1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
/* Copyright (c) 2015-2025 The Khronos Group Inc.
* Copyright (c) 2015-2025 Valve Corporation
* Copyright (c) 2015-2025 LunarG, Inc.
* Copyright (C) 2015-2024 Google Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
* Modifications Copyright (C) 2022 RasterGrid Kft.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "state_tracker/image_state.h"
#include <vulkan/utility/vk_format_utils.h>
#include <vulkan/vulkan_core.h>
#include <cmath>
#include <cstdint>
#include <string>
#include "error_message/error_strings.h"
#include "state_tracker/state_tracker.h"
#include "state_tracker/semaphore_state.h"
#include "state_tracker/wsi_state.h"
#include "generated/dispatch_functions.h"
#include "utils/math_utils.h"
#include "utils/image_utils.h"
using RangeGenerator = subresource_adapter::RangeGenerator;
static VkExternalMemoryHandleTypeFlags GetExternalHandleTypes(const VkImageCreateInfo *pCreateInfo) {
const auto *external_memory_info = vku::FindStructInPNextChain<VkExternalMemoryImageCreateInfo>(pCreateInfo->pNext);
return external_memory_info ? external_memory_info->handleTypes : 0;
}
static VkSwapchainKHR GetSwapchain(const VkImageCreateInfo *pCreateInfo) {
const auto *swapchain_info = vku::FindStructInPNextChain<VkImageSwapchainCreateInfoKHR>(pCreateInfo->pNext);
return swapchain_info ? swapchain_info->swapchain : VK_NULL_HANDLE;
}
static vvl::Image::MemoryReqs GetMemoryRequirements(const vvl::DeviceState &dev_data, VkImage img,
const VkImageCreateInfo *create_info, bool disjoint, bool is_external_ahb) {
vvl::Image::MemoryReqs result{};
// Record the memory requirements in case they won't be queried
// External AHB memory can't be queried until after memory is bound
if (!is_external_ahb) {
if (disjoint == false) {
DispatchGetImageMemoryRequirements(dev_data.device, img, &result[0]);
} else {
uint32_t plane_count = vkuFormatPlaneCount(create_info->format);
static const std::array<VkImageAspectFlagBits, 3> aspects{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT,
VK_IMAGE_ASPECT_PLANE_2_BIT};
assert(plane_count <= aspects.size());
VkImagePlaneMemoryRequirementsInfo image_plane_req = vku::InitStructHelper();
VkImageMemoryRequirementsInfo2 mem_req_info2 = vku::InitStructHelper(&image_plane_req);
mem_req_info2.image = img;
for (uint32_t i = 0; i < plane_count; i++) {
VkMemoryRequirements2 mem_reqs2 = vku::InitStructHelper();
image_plane_req.planeAspect = aspects[i];
switch (dev_data.extensions.vk_khr_get_memory_requirements2) {
case kEnabledByApiLevel:
DispatchGetImageMemoryRequirements2(dev_data.device, &mem_req_info2, &mem_reqs2);
break;
case kEnabledByCreateinfo:
DispatchGetImageMemoryRequirements2KHR(dev_data.device, &mem_req_info2, &mem_reqs2);
break;
default:
// The VK_KHR_sampler_ycbcr_conversion extension requires VK_KHR_get_memory_requirements2,
// so validation of this vkCreateImage call should have already failed.
assert(false);
}
result[i] = mem_reqs2.memoryRequirements;
}
}
}
return result;
}
static std::vector<VkSparseImageMemoryRequirements> GetSparseRequirements(const vvl::DeviceState &dev_data, VkImage img,
bool sparse_residency) {
std::vector<VkSparseImageMemoryRequirements> result;
if (sparse_residency) {
uint32_t count = 0;
DispatchGetImageSparseMemoryRequirements(dev_data.device, img, &count, nullptr);
result.resize(count);
DispatchGetImageSparseMemoryRequirements(dev_data.device, img, &count, result.data());
}
return result;
}
#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkImageCreateInfo *info, VkExportMetalObjectTypeFlagBitsEXT object_type_required) {
bool retval = false;
auto export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(info->pNext);
while (export_metal_object_info) {
if (export_metal_object_info->exportObjectType == object_type_required) {
retval = true;
break;
}
export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
}
return retval;
}
#endif // VK_USE_PLATFORM_METAL_EXT
namespace vvl {
Image::Image(const vvl::DeviceState &dev_data, VkImage img, const VkImageCreateInfo *pCreateInfo, VkFormatFeatureFlags2KHR ff)
: Bindable(img, kVulkanObjectTypeImage, (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0,
(pCreateInfo->flags & VK_IMAGE_CREATE_PROTECTED_BIT) == 0, GetExternalHandleTypes(pCreateInfo)),
safe_create_info(pCreateInfo),
create_info(*safe_create_info.ptr()),
shared_presentable(false),
layout_locked(false),
ahb_format(GetExternalFormat(pCreateInfo->pNext)),
full_range{MakeImageFullRange()},
create_from_swapchain(GetSwapchain(pCreateInfo)),
owned_by_swapchain(false),
swapchain_image_index(0),
format_features(ff),
disjoint((pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0),
requirements(GetMemoryRequirements(dev_data, img, pCreateInfo, disjoint, IsExternalBuffer())),
sparse_residency((pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) != 0),
sparse_requirements(GetSparseRequirements(dev_data, img, sparse_residency)),
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_image_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT)),
metal_io_surface_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT)),
#endif // VK_USE_PLATFORM_METAL_EXT
subresource_encoder(GetSubresourceEncoderRange(dev_data, full_range)),
store_device_as_workaround(dev_data.device), // TODO REMOVE WHEN encoder can be const
supported_video_profiles(dev_data.video_profile_cache_.Get(
dev_data.physical_device, vku::FindStructInPNextChain<VkVideoProfileListInfoKHR>(pCreateInfo->pNext))) {
if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
bool is_resident = (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) != 0;
tracker_.emplace<BindableSparseMemoryTracker>(requirements.data(), is_resident);
SetMemoryTracker(&std::get<BindableSparseMemoryTracker>(tracker_));
} else if (pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) {
tracker_.emplace<BindableMultiplanarMemoryTracker>(requirements.data(), vkuFormatPlaneCount(pCreateInfo->format));
SetMemoryTracker(&std::get<BindableMultiplanarMemoryTracker>(tracker_));
} else {
tracker_.emplace<BindableLinearMemoryTracker>(requirements.data());
SetMemoryTracker(&std::get<BindableLinearMemoryTracker>(tracker_));
}
}
Image::Image(const vvl::DeviceState &dev_data, VkImage img, const VkImageCreateInfo *pCreateInfo, VkSwapchainKHR swapchain,
uint32_t swapchain_index, VkFormatFeatureFlags2KHR ff)
: Bindable(img, kVulkanObjectTypeImage, (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) != 0,
(pCreateInfo->flags & VK_IMAGE_CREATE_PROTECTED_BIT) == 0, GetExternalHandleTypes(pCreateInfo)),
safe_create_info(pCreateInfo),
create_info(*safe_create_info.ptr()),
shared_presentable(false),
layout_locked(false),
ahb_format(GetExternalFormat(pCreateInfo->pNext)),
full_range{MakeImageFullRange()},
create_from_swapchain(swapchain),
owned_by_swapchain(true),
swapchain_image_index(swapchain_index),
format_features(ff),
disjoint((pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) != 0),
requirements{},
sparse_residency(false),
sparse_requirements{},
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_image_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT)),
metal_io_surface_export(GetMetalExport(pCreateInfo, VK_EXPORT_METAL_OBJECT_TYPE_METAL_IOSURFACE_BIT_EXT)),
#endif // VK_USE_PLATFORM_METAL_EXT
subresource_encoder(GetSubresourceEncoderRange(dev_data, full_range)),
store_device_as_workaround(dev_data.device), // TODO REMOVE WHEN encoder can be const
supported_video_profiles(dev_data.video_profile_cache_.Get(
dev_data.physical_device, vku::FindStructInPNextChain<VkVideoProfileListInfoKHR>(pCreateInfo->pNext))) {
tracker_.emplace<BindableNoMemoryTracker>(requirements.data());
SetMemoryTracker(&std::get<BindableNoMemoryTracker>(tracker_));
}
void Image::Destroy() {
for (auto &item : sub_states_) {
item.second->Destroy();
}
// NOTE: due to corner cases in aliased images, the layout_range_map MUST not be cleaned up here.
// If it is, bad local entries could be created by vvl::CommandBuffer::GetOrCreateImageLayoutRegistry()
// If an aliasing image was being destroyed (and layout_range_map was reset()), a nullptr keyed
// entry could get put into vvl::CommandBuffer::aliased_image_layout_map.
//
if (bind_swapchain) {
bind_swapchain->RemoveParent(this);
bind_swapchain = nullptr;
}
Bindable::Destroy();
}
// Get buffer size from VkBufferImageCopy / VkBufferImageCopy2 structure, for a given format
template VkDeviceSize Image::GetBufferSizeFromCopyImage<VkBufferImageCopy>(const VkBufferImageCopy &) const;
template VkDeviceSize Image::GetBufferSizeFromCopyImage<VkBufferImageCopy2>(const VkBufferImageCopy2 &) const;
template <typename RegionType>
VkDeviceSize Image::GetBufferSizeFromCopyImage(const RegionType ®ion) const {
VkDeviceSize buffer_size = 0;
VkExtent3D copy_extent = region.imageExtent;
VkDeviceSize buffer_width = (0 == region.bufferRowLength ? copy_extent.width : region.bufferRowLength);
VkDeviceSize buffer_height = (0 == region.bufferImageHeight ? copy_extent.height : region.bufferImageHeight);
uint32_t layer_count = region.imageSubresource.layerCount != VK_REMAINING_ARRAY_LAYERS
? region.imageSubresource.layerCount
: create_info.arrayLayers - region.imageSubresource.baseArrayLayer;
// VUID-VkImageCreateInfo-imageType-00961 prevents having both depth and layerCount ever both be greater than 1 together. Take
// max to logic simple. This is the number of 'slices' to copy.
const uint32_t z_copies = std::max(copy_extent.depth, layer_count);
// Invalid if copy size is 0 and other validation checks will catch it. Returns zero as the caller should have fallback already
// to ignore.
if (copy_extent.width == 0 || copy_extent.height == 0 || copy_extent.depth == 0 || z_copies == 0) {
return 0;
}
VkDeviceSize texel_block_size = 0;
if (region.imageSubresource.aspectMask & (VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT)) {
// Spec in VkBufferImageCopy section list special cases for each format
if (region.imageSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
texel_block_size = 1;
} else {
// VK_IMAGE_ASPECT_DEPTH_BIT
switch (create_info.format) {
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
texel_block_size = 2;
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
// packed with the D24 value in the LSBs of the word, and undefined values in the eight MSBs
case VK_FORMAT_X8_D24_UNORM_PACK32:
case VK_FORMAT_D24_UNORM_S8_UINT:
texel_block_size = 4;
break;
default:
// Any misuse of formats vs aspect mask should be caught before here
return 0;
}
}
} else {
const VkFormat compatible_format =
vkuFormatIsMultiplane(create_info.format)
? vkuFindMultiplaneCompatibleFormat(create_info.format,
static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask))
: create_info.format;
texel_block_size = vkuFormatTexelBlockSize(compatible_format);
}
if (vkuFormatIsBlockedImage(create_info.format)) {
// Switch to texel block units, rounding up for any partially-used blocks
const VkExtent3D block_extent = vkuFormatTexelBlockExtent(create_info.format);
buffer_width = (buffer_width + block_extent.width - 1) / block_extent.width;
buffer_height = (buffer_height + block_extent.height - 1) / block_extent.height;
copy_extent.width = (copy_extent.width + block_extent.width - 1) / block_extent.width;
copy_extent.height = (copy_extent.height + block_extent.height - 1) / block_extent.height;
copy_extent.depth = (copy_extent.depth + block_extent.depth - 1) / block_extent.depth;
}
// Calculate buffer offset of final copied byte, + 1.
buffer_size = (z_copies - 1) * buffer_height * buffer_width; // offset to slice
buffer_size += ((copy_extent.height - 1) * buffer_width) + copy_extent.width; // add row,col
buffer_size *= texel_block_size; // convert to bytes
return buffer_size;
}
void Image::NotifyInvalidate(const StateObject::NodeList &invalid_nodes, bool unlink) {
for (auto &item : sub_states_) {
item.second->NotifyInvalidate(invalid_nodes, unlink);
}
Bindable::NotifyInvalidate(invalid_nodes, unlink);
if (unlink) {
bind_swapchain = nullptr;
}
}
bool Image::IsCreateInfoEqual(const VkImageCreateInfo &other_create_info) const {
bool is_equal = (create_info.sType == other_create_info.sType) && (create_info.flags == other_create_info.flags);
is_equal = is_equal && IsImageTypeEqual(other_create_info) && IsFormatEqual(other_create_info);
is_equal = is_equal && IsMipLevelsEqual(other_create_info) && IsArrayLayersEqual(other_create_info);
is_equal = is_equal && IsUsageEqual(other_create_info) && IsInitialLayoutEqual(other_create_info);
is_equal = is_equal && IsExtentEqual(other_create_info) && IsTilingEqual(other_create_info);
is_equal = is_equal && IsSamplesEqual(other_create_info) && IsSharingModeEqual(other_create_info);
return is_equal &&
((create_info.sharingMode == VK_SHARING_MODE_CONCURRENT) ? IsQueueFamilyIndicesEqual(other_create_info) : true);
}
// Check image compatibility rules for VK_NV_dedicated_allocation_image_aliasing
bool Image::IsCreateInfoDedicatedAllocationImageAliasingCompatible(const VkImageCreateInfo &other_create_info) const {
bool is_compatible = (create_info.sType == other_create_info.sType) && (create_info.flags == other_create_info.flags);
is_compatible = is_compatible && IsImageTypeEqual(other_create_info) && IsFormatEqual(other_create_info);
is_compatible = is_compatible && IsMipLevelsEqual(other_create_info);
is_compatible = is_compatible && IsUsageEqual(other_create_info) && IsInitialLayoutEqual(other_create_info);
is_compatible = is_compatible && IsSamplesEqual(other_create_info) && IsSharingModeEqual(other_create_info);
is_compatible = is_compatible &&
((create_info.sharingMode == VK_SHARING_MODE_CONCURRENT) ? IsQueueFamilyIndicesEqual(other_create_info) : true);
is_compatible = is_compatible && IsTilingEqual(other_create_info);
is_compatible = is_compatible && create_info.extent.width <= other_create_info.extent.width &&
create_info.extent.height <= other_create_info.extent.height &&
create_info.extent.depth <= other_create_info.extent.depth &&
create_info.arrayLayers <= other_create_info.arrayLayers;
return is_compatible;
}
bool Image::IsCompatibleAliasing(const Image *other_image_state) const {
if (!IsSwapchainImage() && !other_image_state->IsSwapchainImage() &&
!(create_info.flags & other_image_state->create_info.flags & VK_IMAGE_CREATE_ALIAS_BIT)) {
return false;
}
const auto binding = Binding();
const auto other_binding = other_image_state->Binding();
if ((create_from_swapchain == VK_NULL_HANDLE) && binding && other_binding &&
(binding->memory_state == other_binding->memory_state) && (binding->memory_offset == other_binding->memory_offset) &&
IsCreateInfoEqual(other_image_state->create_info)) {
return true;
}
if (bind_swapchain && (bind_swapchain == other_image_state->bind_swapchain) &&
(swapchain_image_index == other_image_state->swapchain_image_index)) {
return true;
}
return false;
}
VkExtent3D Image::GetEffectiveSubresourceExtent(const VkImageSubresourceLayers &sub) const {
return GetEffectiveExtent(create_info, sub.aspectMask, sub.mipLevel);
}
VkExtent3D Image::GetEffectiveSubresourceExtent(const VkImageSubresource &sub) const {
return GetEffectiveExtent(create_info, sub.aspectMask, sub.mipLevel);
}
VkExtent3D Image::GetEffectiveSubresourceExtent(const VkImageSubresourceRange &range) const {
return GetEffectiveExtent(create_info, range.aspectMask, range.baseMipLevel);
}
std::string Image::DescribeSubresourceLayers(const VkImageSubresourceLayers &subresource) const {
std::stringstream ss;
VkExtent3D subresource_extent = GetEffectiveSubresourceExtent(subresource);
const VkFormat format = create_info.format;
ss << "The " << string_VkImageType(create_info.imageType) << " VkImage was created with format " << string_VkFormat(format)
<< " and an extent of [" << string_VkExtent3D(create_info.extent) << "]\n";
if (subresource.mipLevel != 0) {
ss << "\tmipLevel " << subresource.mipLevel << " is [" << string_VkExtent3D(subresource_extent) << "]\n";
}
if (vkuFormatIsCompressed(format)) {
const VkExtent3D block_extent = vkuFormatTexelBlockExtent(format);
const VkExtent3D texel_blocks = GetTexelBlocks(subresource_extent, block_extent);
ss << "\tThe compressed format block extent (" << string_VkExtent3D(block_extent) << ") represents miplevel "
<< subresource.mipLevel << " with a texel block extent [" << string_VkExtent3D(texel_blocks) << "]\n";
} else if (vkuFormatIsMultiplane(format)) {
assert(IsSingleBitSet(subresource.aspectMask));
VkImageAspectFlagBits aspect_flag = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
ss << "\tPlane " << vkuGetPlaneIndex(aspect_flag) << " (compatible format "
<< string_VkFormat(vkuFindMultiplaneCompatibleFormat(format, aspect_flag)) << ")";
VkExtent2D divisors = vkuFindMultiplaneExtentDivisors(format, aspect_flag);
if (divisors.width != 1 || divisors.height != 1) {
ss << " has [widthDivisor = " << divisors.width << ", heightDivisor = " << divisors.height
<< "] which adjusts the extent to [" << string_VkExtent3D(subresource_extent) << "]";
}
ss << "\n";
}
return ss.str();
}
VkImageSubresourceRange Image::NormalizeSubresourceRange(const VkImageSubresourceRange &range) const {
VkImageSubresourceRange norm = range;
norm.levelCount =
(range.levelCount == VK_REMAINING_MIP_LEVELS) ? (create_info.mipLevels - range.baseMipLevel) : range.levelCount;
norm.layerCount =
(range.layerCount == VK_REMAINING_ARRAY_LAYERS) ? (create_info.arrayLayers - range.baseArrayLayer) : range.layerCount;
// For multiplanar formats, IMAGE_ASPECT_COLOR is equivalent to adding the aspect of the individual planes
if (vkuFormatIsMultiplane(create_info.format)) {
if (norm.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
norm.aspectMask &= ~VK_IMAGE_ASPECT_COLOR_BIT;
norm.aspectMask |= (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT);
if (vkuFormatPlaneCount(create_info.format) > 2) {
norm.aspectMask |= VK_IMAGE_ASPECT_PLANE_2_BIT;
}
}
}
return norm;
}
uint32_t Image::NormalizeLayerCount(const VkImageSubresourceLayers &resource) const {
return (resource.layerCount == VK_REMAINING_ARRAY_LAYERS) ? (create_info.arrayLayers - resource.baseArrayLayer)
: resource.layerCount;
}
VkImageSubresourceRange Image::MakeImageFullRange() {
const auto format = create_info.format;
VkImageSubresourceRange init_range{0, 0, VK_REMAINING_MIP_LEVELS, 0, VK_REMAINING_ARRAY_LAYERS};
if (vkuFormatIsColor(format) || vkuFormatIsMultiplane(format) || GetExternalFormat(create_info.pNext) != 0) {
init_range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; // Normalization will expand this for multiplane
} else {
init_range.aspectMask = (vkuFormatHasDepth(format) ? VK_IMAGE_ASPECT_DEPTH_BIT : 0) |
(vkuFormatHasStencil(format) ? VK_IMAGE_ASPECT_STENCIL_BIT : 0);
}
return NormalizeSubresourceRange(init_range);
}
VkImageSubresourceRange Image::GetSubresourceEncoderRange(const DeviceState &device_state,
const VkImageSubresourceRange &full_range) {
VkImageSubresourceRange encoder_range = full_range;
if (device_state.extensions.vk_khr_maintenance9 && create_info.imageType == VK_IMAGE_TYPE_3D &&
(create_info.flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT) != 0) {
encoder_range.layerCount = create_info.extent.depth;
}
return encoder_range;
}
void Image::SetInitialLayoutMap() {
if (layout_map) {
return;
}
std::shared_ptr<ImageLayoutMap> new_layout_map;
std::shared_ptr<std::shared_mutex> new_layout_map_lock;
auto get_layout_map = [&new_layout_map, &new_layout_map_lock](const Image &other_image) {
new_layout_map = other_image.layout_map;
new_layout_map_lock = other_image.layout_map_lock;
return true;
};
// See if an alias already has a layout map
if (HasAliasFlag()) {
AnyImageAliasOf(get_layout_map);
} else if (bind_swapchain) {
// Swapchains can also alias if multiple images are bound (or retrieved
// with vkGetSwapchainImages()) for a (single swapchain, index) pair.
AnyAliasBindingOf(bind_swapchain->ObjectBindings(), get_layout_map);
}
// Set layout of each subresource as VkImageCreateInfo::initialLayout
if (!new_layout_map) {
new_layout_map = std::make_shared<ImageLayoutMap>(subresource_encoder.SubresourceCount());
new_layout_map_lock = std::make_shared<std::shared_mutex>();
for (auto range_gen = RangeGenerator(subresource_encoder); range_gen->non_empty(); ++range_gen) {
new_layout_map->insert(new_layout_map->end(), std::make_pair(*range_gen, create_info.initialLayout));
}
}
layout_map = std::move(new_layout_map);
layout_map_lock = std::move(new_layout_map_lock);
}
void Image::SetImageLayout(const VkImageSubresourceRange &range, VkImageLayout layout) {
using sparse_container::update_range_value;
using sparse_container::value_precedence;
RangeGenerator range_gen(subresource_encoder, NormalizeSubresourceRange(range));
auto guard = LayoutMapWriteLock();
for (; range_gen->non_empty(); ++range_gen) {
update_range_value(*layout_map, *range_gen, layout, value_precedence::prefer_source);
}
}
void Image::SetSwapchain(std::shared_ptr<vvl::Swapchain> &swapchain, uint32_t swapchain_index) {
assert(IsSwapchainImage());
bind_swapchain = swapchain;
swapchain_image_index = swapchain_index;
bind_swapchain->AddParent(this);
}
bool Image::CompareCreateInfo(const Image &other) const {
bool valid_queue_family = true;
if (create_info.sharingMode == VK_SHARING_MODE_CONCURRENT) {
if (create_info.queueFamilyIndexCount != other.create_info.queueFamilyIndexCount) {
valid_queue_family = false;
} else {
for (uint32_t i = 0; i < create_info.queueFamilyIndexCount; i++) {
if (create_info.pQueueFamilyIndices[i] != other.create_info.pQueueFamilyIndices[i]) {
valid_queue_family = false;
break;
}
}
}
}
// There are limitations what actually needs to be compared, so for simplicity (until found otherwise needed), we only need to
// check the ExternalHandleType and not other pNext chains
const bool valid_external = GetExternalHandleTypes(&create_info) == GetExternalHandleTypes(&other.create_info);
return (create_info.flags == other.create_info.flags) && (create_info.imageType == other.create_info.imageType) &&
(create_info.format == other.create_info.format) && (create_info.extent.width == other.create_info.extent.width) &&
(create_info.extent.height == other.create_info.extent.height) &&
(create_info.extent.depth == other.create_info.extent.depth) && (create_info.mipLevels == other.create_info.mipLevels) &&
(create_info.arrayLayers == other.create_info.arrayLayers) && (create_info.samples == other.create_info.samples) &&
(create_info.tiling == other.create_info.tiling) && (create_info.usage == other.create_info.usage) &&
(create_info.initialLayout == other.create_info.initialLayout) && valid_queue_family && valid_external;
}
} // namespace vvl
static VkSamplerYcbcrConversion GetSamplerConversion(const VkImageViewCreateInfo *ci) {
auto *conversion_info = vku::FindStructInPNextChain<VkSamplerYcbcrConversionInfo>(ci->pNext);
return conversion_info ? conversion_info->conversion : VK_NULL_HANDLE;
}
static VkImageUsageFlags GetInheritedUsage(const VkImageViewCreateInfo *ci, const vvl::Image &image_state) {
auto usage_create_info = vku::FindStructInPNextChain<VkImageViewUsageCreateInfo>(ci->pNext);
return (usage_create_info) ? usage_create_info->usage : image_state.create_info.usage;
}
static float GetImageViewMinLod(const VkImageViewCreateInfo *ci) {
auto image_view_min_lod = vku::FindStructInPNextChain<VkImageViewMinLodCreateInfoEXT>(ci->pNext);
return (image_view_min_lod) ? image_view_min_lod->minLod : 0.0f;
}
#ifdef VK_USE_PLATFORM_METAL_EXT
static bool GetMetalExport(const VkImageViewCreateInfo *info) {
bool retval = false;
auto export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(info->pNext);
while (export_metal_object_info) {
if (export_metal_object_info->exportObjectType == VK_EXPORT_METAL_OBJECT_TYPE_METAL_TEXTURE_BIT_EXT) {
retval = true;
break;
}
export_metal_object_info = vku::FindStructInPNextChain<VkExportMetalObjectCreateInfoEXT>(export_metal_object_info->pNext);
}
return retval;
}
#endif // VK_USE_PLATFORM_METAL_EXT
namespace vvl {
ImageView::ImageView(const DeviceState &device_state, const std::shared_ptr<vvl::Image> &image_state, VkImageView handle,
const VkImageViewCreateInfo *ci, VkFormatFeatureFlags2KHR ff,
const VkFilterCubicImageViewImageFormatPropertiesEXT &cubic_props)
: StateObject(handle, kVulkanObjectTypeImageView),
safe_create_info(ci),
create_info(*safe_create_info.ptr()),
image_state(image_state),
#ifdef VK_USE_PLATFORM_METAL_EXT
metal_imageview_export(GetMetalExport(ci)),
#endif
is_depth_sliced(IsDepthSliced()),
normalized_subresource_range(image_state->NormalizeSubresourceRange(create_info.subresourceRange)),
range_generator(image_state->subresource_encoder,
NormalizeImageLayoutSubresourceRange(device_state.extensions.vk_khr_maintenance9)),
samples(image_state->create_info.samples),
samplerConversion(GetSamplerConversion(ci)),
filter_cubic_props(cubic_props),
min_lod(GetImageViewMinLod(ci)),
format_features(ff),
inherited_usage(GetInheritedUsage(ci, *image_state)) {
}
void ImageView::NotifyInvalidate(const StateObject::NodeList &invalid_nodes, bool unlink) {
for (auto &item : sub_states_) {
item.second->NotifyInvalidate(invalid_nodes, unlink);
}
StateObject::NotifyInvalidate(invalid_nodes, unlink);
}
void ImageView::Destroy() {
for (auto &item : sub_states_) {
item.second->Destroy();
}
if (image_state) {
image_state->RemoveParent(this);
image_state = nullptr;
}
StateObject::Destroy();
}
bool ImageView::IsDepthSliced() {
auto depth_slice_flag = VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT | VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT;
return ((image_state->create_info.flags & depth_slice_flag) != 0) &&
(create_info.viewType == VK_IMAGE_VIEW_TYPE_2D || create_info.viewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY);
}
VkImageSubresourceRange ImageView::NormalizeImageLayoutSubresourceRange(bool is_3d_slice_transition_allowed) const {
VkImageSubresourceRange subres_range = create_info.subresourceRange;
// if we're mapping a 3D image to a 2d image view, convert the view's subresource range to be compatible with the
// image's understanding of the world. From the VkImageSubresourceRange section of the Vulkan spec:
//
// When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D image’s mip level in order to
// create a 2D or 2D array image view of a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and
// layerCount specify the first slice index and the number of slices to include in the created image view. Such an image
// view can be used as a framebuffer attachment that refers only to the specified range of slices of the selected mip level.
// If the maintenance9 feature is not enabled, any layout transitions performed on such an attachment view during a render
// pass instance still apply to the entire subresource referenced which includes all the slices of the selected mip level.
//
if (is_depth_sliced && !is_3d_slice_transition_allowed) {
subres_range.baseArrayLayer = 0;
subres_range.layerCount = 1;
}
return image_state->NormalizeSubresourceRange(subres_range);
}
uint32_t ImageView::GetAttachmentLayerCount() const {
if (create_info.subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS && !is_depth_sliced) {
return image_state->create_info.arrayLayers;
}
return create_info.subresourceRange.layerCount;
}
bool ImageView::OverlapSubresource(const ImageView &compare_view) const {
if (VkHandle() == compare_view.VkHandle()) {
return true;
}
if (image_state->VkHandle() != compare_view.image_state->VkHandle()) {
return false;
}
if (normalized_subresource_range.aspectMask != compare_view.normalized_subresource_range.aspectMask) {
return false;
}
// compare if overlap mip level
if ((normalized_subresource_range.baseMipLevel < compare_view.normalized_subresource_range.baseMipLevel) &&
((normalized_subresource_range.baseMipLevel + normalized_subresource_range.levelCount) <=
compare_view.normalized_subresource_range.baseMipLevel)) {
return false;
}
if ((normalized_subresource_range.baseMipLevel > compare_view.normalized_subresource_range.baseMipLevel) &&
(normalized_subresource_range.baseMipLevel >=
(compare_view.normalized_subresource_range.baseMipLevel + compare_view.normalized_subresource_range.levelCount))) {
return false;
}
// compare if overlap array layer
if ((normalized_subresource_range.baseArrayLayer < compare_view.normalized_subresource_range.baseArrayLayer) &&
((normalized_subresource_range.baseArrayLayer + normalized_subresource_range.layerCount) <=
compare_view.normalized_subresource_range.baseArrayLayer)) {
return false;
}
if ((normalized_subresource_range.baseArrayLayer > compare_view.normalized_subresource_range.baseArrayLayer) &&
(normalized_subresource_range.baseArrayLayer >=
(compare_view.normalized_subresource_range.baseArrayLayer + compare_view.normalized_subresource_range.layerCount))) {
return false;
}
return true;
}
} // namespace vvl
|