer id to 32bit, if needed.
uint32_t Pass::ConvertTo32(uint32_t id, BasicBlock& block, InstructionIt* inst_it) const {
// Find type doing the indexing into the access chain
const Type* type = nullptr;
const Constant* constant = module_.type_manager_.FindConstantById(id);
if (constant) {
type = &constant->type_;
} else {
const Instruction* inst = block.function_.FindInstruction(id);
if (inst) {
type = module_.type_manager_.FindTypeById(inst->TypeId());
}
}
if (!type) {
return id;
}
assert(type->spv_type_ == SpvType::kInt);
if (type->inst_.Word(2) == 32) {
return id;
}
const bool is_signed = type->inst_.Word(3) != 0;
const uint32_t new_id = module_.TakeNextId();
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
if (is_signed) {
block.CreateInstruction(spv::OpSConvert, {uint32_type.Id(), new_id, id}, inst_it);
} else {
block.CreateInstruction(spv::OpUConvert, {uint32_type.Id(), new_id, id}, inst_it);
}
return new_id; // Return an id to the 32bit equivalent.
}
// Generate code to cast integer it to 32bit unsigned, if needed.
uint32_t Pass::CastToUint32(uint32_t id, BasicBlock& block, InstructionIt* inst_it) const {
// Convert value to 32-bit if necessary
uint32_t int32_id = ConvertTo32(id, block, inst_it);
const Type* type = nullptr;
const Constant* constant = module_.type_manager_.FindConstantById(int32_id);
if (constant) {
type = &constant->type_;
} else {
const Instruction* inst = block.function_.FindInstruction(int32_id);
if (inst) {
type = module_.type_manager_.FindTypeById(inst->TypeId());
}
}
if (!type) {
return int32_id;
}
assert(type->spv_type_ == SpvType::kInt);
const bool is_signed = type->inst_.Word(3) != 0;
if (!is_signed) {
return int32_id;
}
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
const uint32_t new_id = module_.TakeNextId();
block.CreateInstruction(spv::OpBitcast, {uint32_type.Id(), new_id, int32_id}, inst_it);
return new_id; // Return an id to the Uint equivalent.
}
InstructionIt Pass::FindTargetInstruction(BasicBlock& block, const Instruction& target_instruction) const {
const uint32_t target_id = target_instruction.ResultId();
for (auto inst_it = block.instructions_.begin(); inst_it != block.instructions_.end(); ++inst_it) {
// This has to re-loop the entire block to find the instruction, using the ResultID, we can quickly compare
if ((*inst_it)->ResultId() == target_id) {
// Things like OpStore will have a result id of zero, so need to do deep instruction comparison
if (*(*inst_it) == target_instruction) {
return inst_it;
}
}
}
module_.InternalError(Name(), "failed to find instruction");
return block.instructions_.end();
}
bool Pass::IsMaxInstrumentationsCount() const {
return (module_.settings_.max_instrumentations_count != 0) &&
(instrumentations_count_ >= module_.settings_.max_instrumentations_count);
}
// A type of common pass that will inject a function call and link it up later,
// We will have wrap the checks to be safe from bad values crashing things
// For OpStore we will just ignore the store if it is invalid, example:
// Before:
// bda.data[index] = value;
// After:
// if (isValid(bda.data, index)) {
// bda.data[index] = value;
// }
//
// For OpLoad we replace the value with Zero (via Phi node) if it is invalid, example
// Before:
// int X = bda.data[index];
// int Y = bda.data[X];
// After:
// if (isValid(bda.data, index)) {
// int X = bda.data[index];
// } else {
// int X = 0;
// }
// if (isValid(bda.data, X)) {
// int Y = bda.data[X];
// } else {
// int Y = 0;
// }
InjectConditionalData Pass::InjectFunctionPre(Function& function, const BasicBlockIt original_block_it, InstructionIt inst_it) {
// We turn the block into 4 separate blocks
BasicBlock& original_block = **original_block_it;
const uint32_t original_label = original_block.GetLabelId();
// Where we call targeted instruction if it is valid
BasicBlockIt valid_block_it = function.InsertNewBlock(original_block_it);
BasicBlock& valid_block = **valid_block_it;
const uint32_t valid_block_label = valid_block.GetLabelId();
// will be an empty block, used for the Phi node, even if no result, create for simplicity
BasicBlockIt invalid_block_it = function.InsertNewBlock(valid_block_it);
BasicBlock& invalid_block = **invalid_block_it;
const uint32_t invalid_block_label = invalid_block.GetLabelId();
// All the remaining block instructions after targeted instruction
BasicBlockIt merge_block_it = function.InsertNewBlock(invalid_block_it);
BasicBlock& merge_block = **merge_block_it;
const uint32_t merge_block_label = merge_block.GetLabelId();
// need to preserve the control-flow of how things, like a OpPhi, are accessed from a predecessor block
function.ReplaceAllUsesWith(original_label, merge_block_label);
// Move the targeted instruction to a valid block
const Instruction& target_inst = *valid_block.instructions_.emplace_back(std::move(*inst_it));
inst_it = original_block.instructions_.erase(inst_it);
valid_block.CreateInstruction(spv::OpBranch, {merge_block_label});
// If thre is a result, we need to create an additional BasicBlock to hold the |else| case, then after we create a Phi node to
// hold the result
const uint32_t target_inst_id = target_inst.ResultId();
if (target_inst_id != 0) {
const uint32_t phi_id = module_.TakeNextId();
const Type& phi_type = *module_.type_manager_.FindTypeById(target_inst.TypeId());
uint32_t null_id = 0;
// Can't create ConstantNull of pointer type, so convert uint64 zero to pointer
if (phi_type.spv_type_ == SpvType::kPointer) {
const Type& uint64_type = module_.type_manager_.GetTypeInt(64, false);
const Constant& null_constant = module_.type_manager_.GetConstantNull(uint64_type);
null_id = module_.TakeNextId();
// We need to put any intermittent instructions here so Phi is first in the merge block
invalid_block.CreateInstruction(spv::OpConvertUToPtr, {phi_type.Id(), null_id, null_constant.Id()});
module_.AddCapability(spv::CapabilityInt64);
} else {
if ((phi_type.spv_type_ == SpvType::kInt || phi_type.spv_type_ == SpvType::kFloat) && phi_type.inst_.Word(2) < 32) {
// You can't make a constant of a 8-int, 16-int, 16-float without having the capability
// The only way this situation occurs if they use something like
// OpCapability StorageBuffer8BitAccess
// but there is not explicit Int8
// It should be more than safe to inject it for them
spv::Capability capability = (phi_type.spv_type_ == SpvType::kFloat) ? spv::CapabilityFloat16
: (phi_type.inst_.Word(2) == 16) ? spv::CapabilityInt16
: spv::CapabilityInt8;
module_.AddCapability(capability);
}
null_id = module_.type_manager_.GetConstantNull(phi_type).Id();
}
// replace before creating instruction, otherwise will over-write itself
function.ReplaceAllUsesWith(target_inst_id, phi_id);
merge_block.CreateInstruction(spv::OpPhi,
{phi_type.Id(), phi_id, target_inst_id, valid_block_label, null_id, invalid_block_label});
}
// When skipping some instructions, we need something valid to replace it
if (target_inst.Opcode() == spv::OpRayQueryInitializeKHR) {
// Currently assume the RayQuery and AS object were valid already
const uint32_t uint32_0_id = module_.type_manager_.GetConstantZeroUint32().Id();
const uint32_t float32_0_id = module_.type_manager_.GetConstantZeroFloat32().Id();
const uint32_t vec3_0_id = module_.type_manager_.GetConstantZeroVec3().Id();
invalid_block.CreateInstruction(spv::OpRayQueryInitializeKHR,
{target_inst.Operand(0), target_inst.Operand(1), uint32_0_id, uint32_0_id, vec3_0_id,
float32_0_id, vec3_0_id, float32_0_id});
}
invalid_block.CreateInstruction(spv::OpBranch, {merge_block_label});
// move all remaining instructions to the newly created merge block
merge_block.instructions_.insert(merge_block.instructions_.end(), std::make_move_iterator(inst_it),
std::make_move_iterator(original_block.instructions_.end()));
original_block.instructions_.erase(inst_it, original_block.instructions_.end());
return InjectConditionalData{merge_block_label, valid_block_label, invalid_block_label, 0, merge_block_it};
}
void Pass::InjectFunctionPost(BasicBlock& original_block, const InjectConditionalData& ic_data) {
original_block.CreateInstruction(spv::OpSelectionMerge, {ic_data.merge_block_label, spv::SelectionControlMaskNone});
original_block.CreateInstruction(spv::OpBranchConditional,
{ic_data.function_result_id, ic_data.valid_block_label, ic_data.invalid_block_label});
}
void Pass::ControlFlow::Update(const BasicBlock& block) {
if (in_loop) {
if (block.GetLabelId() == merge_target_id) {
in_loop = false;
merge_target_id = 0;
}
} else if (block.IsLoopHeader()) {
in_loop = true;
merge_target_id = block.loop_header_merge_target_;
}
}
// Helper for passes with multiple linked functions they may grab
// Pass in cached link_function_id and only update it the first time
uint32_t Pass::GetLinkFunction(uint32_t& link_function_id, const OfflineFunction& offline) {
if (link_function_id == 0) {
link_function_id = module_.TakeNextId();
link_info_.functions.emplace_back(LinkFunction{offline, link_function_id});
}
return link_function_id;
}
void DescriptroIndexPushConstantAccess::Update(const Module& module, InstructionIt inst_it) {
if (!(*inst_it)->IsNonPtrAccessChain()) {
return;
}
const Variable* pc_variable = module.type_manager_.FindPushConstantVariable();
if (!pc_variable) {
return; // shader doesn't use Push Constant
}
if ((*inst_it)->Operand(0) != pc_variable->Id()) {
return; // Access chain is not aimmed at the Push Constant
}
const Constant* member_index_constant = module.type_manager_.FindConstantById((*inst_it)->Operand(1));
if (!member_index_constant) {
return; // dynamic access into Push Constant (which is crazy and not likely)
}
const uint32_t found_member_index = member_index_constant->Id();
// We save memory/time tracking every instruction and know from viewing SPIR-V this pattern always will look like
// %a = OpAccessChain %ptr %pc %uint_x
// %b = OpLoad %uint %a
// %c = OpIAdd %uint %b %uint_y (optional)
//
// We use this and just do a quick look ahead for load
const uint32_t access_chain_id = (*inst_it)->ResultId();
inst_it++;
if ((*inst_it)->Opcode() != spv::OpLoad || (*inst_it)->Operand(0) != access_chain_id) {
return;
}
const Type* access_type = module.type_manager_.FindTypeById((*inst_it)->TypeId());
if (!access_type || access_type->spv_type_ != SpvType::kInt) {
return; // might be grabbing a uvec2 or float instead we want to ignore
}
uint32_t found_descriptor_index_id = (*inst_it)->ResultId();
uint32_t found_add_id_value = 0;
inst_it++;
if ((*inst_it)->Opcode() == spv::OpIAdd) {
const uint32_t add_0_id = (*inst_it)->Operand(0);
const uint32_t add_1_id = (*inst_it)->Operand(1);
// Might be (pc + constant) or (constant + pc)
if (add_0_id == found_descriptor_index_id) {
found_add_id_value = add_1_id;
} else if (add_1_id == found_descriptor_index_id) {
found_add_id_value = add_0_id;
} else {
return; // we have hit a strange case and rather be safe and exit
}
found_descriptor_index_id = (*inst_it)->ResultId();
}
next_alias_id = found_descriptor_index_id;
if (add_id_value != found_add_id_value || member_index != found_member_index) {
// First time seeing the Push Constant, set starting values.
// Also if found a new uint being used, need to reset.
descriptor_index_id = found_descriptor_index_id;
add_id_value = found_add_id_value;
member_index = found_member_index;
}
}
bool FunctionDuplicateTracker::FindAndUpdate(BlockDuplicateTracker& block, uint32_t hash) {
// Subtle, but important, if you have
//
// inst_post_process(hash) A
// if (x)
// inst_post_process(hash) B
// if (x)
// inst_post_process(hash) C
//
// A, B, and C are the same, we will be adding the hash here still for B, but never add the actual OpFunctionCall, then C will
// detect the block B is in and also do the same. This means we create a Post-Dominated chain effect without having to store any
// list of some sort.
auto insert_pair = block.hashes.insert(hash);
if (!insert_pair.second) {
return true; // found in this block
}
// Here we look back and see if this block is post-dominated by something with same instrumentation already
if (block.merge_select_predecessor != 0) {
BlockDuplicateTracker& predecessor_tracker = blocks_[block.merge_select_predecessor];
if (predecessor_tracker.hashes.find(hash) != predecessor_tracker.hashes.end()) {
return true;
}
}
if (block.branch_conditional_predecessor != 0) {
BlockDuplicateTracker& predecessor_tracker = blocks_[block.branch_conditional_predecessor];
if (predecessor_tracker.hashes.find(hash) != predecessor_tracker.hashes.end()) {
return true;
}
}
if (block.switch_cases_predecessor != 0) {
BlockDuplicateTracker& predecessor_tracker = blocks_[block.switch_cases_predecessor];
if (predecessor_tracker.hashes.find(hash) != predecessor_tracker.hashes.end()) {
return true;
}
}
return false;
}
// If the block is terminating, mark the post-dominated blocks
BlockDuplicateTracker& FunctionDuplicateTracker::GetAndUpdate(BasicBlock& block) {
const uint32_t current_block_id = block.GetLabelId();
if (block.selection_merge_target_) {
blocks_[block.selection_merge_target_].merge_select_predecessor = current_block_id;
}
if (block.branch_conditional_true_) {
blocks_[block.branch_conditional_true_].branch_conditional_predecessor = current_block_id;
}
if (block.branch_conditional_false_) {
blocks_[block.branch_conditional_false_].branch_conditional_predecessor = current_block_id;
}
if (block.switch_default_) {
blocks_[block.switch_default_].switch_cases_predecessor = current_block_id;
}
for (uint32_t switch_case_id : block.switch_cases_) {
blocks_[switch_case_id].switch_cases_predecessor = current_block_id;
}
return blocks_[current_block_id];
}
} // namespace spirv
} // namespace gpuav
|