File: image_state.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (648 lines) | stat: -rw-r--r-- 33,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* Copyright (c) 2015-2025 The Khronos Group Inc.
 * Copyright (c) 2015-2025 Valve Corporation
 * Copyright (c) 2015-2025 LunarG, Inc.
 * Copyright (C) 2015-2024 Google Inc.
 * Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
 * Modifications Copyright (C) 2022 RasterGrid Kft.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "state_tracker/image_state.h"
#include <vulkan/utility/vk_format_utils.h>
#include <vulkan/vulkan_core.h>
#include <cmath>
#include <cstdint>
#include <string>
#include "error_message/error_strings.h"
#include "state_tracker/state_tracker.h"
#include "state_tracker/semaphore_state.h"
#include "state_tracker/wsi_state.h"
#include "generated/dispatch_functions.h"
#include "utils/math_utils.h"
#include "utils/image_utils.h"

using RangeGenerator = subresource_adapter::RangeGenerator;

static VkExternalMemoryHandleTypeFlags GetExternalHandleTypes(const VkImageCreateInfo *pCreateInfo) {
    const auto *external_memory_info = vku::FindStructInPNextChain<VkExternalMemoryImageCreateInfo>(pCreateInfo->pNext);
    return external_memory_info ? external_memory_info->handleTypes : 0;
}

static VkSwapchainKHR GetSwapchain(const VkImageCreateInfo *pCreateInfo) {
    const auto *swapchain_info = vku::FindStructInPNextChain<VkImageSwapchainCreateInfoKHR>(pCreateInfo->pNext);
    return swapchain_info ? swapchain_info->swapchain : VK_NULL_HANDLE;
}

static vvl::Image::MemoryReqs GetMemoryRequirements(const vvl::DeviceState &dev_data, VkImage img,
                                                    const VkImageCreateInfo *create_info, bool disjoint, bool is_external_ahb) {
    vvl::Image::MemoryReqs result{};
    // Record the memory requirements in case they won't be queried
    // External AHB memory can't be queried until after memory is bound
    if (!is_external_ahb) {
        if (disjoint == false) {
            DispatchGetImageMemoryRequirements(dev_data.device, img, &result[0]);
        } else {
            uint32_t plane_count = vkuFormatPlaneCount(create_info->format);
            static const std::array<VkImageAspectFlagBits, 3> aspects{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT,
                                                                      VK_IMAGE_ASPECT_PLANE_2_BIT};
            assert(plane_count <= aspects.size());
            VkImagePlaneMemoryRequirementsInfo image_plane_req = vku::InitStructHelper();
            VkImageMemoryRequirementsInfo2 mem_req_info2 = vku::InitStructHelper(&image_plane_req);
            mem_req_info2.image = img;

            for (uint32_t i = 0; i < plane_count; i++) {
                VkMemoryRequirements2 mem_reqs2 = vku::InitStructHelper();

                image_plane_req.planeAspect = aspects[i];
                switch (dev_data.extensions.vk_khr_get_memory_requirements2) {
                    case kEnabledByApiLevel:
                        DispatchGetImageMemoryRequirements2(dev_data.device, &mem_req_info2, &mem_reqs2);
                        break;
                    case kEnabledByCreateinfo:
                        DispatchGetImageMemoryRequirements2KHR(dev_data.device, &mem_req_info2, &mem_reqs2);
                        break;
                    default:
                        // The VK_KHR_sampler_ycbcr_conversion extension requires VK_KHR_get_memory_requirements2,
                        // so validation of this vkCreateImage call should have already failed.
                        assert(false);
                }
                result[i] = mem_reqs2.memoryRequirements;
            }
        }
    }
    return result;
}

static std::vector<VkSparseImageMemoryRequirements> GetSparseRequirements(const vvl::DeviceState &dev_data, VkImage img,
                                                                          bool sparse_residency) {
    std::vector<VkSparseImageMemoryRequirements> result;
    if (sparse_residency) {
        uint32_t count = 0;
        DispatchGetImageSparseMemoryRequirements(dev_data.device, img, &count, nullptr);
        result.resize(count);
        DispatchGetImageSparseMemoryRequirements(dev_data.device, img, &count, result.data());
    }
    return result;
}

#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkImageCreateInfo *info, VkExportMetalObjectTypeFlagBitsEXT object_type_required) {
    bool retval = false;
    auto export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(info->pNext);
    while (export_metal_object_info) {
        if (export_metal_object_info->exportObjectType == object_type_required) {
            retval = true;
            break;
        }
        export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
    }
    return retval;
}
#endif  // VK_USE_PLATFORM_METAL_EXT

namespace vvl {

Image::Image(const vvl::DeviceState &dev_data, VkImage img, const VkImageCreateInfo *pCreateInfo, VkFormatFeatureFlags2KHR ff)
    : Bindable(img, kVulkanObjectTypeImage, (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0,
               (pCreateInfo->flags & VK_IMAGE_CREATE_PROTECTED_BIT) == 0, GetExternalHandleTypes(pCreateInfo)),
      safe_create_info(pCreateInfo),
      create_info(*safe_create_info.ptr()),
      shared_presentable(false),
      layout_locked(false),
      ahb_format(GetExternalFormat(pCreateInfo->pNext)),
      full_range{MakeImageFullRange()},
      create_from_swapchain(GetSwapchain(pCreateInfo)),
      owned_by_swapchain(false),
      swapchain_image_index(0),
      format_features(ff),
      disjoint((pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0),
      requirements(GetMemoryRequirements(dev_data, img, pCreateInfo, disjoint, IsExternalBuffer())),
      sparse_residency((pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) != 0),
      sparse_requirements(GetSparseRequirements(dev_data, img, sparse_residency)),
#ifdef VK_USE_PLATFORM_METAL_EXT
      metal_image_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT)),
      metal_io_surface_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT)),
#endif  // VK_USE_PLATFORM_METAL_EXT
      subresource_encoder(GetSubresourceEncoderRange(dev_data, full_range)),
      store_device_as_workaround(dev_data.device),  // TODO REMOVE WHEN encoder can be const
      supported_video_profiles(dev_data.video_profile_cache_.Get(
          dev_data.physical_device, vku::FindStructInPNextChain<VkVideoProfileListInfoKHR>(pCreateInfo->pNext))) {
    if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
        bool is_resident = (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) != 0;
        tracker_.emplace<BindableSparseMemoryTracker>(requirements.data(), is_resident);
        SetMemoryTracker(&std::get<BindableSparseMemoryTracker>(tracker_));
    } else if (pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) {
        tracker_.emplace<BindableMultiplanarMemoryTracker>(requirements.data(), vkuFormatPlaneCount(pCreateInfo->format));
        SetMemoryTracker(&std::get<BindableMultiplanarMemoryTracker>(tracker_));
    } else {
        tracker_.emplace<BindableLinearMemoryTracker>(requirements.data());
        SetMemoryTracker(&std::get<BindableLinearMemoryTracker>(tracker_));
    }
}

Image::Image(const vvl::DeviceState &dev_data, VkImage img, const VkImageCreateInfo *pCreateInfo, VkSwapchainKHR swapchain,
             uint32_t swapchain_index, VkFormatFeatureFlags2KHR ff)
    : Bindable(img, kVulkanObjectTypeImage, (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0,
               (pCreateInfo->flags & VK_IMAGE_CREATE_PROTECTED_BIT) == 0, GetExternalHandleTypes(pCreateInfo)),
      safe_create_info(pCreateInfo),
      create_info(*safe_create_info.ptr()),
      shared_presentable(false),
      layout_locked(false),
      ahb_format(GetExternalFormat(pCreateInfo->pNext)),
      full_range{MakeImageFullRange()},
      create_from_swapchain(swapchain),
      owned_by_swapchain(true),
      swapchain_image_index(swapchain_index),
      format_features(ff),
      disjoint((pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0),
      requirements{},
      sparse_residency(false),
      sparse_requirements{},
#ifdef VK_USE_PLATFORM_METAL_EXT
      metal_image_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT)),
      metal_io_surface_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT)),
#endif  // VK_USE_PLATFORM_METAL_EXT
      subresource_encoder(GetSubresourceEncoderRange(dev_data, full_range)),
      store_device_as_workaround(dev_data.device),  // TODO REMOVE WHEN encoder can be const
      supported_video_profiles(dev_data.video_profile_cache_.Get(
          dev_data.physical_device, vku::FindStructInPNextChain<VkVideoProfileListInfoKHR>(pCreateInfo->pNext))) {

    tracker_.emplace<BindableNoMemoryTracker>(requirements.data());
    SetMemoryTracker(&std::get<BindableNoMemoryTracker>(tracker_));
}

void Image::Destroy() {
    for (auto &item : sub_states_) {
        item.second->Destroy();
    }
    // NOTE: due to corner cases in aliased images, the layout_range_map MUST not be cleaned up here.
    // If it is, bad local entries could be created by vvl::CommandBuffer::GetOrCreateImageLayoutRegistry()
    // If an aliasing image was being destroyed (and layout_range_map was reset()), a nullptr keyed
    // entry could get put into vvl::CommandBuffer::aliased_image_layout_map.
    //
    if (bind_swapchain) {
        bind_swapchain->RemoveParent(this);
        bind_swapchain = nullptr;
    }
    Bindable::Destroy();
}

// Get buffer size from VkBufferImageCopy / VkBufferImageCopy2 structure, for a given format
template VkDeviceSize Image::GetBufferSizeFromCopyImage<VkBufferImageCopy>(const VkBufferImageCopy &) const;
template VkDeviceSize Image::GetBufferSizeFromCopyImage<VkBufferImageCopy2>(const VkBufferImageCopy2 &) const;

template <typename RegionType>
VkDeviceSize Image::GetBufferSizeFromCopyImage(const RegionType &region) const {
    VkDeviceSize buffer_size = 0;
    VkExtent3D copy_extent = region.imageExtent;
    VkDeviceSize buffer_width = (0 == region.bufferRowLength ? copy_extent.width : region.bufferRowLength);
    VkDeviceSize buffer_height = (0 == region.bufferImageHeight ? copy_extent.height : region.bufferImageHeight);
    uint32_t layer_count = region.imageSubresource.layerCount != VK_REMAINING_ARRAY_LAYERS
                               ? region.imageSubresource.layerCount
                               : create_info.arrayLayers - region.imageSubresource.baseArrayLayer;
    // VUID-VkImageCreateInfo-imageType-00961 prevents having both depth and layerCount ever both be greater than 1 together. Take
    // max to logic simple. This is the number of 'slices' to copy.
    const uint32_t z_copies = std::max(copy_extent.depth, layer_count);

    // Invalid if copy size is 0 and other validation checks will catch it. Returns zero as the caller should have fallback already
    // to ignore.
    if (copy_extent.width == 0 || copy_extent.height == 0 || copy_extent.depth == 0 || z_copies == 0) {
        return 0;
    }

    VkDeviceSize texel_block_size = 0;
    if (region.imageSubresource.aspectMask & (VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT)) {
        // Spec in VkBufferImageCopy section list special cases for each format
        if (region.imageSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
            texel_block_size = 1;
        } else {
            // VK_IMAGE_ASPECT_DEPTH_BIT
            switch (create_info.format) {
                case VK_FORMAT_D16_UNORM:
                case VK_FORMAT_D16_UNORM_S8_UINT:
                    texel_block_size = 2;
                    break;
                case VK_FORMAT_D32_SFLOAT:
                case VK_FORMAT_D32_SFLOAT_S8_UINT:
                // packed with the D24 value in the LSBs of the word, and undefined values in the eight MSBs
                case VK_FORMAT_X8_D24_UNORM_PACK32:
                case VK_FORMAT_D24_UNORM_S8_UINT:
                    texel_block_size = 4;
                    break;
                default:
                    // Any misuse of formats vs aspect mask should be caught before here
                    return 0;
            }
        }
    } else {
        const VkFormat compatible_format =
            vkuFormatIsMultiplane(create_info.format)
                ? vkuFindMultiplaneCompatibleFormat(create_info.format,
                                                    static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask))
                : create_info.format;
        texel_block_size = vkuFormatTexelBlockSize(compatible_format);
    }

    if (vkuFormatIsBlockedImage(create_info.format)) {
        // Switch to texel block units, rounding up for any partially-used blocks
        const VkExtent3D block_extent = vkuFormatTexelBlockExtent(create_info.format);
        buffer_width = (buffer_width + block_extent.width - 1) / block_extent.width;
        buffer_height = (buffer_height + block_extent.height - 1) / block_extent.height;

        copy_extent.width = (copy_extent.width + block_extent.width - 1) / block_extent.width;
        copy_extent.height = (copy_extent.height + block_extent.height - 1) / block_extent.height;
        copy_extent.depth = (copy_extent.depth + block_extent.depth - 1) / block_extent.depth;
    }

    // Calculate buffer offset of final copied byte, + 1.
    buffer_size = (z_copies - 1) * buffer_height * buffer_width;                   // offset to slice
    buffer_size += ((copy_extent.height - 1) * buffer_width) + copy_extent.width;  // add row,col
    buffer_size *= texel_block_size;                                               // convert to bytes
    return buffer_size;
}

void Image::NotifyInvalidate(const StateObject::NodeList &invalid_nodes, bool unlink) {
    for (auto &item : sub_states_) {
        item.second->NotifyInvalidate(invalid_nodes, unlink);
    }
    Bindable::NotifyInvalidate(invalid_nodes, unlink);
    if (unlink) {
        bind_swapchain = nullptr;
    }
}

bool Image::IsCreateInfoEqual(const VkImageCreateInfo &other_create_info) const {
    bool is_equal = (create_info.sType == other_create_info.sType) && (create_info.flags == other_create_info.flags);
    is_equal = is_equal && IsImageTypeEqual(other_create_info) && IsFormatEqual(other_create_info);
    is_equal = is_equal && IsMipLevelsEqual(other_create_info) && IsArrayLayersEqual(other_create_info);
    is_equal = is_equal && IsUsageEqual(other_create_info) && IsInitialLayoutEqual(other_create_info);
    is_equal = is_equal && IsExtentEqual(other_create_info) && IsTilingEqual(other_create_info);
    is_equal = is_equal && IsSamplesEqual(other_create_info) && IsSharingModeEqual(other_create_info);
    return is_equal &&
           ((create_info.sharingMode == VK_SHARING_MODE_CONCURRENT) ? IsQueueFamilyIndicesEqual(other_create_info) : true);
}

// Check image compatibility rules for VK_NV_dedicated_allocation_image_aliasing
bool Image::IsCreateInfoDedicatedAllocationImageAliasingCompatible(const VkImageCreateInfo &other_create_info) const {
    bool is_compatible = (create_info.sType == other_create_info.sType) && (create_info.flags == other_create_info.flags);
    is_compatible = is_compatible && IsImageTypeEqual(other_create_info) && IsFormatEqual(other_create_info);
    is_compatible = is_compatible && IsMipLevelsEqual(other_create_info);
    is_compatible = is_compatible && IsUsageEqual(other_create_info) && IsInitialLayoutEqual(other_create_info);
    is_compatible = is_compatible && IsSamplesEqual(other_create_info) && IsSharingModeEqual(other_create_info);
    is_compatible = is_compatible &&
                    ((create_info.sharingMode == VK_SHARING_MODE_CONCURRENT) ? IsQueueFamilyIndicesEqual(other_create_info) : true);
    is_compatible = is_compatible && IsTilingEqual(other_create_info);

    is_compatible = is_compatible && create_info.extent.width <= other_create_info.extent.width &&
                    create_info.extent.height <= other_create_info.extent.height &&
                    create_info.extent.depth <= other_create_info.extent.depth &&
                    create_info.arrayLayers <= other_create_info.arrayLayers;
    return is_compatible;
}

bool Image::IsCompatibleAliasing(const Image *other_image_state) const {
    if (!IsSwapchainImage() && !other_image_state->IsSwapchainImage() &&
        !(create_info.flags & other_image_state->create_info.flags & VK_IMAGE_CREATE_ALIAS_BIT)) {
        return false;
    }
    const auto binding = Binding();
    const auto other_binding = other_image_state->Binding();
    if ((create_from_swapchain == VK_NULL_HANDLE) && binding && other_binding &&
        (binding->memory_state == other_binding->memory_state) && (binding->memory_offset == other_binding->memory_offset) &&
        IsCreateInfoEqual(other_image_state->create_info)) {
        return true;
    }
    if (bind_swapchain && (bind_swapchain == other_image_state->bind_swapchain) &&
        (swapchain_image_index == other_image_state->swapchain_image_index)) {
        return true;
    }
    return false;
}

VkExtent3D Image::GetEffectiveSubresourceExtent(const VkImageSubresourceLayers &sub) const {
    return GetEffectiveExtent(create_info, sub.aspectMask, sub.mipLevel);
}

VkExtent3D Image::GetEffectiveSubresourceExtent(const VkImageSubresource &sub) const {
    return GetEffectiveExtent(create_info, sub.aspectMask, sub.mipLevel);
}

VkExtent3D Image::GetEffectiveSubresourceExtent(const VkImageSubresourceRange &range) const {
    return GetEffectiveExtent(create_info, range.aspectMask, range.baseMipLevel);
}

std::string Image::DescribeSubresourceLayers(const VkImageSubresourceLayers &subresource) const {
    std::stringstream ss;
    VkExtent3D subresource_extent = GetEffectiveSubresourceExtent(subresource);
    const VkFormat format = create_info.format;
    ss << "The " << string_VkImageType(create_info.imageType) << " VkImage was created with format " << string_VkFormat(format)
       << " and an extent of [" << string_VkExtent3D(create_info.extent) << "]\n";
    if (subresource.mipLevel != 0) {
        ss << "\tmipLevel " << subresource.mipLevel << " is [" << string_VkExtent3D(subresource_extent) << "]\n";
    }
    if (vkuFormatIsCompressed(format)) {
        const VkExtent3D block_extent = vkuFormatTexelBlockExtent(format);
        const VkExtent3D texel_blocks = GetTexelBlocks(subresource_extent, block_extent);
        ss << "\tThe compressed format block extent (" << string_VkExtent3D(block_extent) << ") represents miplevel "
           << subresource.mipLevel << " with a texel block extent [" << string_VkExtent3D(texel_blocks) << "]\n";
    } else if (vkuFormatIsMultiplane(format)) {
        assert(IsSingleBitSet(subresource.aspectMask));
        VkImageAspectFlagBits aspect_flag = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
        ss << "\tPlane " << vkuGetPlaneIndex(aspect_flag) << " (compatible format "
           << string_VkFormat(vkuFindMultiplaneCompatibleFormat(format, aspect_flag)) << ")";
        VkExtent2D divisors = vkuFindMultiplaneExtentDivisors(format, aspect_flag);
        if (divisors.width != 1 || divisors.height != 1) {
            ss << " has [widthDivisor = " << divisors.width << ", heightDivisor = " << divisors.height
               << "] which adjusts the extent to [" << string_VkExtent3D(subresource_extent) << "]";
        }
        ss << "\n";
    }
    return ss.str();
}

VkImageSubresourceRange Image::NormalizeSubresourceRange(const VkImageSubresourceRange &range) const {
    VkImageSubresourceRange norm = range;
    norm.levelCount =
        (range.levelCount == VK_REMAINING_MIP_LEVELS) ? (create_info.mipLevels - range.baseMipLevel) : range.levelCount;
    norm.layerCount =
        (range.layerCount == VK_REMAINING_ARRAY_LAYERS) ? (create_info.arrayLayers - range.baseArrayLayer) : range.layerCount;

    // For multiplanar formats, IMAGE_ASPECT_COLOR is equivalent to adding the aspect of the individual planes
    if (vkuFormatIsMultiplane(create_info.format)) {
        if (norm.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
            norm.aspectMask &= ~VK_IMAGE_ASPECT_COLOR_BIT;
            norm.aspectMask |= (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT);
            if (vkuFormatPlaneCount(create_info.format) > 2) {
                norm.aspectMask |= VK_IMAGE_ASPECT_PLANE_2_BIT;
            }
        }
    }
    return norm;
}

uint32_t Image::NormalizeLayerCount(const VkImageSubresourceLayers &resource) const {
    return (resource.layerCount == VK_REMAINING_ARRAY_LAYERS) ? (create_info.arrayLayers - resource.baseArrayLayer)
                                                              : resource.layerCount;
}

VkImageSubresourceRange Image::MakeImageFullRange() {
    const auto format = create_info.format;
    VkImageSubresourceRange init_range{0, 0, VK_REMAINING_MIP_LEVELS, 0, VK_REMAINING_ARRAY_LAYERS};

    if (vkuFormatIsColor(format) || vkuFormatIsMultiplane(format) || GetExternalFormat(create_info.pNext) != 0) {
        init_range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;  // Normalization will expand this for multiplane
    } else {
        init_range.aspectMask = (vkuFormatHasDepth(format) ? VK_IMAGE_ASPECT_DEPTH_BIT : 0) |
                                (vkuFormatHasStencil(format) ? VK_IMAGE_ASPECT_STENCIL_BIT : 0);
    }
    return NormalizeSubresourceRange(init_range);
}

VkImageSubresourceRange Image::GetSubresourceEncoderRange(const DeviceState &device_state,
                                                          const VkImageSubresourceRange &full_range) {
    VkImageSubresourceRange encoder_range = full_range;
    if (device_state.extensions.vk_khr_maintenance9 && create_info.imageType == VK_IMAGE_TYPE_3D &&
        (create_info.flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT) != 0) {
        encoder_range.layerCount = create_info.extent.depth;
    }
    return encoder_range;
}

void Image::SetInitialLayoutMap() {
    if (layout_map) {
        return;
    }

    std::shared_ptr<ImageLayoutMap> new_layout_map;
    std::shared_ptr<std::shared_mutex> new_layout_map_lock;

    auto get_layout_map = [&new_layout_map, &new_layout_map_lock](const Image &other_image) {
        new_layout_map = other_image.layout_map;
        new_layout_map_lock = other_image.layout_map_lock;
        return true;
    };

    // See if an alias already has a layout map
    if (HasAliasFlag()) {
        AnyImageAliasOf(get_layout_map);
    } else if (bind_swapchain) {
        // Swapchains can also alias if multiple images are bound (or retrieved
        // with vkGetSwapchainImages()) for a (single swapchain, index) pair.
        AnyAliasBindingOf(bind_swapchain->ObjectBindings(), get_layout_map);
    }

    // Set layout of each subresource as VkImageCreateInfo::initialLayout
    if (!new_layout_map) {
        new_layout_map = std::make_shared<ImageLayoutMap>(subresource_encoder.SubresourceCount());
        new_layout_map_lock = std::make_shared<std::shared_mutex>();

        for (auto range_gen = RangeGenerator(subresource_encoder); range_gen->non_empty(); ++range_gen) {
            new_layout_map->insert(new_layout_map->end(), std::make_pair(*range_gen, create_info.initialLayout));
        }
    }
    layout_map = std::move(new_layout_map);
    layout_map_lock = std::move(new_layout_map_lock);
}

void Image::SetImageLayout(const VkImageSubresourceRange &range, VkImageLayout layout) {
    using sparse_container::update_range_value;
    using sparse_container::value_precedence;
    RangeGenerator range_gen(subresource_encoder, NormalizeSubresourceRange(range));
    auto guard = LayoutMapWriteLock();
    for (; range_gen->non_empty(); ++range_gen) {
        update_range_value(*layout_map, *range_gen, layout, value_precedence::prefer_source);
    }
}

void Image::SetSwapchain(std::shared_ptr<vvl::Swapchain> &swapchain, uint32_t swapchain_index) {
    assert(IsSwapchainImage());
    bind_swapchain = swapchain;
    swapchain_image_index = swapchain_index;
    bind_swapchain->AddParent(this);
}

bool Image::CompareCreateInfo(const Image &other) const {
    bool valid_queue_family = true;
    if (create_info.sharingMode == VK_SHARING_MODE_CONCURRENT) {
        if (create_info.queueFamilyIndexCount != other.create_info.queueFamilyIndexCount) {
            valid_queue_family = false;
        } else {
            for (uint32_t i = 0; i < create_info.queueFamilyIndexCount; i++) {
                if (create_info.pQueueFamilyIndices[i] != other.create_info.pQueueFamilyIndices[i]) {
                    valid_queue_family = false;
                    break;
                }
            }
        }
    }

    // There are limitations what actually needs to be compared, so for simplicity (until found otherwise needed), we only need to
    // check the ExternalHandleType and not other pNext chains
    const bool valid_external = GetExternalHandleTypes(&create_info) == GetExternalHandleTypes(&other.create_info);

    return (create_info.flags == other.create_info.flags) && (create_info.imageType == other.create_info.imageType) &&
           (create_info.format == other.create_info.format) && (create_info.extent.width == other.create_info.extent.width) &&
           (create_info.extent.height == other.create_info.extent.height) &&
           (create_info.extent.depth == other.create_info.extent.depth) && (create_info.mipLevels == other.create_info.mipLevels) &&
           (create_info.arrayLayers == other.create_info.arrayLayers) && (create_info.samples == other.create_info.samples) &&
           (create_info.tiling == other.create_info.tiling) && (create_info.usage == other.create_info.usage) &&
           (create_info.initialLayout == other.create_info.initialLayout) && valid_queue_family && valid_external;
}

}  // namespace vvl

static VkSamplerYcbcrConversion GetSamplerConversion(const VkImageViewCreateInfo *ci) {
    auto *conversion_info = vku::FindStructInPNextChain<VkSamplerYcbcrConversionInfo>(ci->pNext);
    return conversion_info ? conversion_info->conversion : VK_NULL_HANDLE;
}

static VkImageUsageFlags GetInheritedUsage(const VkImageViewCreateInfo *ci, const vvl::Image &image_state) {
    auto usage_create_info = vku::FindStructInPNextChain<VkImageViewUsageCreateInfo>(ci->pNext);
    return (usage_create_info) ? usage_create_info->usage : image_state.create_info.usage;
}

static float GetImageViewMinLod(const VkImageViewCreateInfo *ci) {
    auto image_view_min_lod = vku::FindStructInPNextChain<VkImageViewMinLodCreateInfoEXT>(ci->pNext);
    return (image_view_min_lod) ? image_view_min_lod->minLod : 0.0f;
}

#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkImageViewCreateInfo *info) {
    bool retval = false;
    auto export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(info->pNext);
    while (export_metal_object_info) {
        if (export_metal_object_info->exportObjectType == VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT) {
            retval = true;
            break;
        }
        export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
    }
    return retval;
}
#endif  // VK_USE_PLATFORM_METAL_EXT

namespace vvl {

ImageView::ImageView(const DeviceState &device_state, const std::shared_ptr<vvl::Image> &image_state, VkImageView handle,
                     const VkImageViewCreateInfo *ci, VkFormatFeatureFlags2KHR ff,
                     const VkFilterCubicImageViewImageFormatPropertiesEXT &cubic_props)
    : StateObject(handle, kVulkanObjectTypeImageView),
      safe_create_info(ci),
      create_info(*safe_create_info.ptr()),
      image_state(image_state),
#ifdef VK_USE_PLATFORM_METAL_EXT
      metal_imageview_export(GetMetalExport(ci)),
#endif
      is_depth_sliced(IsDepthSliced()),
      normalized_subresource_range(image_state->NormalizeSubresourceRange(create_info.subresourceRange)),
      range_generator(image_state->subresource_encoder,
                      NormalizeImageLayoutSubresourceRange(device_state.extensions.vk_khr_maintenance9)),
      samples(image_state->create_info.samples),
      samplerConversion(GetSamplerConversion(ci)),
      filter_cubic_props(cubic_props),
      min_lod(GetImageViewMinLod(ci)),
      format_features(ff),
      inherited_usage(GetInheritedUsage(ci, *image_state)) {
}

void ImageView::NotifyInvalidate(const StateObject::NodeList &invalid_nodes, bool unlink) {
    for (auto &item : sub_states_) {
        item.second->NotifyInvalidate(invalid_nodes, unlink);
    }
    StateObject::NotifyInvalidate(invalid_nodes, unlink);
}

void ImageView::Destroy() {
    for (auto &item : sub_states_) {
        item.second->Destroy();
    }
    if (image_state) {
        image_state->RemoveParent(this);
        image_state = nullptr;
    }
    StateObject::Destroy();
}

bool ImageView::IsDepthSliced() {
    auto depth_slice_flag = VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT | VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT;
    return ((image_state->create_info.flags & depth_slice_flag) != 0) &&
           (create_info.viewType == VK_IMAGE_VIEW_TYPE_2D || create_info.viewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY);
}

VkImageSubresourceRange ImageView::NormalizeImageLayoutSubresourceRange(bool is_3d_slice_transition_allowed) const {
    VkImageSubresourceRange subres_range = create_info.subresourceRange;

    // if we're mapping a 3D image to a 2d image view, convert the view's subresource range to be compatible with the
    // image's understanding of the world. From the VkImageSubresourceRange section of the Vulkan spec:
    //
    //     When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D image’s mip level in order to
    //     create a 2D or 2D array image view of a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and
    //     layerCount specify the first slice index and the number of slices to include in the created image view. Such an image
    //     view can be used as a framebuffer attachment that refers only to the specified range of slices of the selected mip level.
    //     If the maintenance9 feature is not enabled, any layout transitions performed on such an attachment view during a render
    //     pass instance still apply to the entire subresource referenced which includes all the slices of the selected mip level.
    //
    if (is_depth_sliced && !is_3d_slice_transition_allowed) {
        subres_range.baseArrayLayer = 0;
        subres_range.layerCount = 1;
    }
    return image_state->NormalizeSubresourceRange(subres_range);
}

uint32_t ImageView::GetAttachmentLayerCount() const {
    if (create_info.subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS && !is_depth_sliced) {
        return image_state->create_info.arrayLayers;
    }
    return create_info.subresourceRange.layerCount;
}

bool ImageView::OverlapSubresource(const ImageView &compare_view) const {
    if (VkHandle() == compare_view.VkHandle()) {
        return true;
    }
    if (image_state->VkHandle() != compare_view.image_state->VkHandle()) {
        return false;
    }
    if (normalized_subresource_range.aspectMask != compare_view.normalized_subresource_range.aspectMask) {
        return false;
    }

    // compare if overlap mip level
    if ((normalized_subresource_range.baseMipLevel < compare_view.normalized_subresource_range.baseMipLevel) &&
        ((normalized_subresource_range.baseMipLevel + normalized_subresource_range.levelCount) <=
         compare_view.normalized_subresource_range.baseMipLevel)) {
        return false;
    }

    if ((normalized_subresource_range.baseMipLevel > compare_view.normalized_subresource_range.baseMipLevel) &&
        (normalized_subresource_range.baseMipLevel >=
         (compare_view.normalized_subresource_range.baseMipLevel + compare_view.normalized_subresource_range.levelCount))) {
        return false;
    }

    // compare if overlap array layer
    if ((normalized_subresource_range.baseArrayLayer < compare_view.normalized_subresource_range.baseArrayLayer) &&
        ((normalized_subresource_range.baseArrayLayer + normalized_subresource_range.layerCount) <=
         compare_view.normalized_subresource_range.baseArrayLayer)) {
        return false;
    }

    if ((normalized_subresource_range.baseArrayLayer > compare_view.normalized_subresource_range.baseArrayLayer) &&
        (normalized_subresource_range.baseArrayLayer >=
         (compare_view.normalized_subresource_range.baseArrayLayer + compare_view.normalized_subresource_range.layerCount))) {
        return false;
    }
    return true;
}

}  // namespace vvl