1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/* Copyright (c) 2015-2025 The Khronos Group Inc.
* Copyright (c) 2015-2025 Valve Corporation
* Copyright (c) 2015-2025 LunarG, Inc.
* Copyright (C) 2015-2025 Google Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "state_tracker/device_memory_state.h"
#include <algorithm>
using BufferRange = vvl::BindableMemoryTracker::BufferRange;
using MemoryRange = vvl::BindableMemoryTracker::MemoryRange;
using BoundMemoryRange = vvl::BindableMemoryTracker::BoundMemoryRange;
using BoundRanges = vvl::BindableLinearMemoryTracker::BoundRanges;
using DeviceMemoryState = vvl::BindableMemoryTracker::DeviceMemoryState;
namespace vvl {
// It is allowed to export memory into the handles of different types,
// that's why we use set of flags (VkExternalMemoryHandleTypeFlags)
static VkExternalMemoryHandleTypeFlags GetExportHandleTypes(const VkMemoryAllocateInfo &alloc_info) {
auto export_info = vku::FindStructInPNextChain<VkExportMemoryAllocateInfo>(alloc_info.pNext);
return export_info ? export_info->handleTypes : 0;
}
// Import works with a single handle type, that's why VkExternalMemoryHandleTypeFlagBits type is used.
// Since FlagBits-type cannot have a value of 0, we use std::optional to indicate the presense of an import operation.
std::optional<VkExternalMemoryHandleTypeFlagBits> GetImportHandleType(const VkMemoryAllocateInfo &alloc_info) {
#ifdef VK_USE_PLATFORM_WIN32_KHR
auto win32_import = vku::FindStructInPNextChain<VkImportMemoryWin32HandleInfoKHR>(alloc_info.pNext);
if (win32_import) {
return win32_import->handleType;
}
#endif
auto fd_import = vku::FindStructInPNextChain<VkImportMemoryFdInfoKHR>(alloc_info.pNext);
if (fd_import) {
return fd_import->handleType;
}
auto host_pointer_import = vku::FindStructInPNextChain<VkImportMemoryHostPointerInfoEXT>(alloc_info.pNext);
if (host_pointer_import) {
return host_pointer_import->handleType;
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
// AHB Import doesn't have handle in the pNext chain
// It should be assumed that all imported AHB can only have the same, single handleType
auto ahb_import = vku::FindStructInPNextChain<VkImportAndroidHardwareBufferInfoANDROID>(alloc_info.pNext);
if ((ahb_import) && (ahb_import->buffer != nullptr)) {
return VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
}
#endif // VK_USE_PLATFORM_ANDROID_KHR
return std::nullopt;
}
static bool IsMultiInstance(const VkMemoryAllocateInfo &alloc_info, const VkMemoryHeap &memory_heap,
uint32_t physical_device_count) {
auto alloc_flags = vku::FindStructInPNextChain<VkMemoryAllocateFlagsInfo>(alloc_info.pNext);
if (alloc_flags && (alloc_flags->flags & VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT)) {
auto dev_mask = alloc_flags->deviceMask;
return ((dev_mask != 0) && (dev_mask & (dev_mask - 1))) != 0;
} else if (memory_heap.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT) {
return physical_device_count > 1;
}
return false;
}
#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkMemoryAllocateInfo &alloc_info) {
bool retval = false;
auto export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(alloc_info.pNext);
while (export_metal_object_info) {
if (export_metal_object_info->exportObjectType == VK_EXPORT_METAL_OBJECT_TYPE_METAL_BUFFER_BIT_EXT) {
retval = true;
break;
}
export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
}
return retval;
}
#endif // VK_USE_PLATFORM_METAL_EXT
DeviceMemory::DeviceMemory(VkDeviceMemory handle, const VkMemoryAllocateInfo *in_allocate_info, uint64_t fake_address,
const VkMemoryType &memory_type, const VkMemoryHeap &memory_heap,
std::optional<DedicatedBinding> &&dedicated_binding, uint32_t physical_device_count)
: StateObject(handle, kVulkanObjectTypeDeviceMemory),
safe_allocate_info(in_allocate_info),
allocate_info(*safe_allocate_info.ptr()),
export_handle_types(GetExportHandleTypes(allocate_info)),
import_handle_type(GetImportHandleType(allocate_info)),
unprotected((memory_type.propertyFlags & VK_MEMORY_PROPERTY_PROTECTED_BIT) == 0),
multi_instance(IsMultiInstance(allocate_info, memory_heap, physical_device_count)),
dedicated(std::move(dedicated_binding)),
mapped_range{},
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_buffer_export(GetMetalExport(allocate_info)),
#endif // VK_USE_PLATFORM_METAL_EXT
p_driver_data(nullptr),
fake_base_address(fake_address) {
}
} // namespace vvl
void vvl::BindableLinearMemoryTracker::BindMemory(StateObject *parent, std::shared_ptr<vvl::DeviceMemory> &memory_state,
VkDeviceSize memory_offset, VkDeviceSize resource_offset, VkDeviceSize size) {
ASSERT_AND_RETURN(memory_state);
memory_state->AddParent(parent);
binding_ = {memory_state, memory_offset, 0u};
}
DeviceMemoryState vvl::BindableLinearMemoryTracker::GetBoundMemoryStates() const {
return binding_.memory_state ? DeviceMemoryState{binding_.memory_state} : DeviceMemoryState{};
}
BoundMemoryRange vvl::BindableLinearMemoryTracker::GetBoundMemoryRange(const MemoryRange &range) const {
return binding_.memory_state ? BoundMemoryRange{BoundMemoryRange::value_type{
binding_.memory_state->VkHandle(),
BoundMemoryRange::value_type::second_type{
{binding_.memory_offset + range.begin, binding_.memory_offset + range.end}}}}
: BoundMemoryRange{};
}
BoundRanges vvl::BindableLinearMemoryTracker::GetBoundRanges(const BufferRange &ranges_bounds,
const std::vector<BufferRange> &ranges) const {
BoundRanges memory_to_bound_ranges_map;
if (!binding_.memory_state) {
return memory_to_bound_ranges_map;
}
const VkDeviceMemory bound_memory = binding_.memory_state->VkHandle();
std::vector<std::pair<MemoryRange, BufferRange>> &bound_ranges = memory_to_bound_ranges_map[bound_memory];
bound_ranges.reserve(ranges.size());
for (const BufferRange &buffer_range : ranges) {
const MemoryRange memory_range_bounds(binding_.memory_offset,
binding_.memory_offset + buffer_range.begin + buffer_range.distance());
bound_ranges.emplace_back(memory_range_bounds, buffer_range);
}
return memory_to_bound_ranges_map;
}
unsigned vvl::BindableSparseMemoryTracker::CountDeviceMemory(VkDeviceMemory memory) const {
unsigned count = 0u;
auto guard = ReadLockGuard{binding_lock_};
for (const auto &range_state : binding_map_) {
count += (range_state.second.memory_state && range_state.second.memory_state->VkHandle() == memory);
}
return count;
}
bool vvl::BindableSparseMemoryTracker::HasFullRangeBound() const {
if (!is_resident_) {
VkDeviceSize current_offset = 0u;
{
auto guard = ReadLockGuard{binding_lock_};
for (const auto &range : binding_map_) {
if (current_offset != range.first.begin || !range.second.memory_state || range.second.memory_state->Invalid()) {
return false;
}
current_offset = range.first.end;
}
}
if (current_offset != resource_size_) return false;
}
return true;
}
void vvl::BindableSparseMemoryTracker::BindMemory(StateObject *parent, std::shared_ptr<vvl::DeviceMemory> &memory_state,
VkDeviceSize memory_offset, VkDeviceSize resource_offset, VkDeviceSize size) {
MemoryBinding memory_data{memory_state, memory_offset, resource_offset};
BindingMap::value_type item{{resource_offset, resource_offset + size}, memory_data};
auto guard = WriteLockGuard{binding_lock_};
// Since we don't know which ranges will be removed, we need to unbind everything and rebind later
for (auto &value_pair : binding_map_) {
if (value_pair.second.memory_state) value_pair.second.memory_state->RemoveParent(parent);
}
binding_map_.overwrite_range(item);
for (auto &value_pair : binding_map_) {
if (value_pair.second.memory_state) value_pair.second.memory_state->AddParent(parent);
}
}
BoundMemoryRange vvl::BindableSparseMemoryTracker::GetBoundMemoryRange(const MemoryRange &range) const {
BoundMemoryRange mem_ranges;
auto guard = ReadLockGuard{binding_lock_};
auto range_bounds = binding_map_.bounds(range);
for (auto it = range_bounds.begin; it != range_bounds.end; ++it) {
const auto &[resource_range, memory_data] = *it;
if (memory_data.memory_state && memory_data.memory_state->VkHandle() != VK_NULL_HANDLE) {
const VkDeviceSize memory_range_start = std::max(range.begin, memory_data.resource_offset) -
memory_data.resource_offset + memory_data.memory_offset;
const VkDeviceSize memory_range_end =
std::min(range.end, memory_data.resource_offset + resource_range.distance()) - memory_data.resource_offset +
memory_data.memory_offset;
mem_ranges[memory_data.memory_state->VkHandle()].emplace_back(memory_range_start, memory_range_end);
}
}
return mem_ranges;
}
BoundRanges vvl::BindableSparseMemoryTracker::GetBoundRanges(const BufferRange &ranges_bounds,
const std::vector<BufferRange> &buffer_ranges) const {
BoundRanges memory_to_bound_ranges_map;
auto guard = ReadLockGuard{binding_lock_};
auto bound_memory_ranges = binding_map_.bounds(ranges_bounds);
for (auto it = bound_memory_ranges.begin; it != bound_memory_ranges.end; ++it) {
const auto &[bounds_buffer_range, bounds_buffer_range_memory] = *it;
if (bounds_buffer_range_memory.memory_state && bounds_buffer_range_memory.memory_state->VkHandle() != VK_NULL_HANDLE) {
MemoryRange bounds_memory_range;
bounds_memory_range.begin = std::max(ranges_bounds.begin, bounds_buffer_range_memory.resource_offset) -
bounds_buffer_range_memory.resource_offset + bounds_buffer_range_memory.memory_offset;
bounds_memory_range.end =
std::min(ranges_bounds.end, bounds_buffer_range_memory.resource_offset + bounds_buffer_range.distance()) -
bounds_buffer_range_memory.resource_offset + bounds_buffer_range_memory.memory_offset;
std::pair<MemoryRange, BufferRange> bounds_mem_and_buffer_range;
bounds_mem_and_buffer_range.first = bounds_memory_range;
bounds_mem_and_buffer_range.second =
BufferRange(bounds_buffer_range_memory.resource_offset,
bounds_buffer_range_memory.resource_offset + bounds_buffer_range.distance());
for (const BufferRange &buffer_range : buffer_ranges) {
if (!bounds_mem_and_buffer_range.second.intersects(buffer_range)) {
continue;
}
MemoryRange memory_range;
memory_range.begin = std::max(buffer_range.begin, bounds_buffer_range_memory.resource_offset) -
bounds_buffer_range_memory.resource_offset + bounds_buffer_range_memory.memory_offset;
memory_range.end =
std::min(buffer_range.end, bounds_buffer_range_memory.resource_offset + bounds_buffer_range.distance()) -
bounds_buffer_range_memory.resource_offset + bounds_buffer_range_memory.memory_offset;
std::pair<MemoryRange, BufferRange> mem_and_buffer_range;
mem_and_buffer_range.first = bounds_mem_and_buffer_range.first & memory_range;
mem_and_buffer_range.second = bounds_mem_and_buffer_range.second & buffer_range;
std::vector<std::pair<MemoryRange, BufferRange>> &vk_memory_ranges_vec =
memory_to_bound_ranges_map[bounds_buffer_range_memory.memory_state->VkHandle()];
auto insert_pos =
std::lower_bound(vk_memory_ranges_vec.begin(), vk_memory_ranges_vec.end(), mem_and_buffer_range,
[](const std::pair<MemoryRange, BufferRange> &lhs,
const std::pair<MemoryRange, BufferRange> &rhs) { return lhs.first < rhs.first; });
vk_memory_ranges_vec.insert(insert_pos, mem_and_buffer_range);
}
}
}
return memory_to_bound_ranges_map;
}
DeviceMemoryState vvl::BindableSparseMemoryTracker::GetBoundMemoryStates() const {
DeviceMemoryState dev_memory_states;
{
auto guard = ReadLockGuard{binding_lock_};
for (auto &binding : binding_map_) {
if (binding.second.memory_state) dev_memory_states.emplace(binding.second.memory_state);
}
}
return dev_memory_states;
}
vvl::BindableMultiplanarMemoryTracker::BindableMultiplanarMemoryTracker(const VkMemoryRequirements *requirements, uint32_t num_planes)
: planes_(num_planes) {
for (unsigned i = 0; i < num_planes; ++i) {
planes_[i].size = requirements[i].size;
}
}
unsigned vvl::BindableMultiplanarMemoryTracker::CountDeviceMemory(VkDeviceMemory memory) const {
unsigned count = 0u;
for (size_t i = 0u; i < planes_.size(); i++) {
const auto &plane = planes_[i];
count += (plane.binding.memory_state && plane.binding.memory_state->VkHandle() == memory);
}
return count;
}
bool vvl::BindableMultiplanarMemoryTracker::HasFullRangeBound() const {
bool full_range_bound = true;
for (unsigned i = 0u; i < planes_.size(); ++i) {
full_range_bound &= (planes_[i].binding.memory_state != nullptr);
}
return full_range_bound;
}
// resource_offset is the plane index
void vvl::BindableMultiplanarMemoryTracker::BindMemory(StateObject *parent, std::shared_ptr<vvl::DeviceMemory> &memory_state,
VkDeviceSize memory_offset, VkDeviceSize resource_offset,
VkDeviceSize size) {
ASSERT_AND_RETURN(memory_state);
assert(resource_offset < planes_.size());
memory_state->AddParent(parent);
planes_[static_cast<size_t>(resource_offset)].binding = {memory_state, memory_offset, 0u};
}
// range needs to be between [0, planes_[0].size + planes_[1].size + planes_[2].size)
// To access plane 0 range must be [0, planes_[0].size)
// To access plane 1 range must be [planes_[0].size, planes_[1].size)
// To access plane 2 range must be [planes_[1].size, planes_[2].size)
BoundMemoryRange vvl::BindableMultiplanarMemoryTracker::GetBoundMemoryRange(const MemoryRange &range) const {
BoundMemoryRange mem_ranges;
VkDeviceSize start_offset = 0u;
for (unsigned i = 0u; i < planes_.size(); ++i) {
const auto &plane = planes_[i];
MemoryRange plane_range{start_offset, start_offset + plane.size};
if (plane.binding.memory_state && range.intersects(plane_range)) {
VkDeviceSize range_end = range.end > plane_range.end ? plane_range.end : range.end;
const VkDeviceMemory dev_mem = plane.binding.memory_state->VkHandle();
mem_ranges[dev_mem].emplace_back((plane.binding.memory_offset + range.begin),
(plane.binding.memory_offset + range_end));
}
start_offset += plane.size;
}
return mem_ranges;
}
DeviceMemoryState vvl::BindableMultiplanarMemoryTracker::GetBoundMemoryStates() const {
DeviceMemoryState dev_memory_states;
for (unsigned i = 0u; i < planes_.size(); ++i) {
if (planes_[i].binding.memory_state) {
dev_memory_states.insert(planes_[i].binding.memory_state);
}
}
return dev_memory_states;
}
std::pair<VkDeviceMemory, MemoryRange> vvl::Bindable::GetResourceMemoryOverlap(
const MemoryRange &memory_region, const Bindable *other_resource,
const MemoryRange &other_memory_region) const {
if (!other_resource) return {VK_NULL_HANDLE, {}};
auto ranges = GetBoundMemoryRange(memory_region);
auto other_ranges = other_resource->GetBoundMemoryRange(other_memory_region);
for (const auto &[memory, memory_ranges] : ranges) {
// Check if we have memory from same VkDeviceMemory bound
if (auto it = other_ranges.find(memory); it != other_ranges.end()) {
// Check if any of the bound memory ranges overlap
for (const auto &memory_range : memory_ranges) {
for (const auto &other_memory_range : it->second) {
if (other_memory_range.intersects(memory_range)) {
auto memory_space_intersection = other_memory_range & memory_range;
return {memory, memory_space_intersection};
}
}
}
}
}
return {VK_NULL_HANDLE, {}};
}
VkDeviceSize vvl::Bindable::GetFakeBaseAddress() const {
// TODO: Sparse resources are not implemented yet
const auto *binding = Binding();
return binding ? binding->memory_offset + binding->memory_state->fake_base_address : 0;
}
void vvl::Bindable::CacheInvalidMemory() const {
need_to_recache_invalid_memory_ = false;
cached_invalid_memory_.clear();
for (auto const &bindable : GetBoundMemoryStates()) {
if (bindable->Invalid()) {
cached_invalid_memory_.insert(bindable);
}
}
}
|