1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
/* Copyright (c) 2024-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "type_manager.h"
#include <spirv/unified1/spirv.hpp>
#include "generated/spirv_grammar_helper.h"
#include "module.h"
namespace gpuav {
namespace spirv {
// Simplest way to check if same type is see if items line up.
// Even if types have an RefId, it should be the same unless there are already duplicated types.
bool Type::operator==(Type const& other) const {
if ((spv_type_ != other.spv_type_) || (inst_.Length() != other.inst_.Length())) {
return false;
}
// word[1] is the result ID which might be different
for (uint32_t i = 2; i < inst_.Length(); i++) {
if (inst_.Word(i) != other.inst_.Word(i)) {
return false;
}
}
return true;
}
// return %A in:
// %B = OpTypePointer Input %A
// %C = OpVariable %B Input
const Type* Variable::PointerType(TypeManager& type_manager_) const {
assert(type_.spv_type_ == SpvType::kPointer || type_.spv_type_ == SpvType::kForwardPointer);
uint32_t type_id = type_.inst_.Word(3);
return type_manager_.FindTypeById(type_id);
}
const Type& TypeManager::AddType(std::unique_ptr<Instruction> new_inst, SpvType spv_type) {
const auto& inst = module_.types_values_constants_.emplace_back(std::move(new_inst));
id_to_type_[inst->ResultId()] = std::make_unique<Type>(spv_type, *inst);
const Type* new_type = id_to_type_[inst->ResultId()].get();
switch (spv_type) {
case SpvType::kVoid:
void_type = new_type;
break;
case SpvType::kBool:
bool_type = new_type;
break;
case SpvType::kSampler:
sampler_type = new_type;
break;
case SpvType::kRayQueryKHR:
ray_query_type = new_type;
break;
case SpvType::kAccelerationStructureKHR:
acceleration_structure_type = new_type;
break;
case SpvType::kInt:
int_types_.push_back(new_type);
break;
case SpvType::kFloat:
float_types_.push_back(new_type);
break;
case SpvType::kVector:
vector_types_.push_back(new_type);
break;
case SpvType::kMatrix:
matrix_types_.push_back(new_type);
break;
case SpvType::kImage:
image_types_.push_back(new_type);
break;
case SpvType::kSampledImage:
sampled_image_types_.push_back(new_type);
break;
case SpvType::kArray:
array_types_.push_back(new_type);
break;
case SpvType::kRuntimeArray:
runtime_array_types_.push_back(new_type);
break;
case SpvType::kPointer:
pointer_types_.push_back(new_type);
break;
case SpvType::kForwardPointer:
forward_pointer_types_.push_back(new_type);
break;
case SpvType::kFunction:
function_types_.push_back(new_type);
break;
case SpvType::kStruct:
break; // don't track structs currently
case SpvType::kCooperativeVectorNV:
break; // don't track coopvec currently
default:
assert(false && "unsupported SpvType");
break;
}
return *new_type;
}
// We don't want to waste time trying to look up potential recursive struct type
// This is added for those we want to spend time to not duplicate and link with.
// We also will hit spirv-val errors if using 2 OpTypeStruct, even if same internals
void TypeManager::AddStructTypeForLinking(const Type* new_type) {
assert(new_type && new_type->spv_type_ == SpvType::kStruct);
linking_struct_types_.push_back(new_type);
}
uint32_t TypeManager::FindLinkingStructType(const Instruction& inst, vvl::unordered_map<uint32_t, uint32_t>& id_swap_map) const {
for (const auto& struct_type : linking_struct_types_) {
if (struct_type->inst_.Length() != inst.Length()) continue;
// Assume currently structs are not nested and only need to examine one level
const uint32_t length = inst.Length();
bool found = true;
for (uint32_t i = 2; i < length; i++) {
const Type* type_a = FindTypeById(struct_type->inst_.Word(i));
const Type* type_b = FindTypeById(id_swap_map[inst.Word(i)]);
if (!type_a || !type_b || type_a->Id() != type_b->Id()) {
found = false;
break;
}
}
if (found) {
return struct_type->Id();
}
}
return 0;
}
const Type* TypeManager::FindTypeById(uint32_t id) const {
auto type = id_to_type_.find(id);
return (type == id_to_type_.end()) ? nullptr : type->second.get();
}
// It is common to have things like
//
// %uint = OpTypeInt 32 0
// %ptr_uint = OpTypePointer StorageBuffer %uint
// %ac = OpAccessChain %ptr_uint %var %int_1
//
// Where you have %ptr_uint and want to know it is OpTypeInt
// This function is like FindTypeById() but it will bypass the OpTypePointer for you (if it is there)
// There is also a matching Variable::PointerType()
const Type* TypeManager::FindValueTypeById(uint32_t id) const {
const Type* pointer_type = FindTypeById(id);
if (!pointer_type) {
return nullptr;
} else if (pointer_type->spv_type_ != SpvType::kPointer && pointer_type->spv_type_ != SpvType::kForwardPointer) {
return pointer_type;
} else {
return FindTypeById(pointer_type->inst_.Word(3));
}
}
const Type* TypeManager::FindFunctionType(const Instruction& inst) const {
const uint32_t inst_length = inst.Length();
for (const auto& type : function_types_) {
if (type->inst_.Length() != inst_length) {
continue;
}
// Start at the Result Type ID (skip ResultID and the base word)
bool found = true;
for (uint32_t i = 2; i < inst_length; i++) {
if (type->inst_.Word(i) != inst.Word(i)) {
found = false;
break;
}
}
if (found) {
return type;
}
}
return nullptr;
}
const Type& TypeManager::GetTypeVoid() {
if (void_type) {
return *void_type;
};
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(2, spv::OpTypeVoid);
new_inst->Fill({type_id});
return AddType(std::move(new_inst), SpvType::kVoid);
}
const Type& TypeManager::GetTypeBool() {
if (bool_type) {
return *bool_type;
};
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(2, spv::OpTypeBool);
new_inst->Fill({type_id});
return AddType(std::move(new_inst), SpvType::kBool);
}
const Type& TypeManager::GetTypeSampler() {
if (sampler_type) {
return *sampler_type;
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(2, spv::OpTypeSampler);
new_inst->Fill({type_id});
return AddType(std::move(new_inst), SpvType::kSampler);
}
const Type& TypeManager::GetTypeRayQuery() {
if (ray_query_type) {
return *ray_query_type;
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(2, spv::OpTypeRayQueryKHR);
new_inst->Fill({type_id});
return AddType(std::move(new_inst), SpvType::kRayQueryKHR);
}
const Type& TypeManager::GetTypeAccelerationStructure() {
if (acceleration_structure_type) {
return *acceleration_structure_type;
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(2, spv::OpTypeAccelerationStructureKHR);
new_inst->Fill({type_id});
return AddType(std::move(new_inst), SpvType::kAccelerationStructureKHR);
}
const Type& TypeManager::GetTypeInt(uint32_t bit_width, bool is_signed) {
for (const auto type : int_types_) {
const bool int_is_signed = type->inst_.Word(3) != 0;
if (type->inst_.Word(2) == bit_width && int_is_signed == is_signed) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
const uint32_t signed_word = is_signed ? 1 : 0;
auto new_inst = std::make_unique<Instruction>(4, spv::OpTypeInt);
new_inst->Fill({type_id, bit_width, signed_word});
return AddType(std::move(new_inst), SpvType::kInt);
}
const Type& TypeManager::GetTypeFloat(uint32_t bit_width) {
for (const auto type : float_types_) {
if (type->inst_.Word(2) == bit_width) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(3, spv::OpTypeFloat);
new_inst->Fill({type_id, bit_width});
return AddType(std::move(new_inst), SpvType::kFloat);
}
const Type& TypeManager::GetTypeArray(const Type& element_type, const Constant& length) {
for (const auto type : array_types_) {
const Type* this_element_type = FindTypeById(type->inst_.Word(2));
if (this_element_type && (*this_element_type == element_type)) {
if (type->inst_.Word(3) == length.Id()) {
return *type;
}
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpTypeArray);
new_inst->Fill({type_id, element_type.Id(), length.Id()});
return AddType(std::move(new_inst), SpvType::kArray);
}
const Type& TypeManager::GetTypeRuntimeArray(const Type& element_type) {
for (const auto type : runtime_array_types_) {
const Type* this_element_type = FindTypeById(type->inst_.Word(2));
if (this_element_type && (*this_element_type == element_type)) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(3, spv::OpTypeRuntimeArray);
new_inst->Fill({type_id, element_type.Id()});
return AddType(std::move(new_inst), SpvType::kRuntimeArray);
}
const Type& TypeManager::GetTypeVector(const Type& component_type, uint32_t component_count) {
for (const auto type : vector_types_) {
if (type->inst_.Word(3) != component_count) {
continue;
}
const Type* vector_component_type = FindTypeById(type->inst_.Word(2));
if (vector_component_type && (*vector_component_type == component_type)) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpTypeVector);
new_inst->Fill({type_id, component_type.Id(), component_count});
return AddType(std::move(new_inst), SpvType::kVector);
}
const Type& TypeManager::GetTypeMatrix(const Type& column_type, uint32_t column_count) {
for (const auto type : matrix_types_) {
if (type->inst_.Word(3) != column_count) {
continue;
}
const Type* matrix_column_type = FindTypeById(type->inst_.Word(2));
if (matrix_column_type && (*matrix_column_type == column_type)) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpTypeMatrix);
new_inst->Fill({type_id, column_type.Id(), column_count});
return AddType(std::move(new_inst), SpvType::kMatrix);
}
const Type& TypeManager::GetTypeSampledImage(const Type& image_type) {
for (const auto type : sampled_image_types_) {
const Type* this_image_type = FindTypeById(type->inst_.Word(2));
if (this_image_type && (*this_image_type == image_type)) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(3, spv::OpTypeSampledImage);
new_inst->Fill({type_id, image_type.Id()});
return AddType(std::move(new_inst), SpvType::kSampledImage);
}
const Type& TypeManager::GetTypePointer(spv::StorageClass storage_class, const Type& pointer_type) {
for (const auto type : pointer_types_) {
if (type->inst_.Word(2) != storage_class) {
continue;
}
const Type* this_pointer_type = FindTypeById(type->inst_.Word(3));
if (this_pointer_type && (*this_pointer_type == pointer_type)) {
return *type;
}
}
const uint32_t type_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpTypePointer);
new_inst->Fill({type_id, uint32_t(storage_class), pointer_type.Id()});
return AddType(std::move(new_inst), SpvType::kPointer);
}
const Type& TypeManager::GetTypePointerBuiltInInput(spv::BuiltIn built_in) {
switch (built_in) {
case spv::BuiltInFragCoord: {
const Type& float_32 = GetTypeFloat(32);
const Type& vec4 = GetTypeVector(float_32, 4);
return GetTypePointer(spv::StorageClassInput, vec4);
}
case spv::BuiltInVertexIndex:
case spv::BuiltInInstanceIndex:
case spv::BuiltInPrimitiveId:
case spv::BuiltInInvocationId:
case spv::BuiltInSubgroupLocalInvocationId: {
const Type& uint_32 = GetTypeInt(32, false);
return GetTypePointer(spv::StorageClassInput, uint_32);
}
case spv::BuiltInGlobalInvocationId:
case spv::BuiltInLaunchIdKHR: {
const Type& uint_32 = GetTypeInt(32, false);
const Type& vec3 = GetTypeVector(uint_32, 3);
return GetTypePointer(spv::StorageClassInput, vec3);
}
case spv::BuiltInTessCoord: {
const Type& float_32 = GetTypeFloat(32);
const Type& vec3 = GetTypeVector(float_32, 3);
return GetTypePointer(spv::StorageClassInput, vec3);
}
case spv::BuiltInSubgroupLtMask: {
const Type& uint_32 = GetTypeInt(32, false);
const Type& vec4 = GetTypeVector(uint_32, 4);
return GetTypePointer(spv::StorageClassInput, vec4);
}
default: {
assert(false && "unhandled builtin");
return *(id_to_type_.begin()->second);
}
}
}
uint32_t TypeManager::TypeLength(const Type& type) {
switch (type.inst_.Opcode()) {
case spv::OpTypeFloat:
case spv::OpTypeInt:
return type.inst_.Operand(0) / 8u;
case spv::OpTypeVector:
case spv::OpTypeMatrix: {
const Type* count = FindTypeById(type.inst_.Operand(0));
return type.inst_.Operand(1) * TypeLength(*count);
}
case spv::OpTypePointer:
assert(type.inst_.Operand(0) == spv::StorageClassPhysicalStorageBuffer && "unexpected pointer type");
// always will be PhysicalStorageBuffer64 addressing model
return 8u;
case spv::OpTypeArray: {
const Type* element_type = FindTypeById(type.inst_.Operand(0));
const Constant* count = FindConstantById(type.inst_.Operand(1));
// TODO - Need to handle spec constant here, for now return zero to have things not blowup
assert(count && !count->is_spec_constant_);
const uint32_t array_length = (count && !count->is_spec_constant_) ? count->inst_.Operand(0) : 0;
return array_length * TypeLength(*element_type);
}
case spv::OpTypeStruct: {
// Get the offset of the last member and then figure out it's size
// Note: the largest offset doesn't have to be the last element index of the struct
uint32_t last_offset = 0;
uint32_t last_offset_index = 0;
const uint32_t struct_id = type.inst_.ResultId();
// cached lookup if we already have seen this struct
{
auto it = struct_size_map_.find(struct_id);
if (it != struct_size_map_.end()) {
return it->second;
}
}
for (const auto& annotation : module_.annotations_) {
if (annotation->Opcode() == spv::OpMemberDecorate && annotation->Word(1) == struct_id &&
annotation->Word(3) == spv::DecorationOffset) {
const uint32_t index = annotation->Word(2);
const uint32_t offset = annotation->Word(4);
if (offset > last_offset) {
last_offset = offset;
last_offset_index = index;
}
}
}
const Type* last_element_type = FindTypeById(type.inst_.Operand(last_offset_index));
const uint32_t last_length = TypeLength(*last_element_type);
const uint32_t struct_size = last_offset + last_length;
struct_size_map_[struct_id] = struct_size;
return struct_size;
}
case spv::OpTypeRuntimeArray:
assert(false && "unsupported type");
break;
default:
assert(false && "unexpected type");
break;
}
return 0;
}
const Constant& TypeManager::AddConstant(std::unique_ptr<Instruction> new_inst, const Type& type) {
const auto& inst = module_.types_values_constants_.emplace_back(std::move(new_inst));
id_to_constant_[inst->ResultId()] = std::make_unique<Constant>(type, *inst);
const Constant* new_constant = id_to_constant_[inst->ResultId()].get();
if (inst->Opcode() == spv::OpConstant) {
if (type.inst_.Opcode() == spv::OpTypeInt && type.inst_.Word(2) == 32) {
int_32bit_constants_.push_back(new_constant);
} else if (type.inst_.Opcode() == spv::OpTypeFloat && type.inst_.Word(2) == 32) {
float_32bit_constants_.push_back(new_constant);
}
} else if (inst->Opcode() == spv::OpConstantNull) {
null_constants_.push_back(new_constant);
}
return *new_constant;
}
const Constant* TypeManager::FindConstantInt32(uint32_t type_id, uint32_t value) const {
for (const auto constant : int_32bit_constants_) {
if (constant->type_.Id() == type_id && value == constant->inst_.Word(3)) {
return constant;
}
}
return nullptr;
}
const Constant* TypeManager::FindConstantFloat32(uint32_t type_id, uint32_t value) const {
for (const auto constant : float_32bit_constants_) {
if (constant->type_.Id() == type_id && value == constant->inst_.Word(3)) {
return constant;
}
}
return nullptr;
}
const Constant* TypeManager::FindConstantById(uint32_t id) const {
auto constant = id_to_constant_.find(id);
return (constant == id_to_constant_.end()) ? nullptr : constant->second.get();
}
const Constant& TypeManager::CreateConstantUInt32(uint32_t value) {
const Type& type = GetTypeInt(32, 0);
const uint32_t constant_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpConstant);
new_inst->Fill({type.Id(), constant_id, value});
return AddConstant(std::move(new_inst), type);
}
const Constant& TypeManager::GetConstantUInt32(uint32_t value) {
if (value == 0) {
return GetConstantZeroUint32();
}
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, 0);
const Constant* constant = module_.type_manager_.FindConstantInt32(uint32_type.Id(), value);
if (!constant) {
constant = &module_.type_manager_.CreateConstantUInt32(value);
}
return *constant;
}
// It is common to use uint32_t(0) as a default, so having it cached is helpful
const Constant& TypeManager::GetConstantZeroUint32() {
if (!uint_32bit_zero_constants_) {
const Type& uint_32_type = GetTypeInt(32, 0);
uint_32bit_zero_constants_ = FindConstantInt32(uint_32_type.Id(), 0);
if (!uint_32bit_zero_constants_) {
uint_32bit_zero_constants_ = &CreateConstantUInt32(0);
}
}
return *uint_32bit_zero_constants_;
}
// It is common to use float(0) as a default, so having it cached is helpful
const Constant& TypeManager::GetConstantZeroFloat32() {
if (!float_32bit_zero_constants_) {
const Type& float_32_type = GetTypeFloat(32);
float_32bit_zero_constants_ = FindConstantFloat32(float_32_type.Id(), 0);
if (!float_32bit_zero_constants_) {
const uint32_t constant_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(4, spv::OpConstant);
new_inst->Fill({float_32_type.Id(), constant_id, 0});
float_32bit_zero_constants_ = &AddConstant(std::move(new_inst), float_32_type);
}
}
return *float_32bit_zero_constants_;
}
// It is common to use vec3(0) as a default, so having it cached is helpful
const Constant& TypeManager::GetConstantZeroVec3() {
if (!vec3_zero_constants_) {
const Type& float_32_type = GetTypeFloat(32);
const Type& vec3_type = GetTypeVector(float_32_type, 3);
const uint32_t float32_0_id = module_.type_manager_.GetConstantZeroFloat32().Id();
const uint32_t constant_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(6, spv::OpConstantComposite);
new_inst->Fill({vec3_type.Id(), constant_id, float32_0_id, float32_0_id, float32_0_id});
vec3_zero_constants_ = &AddConstant(std::move(new_inst), vec3_type);
}
return *vec3_zero_constants_;
}
// It is common to use uvec4(0) as a default, so having it cached is helpful
const Constant& TypeManager::GetConstantZeroUvec4() {
if (!uvec4_zero_constants_) {
const Type& uint32_type = module_.type_manager_.GetTypeInt(32, false);
const Type& uvec4_type = module_.type_manager_.GetTypeVector(uint32_type, 4);
const uint32_t uint32_0_id = module_.type_manager_.GetConstantZeroUint32().Id();
const uint32_t constant_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(7, spv::OpConstantComposite);
new_inst->Fill({uvec4_type.Id(), constant_id, uint32_0_id, uint32_0_id, uint32_0_id, uint32_0_id});
uvec4_zero_constants_ = &AddConstant(std::move(new_inst), uvec4_type);
}
return *uvec4_zero_constants_;
}
const Constant& TypeManager::GetConstantNull(const Type& type) {
for (const auto& constant : null_constants_) {
if (constant->type_.Id() == type.Id()) {
return *constant;
}
}
const uint32_t constant_id = module_.TakeNextId();
auto new_inst = std::make_unique<Instruction>(3, spv::OpConstantNull);
new_inst->Fill({type.Id(), constant_id});
return AddConstant(std::move(new_inst), type);
}
const Variable& TypeManager::AddVariable(std::unique_ptr<Instruction> new_inst, const Type& type) {
const auto& inst = module_.types_values_constants_.emplace_back(std::move(new_inst));
id_to_variable_[inst->ResultId()] = std::make_unique<Variable>(type, *inst);
const Variable* new_variable = id_to_variable_[inst->ResultId()].get();
if (new_variable->StorageClass() == spv::StorageClassInput) {
input_variables_.push_back(new_variable);
} else if (new_variable->StorageClass() == spv::StorageClassOutput) {
output_variables_.push_back(new_variable);
} else if (new_variable->StorageClass() == spv::StorageClassPushConstant) {
push_constant_variable_ = new_variable;
}
return *new_variable;
}
const Variable* TypeManager::FindVariableById(uint32_t id) const {
auto variable = id_to_variable_.find(id);
return (variable == id_to_variable_.end()) ? nullptr : variable->second.get();
}
const Variable* TypeManager::FindPushConstantVariable() const { return push_constant_variable_; }
bool Type::IsArray() const { return spv_type_ == SpvType::kArray || spv_type_ == SpvType::kRuntimeArray; }
bool Type::IsSignedInt() const { return spv_type_ == SpvType::kInt && inst_.Word(3) == 1; }
bool Type::IsIVec3(const TypeManager& type_manager) const {
if (spv_type_ == SpvType::kVector) {
const Type* vector_component_type = type_manager.FindTypeById(inst_.Word(2));
if (vector_component_type && vector_component_type->IsSignedInt()) {
return true;
}
}
return false;
}
uint32_t Constant::GetValueUint32() const {
assert(inst_.Opcode() == spv::OpConstant);
return inst_.Word(3);
}
} // namespace spirv
} // namespace gpuav
|