1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
|
/* Copyright (c) 2021-2025 The Khronos Group Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "state_tracker/shader_module.h"
#include <sstream>
#include <string>
#include <queue>
#include <vulkan/utility/vk_format_utils.h>
#include "utils/hash_util.h"
#include "generated/spirv_grammar_helper.h"
#include "generated/spirv_validation_helper.h"
#include <spirv/unified1/spirv.hpp>
#include <spirv/1.2/GLSL.std.450.h>
#include <spirv/unified1/NonSemanticShaderDebugInfo100.h>
#include "error_message/spirv_logging.h"
namespace spirv {
void DecorationBase::Add(uint32_t decoration, uint32_t value) {
switch (decoration) {
case spv::DecorationLocation:
location = value;
break;
case spv::DecorationPatch:
flags |= patch_bit;
break;
case spv::DecorationBlock:
flags |= block_bit;
break;
case spv::DecorationBufferBlock:
flags |= buffer_block_bit;
break;
case spv::DecorationComponent:
component = value;
break;
case spv::DecorationIndex:
index = value;
break;
case spv::DecorationNonWritable:
flags |= nonwritable_bit;
break;
case spv::DecorationBuiltIn:
assert(builtin == kInvalidValue); // being over written - not valid
builtin = value;
break;
case spv::DecorationNonReadable:
flags |= nonreadable_bit;
break;
case spv::DecorationPerVertexKHR: // VK_KHR_fragment_shader_barycentric
flags |= per_vertex_bit;
break;
case spv::DecorationPassthroughNV: // VK_NV_geometry_shader_passthrough
flags |= passthrough_bit;
break;
case spv::DecorationAliased:
flags |= aliased_bit;
break;
case spv::DecorationPerTaskNV: // VK_NV_mesh_shader
flags |= per_task_nv;
break;
case spv::DecorationPerPrimitiveEXT: // VK_EXT_mesh_shader
flags |= per_primitive_ext;
break;
case spv::DecorationOffset:
offset |= value;
break;
default:
break;
}
}
// Some decorations are only avaiable for variables, so can't be in OpMemberDecorate
void DecorationSet::Add(uint32_t decoration, uint32_t value) {
switch (decoration) {
case spv::DecorationDescriptorSet:
set = value;
break;
case spv::DecorationBinding:
binding = value;
break;
case spv::DecorationInputAttachmentIndex:
flags |= input_attachment_bit;
input_attachment_index_start = value;
break;
default:
DecorationBase::Add(decoration, value);
}
}
bool DecorationSet::HasAnyBuiltIn() const {
if (kInvalidValue != builtin) {
return true;
} else if (!member_decorations.empty()) {
for (const auto& member : member_decorations) {
if (kInvalidValue != member.second.builtin) {
return true;
}
}
}
return false;
}
bool DecorationSet::HasInMember(FlagBit flag_bit) const {
for (const auto& decoration : member_decorations) {
if (decoration.second.Has(flag_bit)) {
return true;
}
}
return false;
}
bool DecorationSet::AllMemberHave(FlagBit flag_bit) const {
for (const auto& decoration : member_decorations) {
if (!decoration.second.Has(flag_bit)) {
return false;
}
}
return true;
}
void ExecutionModeSet::Add(const Instruction& insn) {
const uint32_t execution_mode = insn.Word(2);
const uint32_t value = insn.Length() > 3u ? insn.Word(3) : 0u;
switch (execution_mode) {
case spv::ExecutionModeOutputPoints: // for geometry shaders
flags |= output_points_bit;
primitive_topology = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
break;
case spv::ExecutionModePointMode: // for tessellation shaders
flags |= point_mode_bit;
break;
case spv::ExecutionModePostDepthCoverage: // VK_EXT_post_depth_coverage
flags |= post_depth_coverage_bit;
break;
case spv::ExecutionModeIsolines: // Tessellation
flags |= iso_lines_bit;
tessellation_subdivision = spv::ExecutionModeIsolines;
primitive_topology = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
break;
case spv::ExecutionModeOutputLineStrip:
case spv::ExecutionModeOutputLinesEXT: // alias ExecutionModeOutputLinesNV
primitive_topology = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
break;
case spv::ExecutionModeTriangles:
// ExecutionModeTriangles is input if shader is geometry and output if shader is tessellation evaluation
// Because we don't know which shader stage is used here we set both, but only set input for geometry shader if it
// hasn't been set yet
if (input_primitive_topology == VK_PRIMITIVE_TOPOLOGY_MAX_ENUM) {
input_primitive_topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
}
primitive_topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
tessellation_subdivision = spv::ExecutionModeTriangles;
break;
case spv::ExecutionModeQuads:
primitive_topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
tessellation_subdivision = spv::ExecutionModeQuads;
break;
case spv::ExecutionModeOutputTriangleStrip:
case spv::ExecutionModeOutputTrianglesEXT: // alias ExecutionModeOutputTrianglesNV
primitive_topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
break;
case spv::ExecutionModeInputPoints:
input_primitive_topology = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
break;
case spv::ExecutionModeInputLines:
case spv::ExecutionModeInputLinesAdjacency:
input_primitive_topology = VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
break;
case spv::ExecutionModeInputTrianglesAdjacency:
input_primitive_topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
break;
case spv::ExecutionModeLocalSizeId:
flags |= local_size_id_bit;
// Store ID here, will use flag to know to pull then out
local_size.x = insn.Word(3);
local_size.y = insn.Word(4);
local_size.z = insn.Word(5);
break;
case spv::ExecutionModeLocalSize:
flags |= local_size_bit;
local_size.x = insn.Word(3);
local_size.y = insn.Word(4);
local_size.z = insn.Word(5);
break;
case spv::ExecutionModeOutputVertices:
output_vertices = value;
break;
case spv::ExecutionModeOutputPrimitivesEXT: // alias ExecutionModeOutputPrimitivesNV
output_primitives = value;
break;
case spv::ExecutionModeXfb: // TransformFeedback
flags |= xfb_bit;
break;
case spv::ExecutionModeInvocations:
invocations = value;
break;
case spv::ExecutionModeSignedZeroInfNanPreserve: // VK_KHR_shader_float_controls
if (value == 16) {
flags |= signed_zero_inf_nan_preserve_width_16;
} else if (value == 32) {
flags |= signed_zero_inf_nan_preserve_width_32;
} else if (value == 64) {
flags |= signed_zero_inf_nan_preserve_width_64;
}
break;
case spv::ExecutionModeDenormPreserve: // VK_KHR_shader_float_controls
if (value == 16) {
flags |= denorm_preserve_width_16;
} else if (value == 32) {
flags |= denorm_preserve_width_32;
} else if (value == 64) {
flags |= denorm_preserve_width_64;
}
break;
case spv::ExecutionModeDenormFlushToZero: // VK_KHR_shader_float_controls
if (value == 16) {
flags |= denorm_flush_to_zero_width_16;
} else if (value == 32) {
flags |= denorm_flush_to_zero_width_32;
} else if (value == 64) {
flags |= denorm_flush_to_zero_width_64;
}
break;
case spv::ExecutionModeRoundingModeRTE: // VK_KHR_shader_float_controls
if (value == 16) {
flags |= rounding_mode_rte_width_16;
} else if (value == 32) {
flags |= rounding_mode_rte_width_32;
} else if (value == 64) {
flags |= rounding_mode_rte_width_64;
}
break;
case spv::ExecutionModeRoundingModeRTZ: // VK_KHR_shader_float_controls
if (value == 16) {
flags |= rounding_mode_rtz_width_16;
} else if (value == 32) {
flags |= rounding_mode_rtz_width_32;
} else if (value == 64) {
flags |= rounding_mode_rtz_width_64;
}
break;
case spv::ExecutionModeFPFastMathDefault: // VK_KHR_shader_float_controls2
// This is to indicate the mode was used
// Will look up the ID later as need the entire module parsed first
flags |= fp_fast_math_default;
break;
case spv::ExecutionModeEarlyFragmentTests:
flags |= early_fragment_test_bit;
break;
case spv::ExecutionModeSubgroupUniformControlFlowKHR: // VK_KHR_shader_subgroup_uniform_control_flow
flags |= subgroup_uniform_control_flow_bit;
break;
case spv::ExecutionModeSpacingEqual:
tessellation_spacing = spv::ExecutionModeSpacingEqual;
break;
case spv::ExecutionModeSpacingFractionalEven:
tessellation_spacing = spv::ExecutionModeSpacingFractionalEven;
break;
case spv::ExecutionModeSpacingFractionalOdd:
tessellation_spacing = spv::ExecutionModeSpacingFractionalOdd;
break;
case spv::ExecutionModeVertexOrderCw:
tessellation_orientation = spv::ExecutionModeVertexOrderCw;
break;
case spv::ExecutionModeVertexOrderCcw:
tessellation_orientation = spv::ExecutionModeVertexOrderCcw;
break;
case spv::ExecutionModeDepthReplacing:
flags |= depth_replacing_bit;
break;
case spv::ExecutionModeStencilRefReplacingEXT:
flags |= stencil_ref_replacing_bit;
break;
case spv::ExecutionModeDerivativeGroupLinearKHR:
flags |= derivative_group_linear;
break;
case spv::ExecutionModeDerivativeGroupQuadsKHR:
flags |= derivative_group_quads;
break;
default:
break;
}
}
static uint32_t ExecutionModelToShaderStageFlagBits(uint32_t mode) {
switch (mode) {
case spv::ExecutionModelVertex:
return VK_SHADER_STAGE_VERTEX_BIT;
case spv::ExecutionModelTessellationControl:
return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
case spv::ExecutionModelTessellationEvaluation:
return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
case spv::ExecutionModelGeometry:
return VK_SHADER_STAGE_GEOMETRY_BIT;
case spv::ExecutionModelFragment:
return VK_SHADER_STAGE_FRAGMENT_BIT;
case spv::ExecutionModelGLCompute:
return VK_SHADER_STAGE_COMPUTE_BIT;
case spv::ExecutionModelRayGenerationKHR:
return VK_SHADER_STAGE_RAYGEN_BIT_KHR;
case spv::ExecutionModelAnyHitKHR:
return VK_SHADER_STAGE_ANY_HIT_BIT_KHR;
case spv::ExecutionModelClosestHitKHR:
return VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
case spv::ExecutionModelMissKHR:
return VK_SHADER_STAGE_MISS_BIT_KHR;
case spv::ExecutionModelIntersectionKHR:
return VK_SHADER_STAGE_INTERSECTION_BIT_KHR;
case spv::ExecutionModelCallableKHR:
return VK_SHADER_STAGE_CALLABLE_BIT_KHR;
case spv::ExecutionModelTaskNV:
return VK_SHADER_STAGE_TASK_BIT_NV;
case spv::ExecutionModelMeshNV:
return VK_SHADER_STAGE_MESH_BIT_NV;
case spv::ExecutionModelTaskEXT:
return VK_SHADER_STAGE_TASK_BIT_EXT;
case spv::ExecutionModelMeshEXT:
return VK_SHADER_STAGE_MESH_BIT_EXT;
default:
return 0;
}
}
// TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
// converting parts of this to be generated from the machine-readable spec instead.
static void FindPointersAndObjects(const Instruction& insn, vvl::unordered_set<uint32_t>& result) {
switch (insn.Opcode()) {
case spv::OpLoad:
result.insert(insn.Word(3)); // ptr
break;
case spv::OpStore:
result.insert(insn.Word(1)); // ptr
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
case spv::OpPtrAccessChain:
case spv::OpInBoundsPtrAccessChain:
result.insert(insn.Word(3)); // base ptr
break;
case spv::OpArrayLength:
// This is not an access of memory, but counts as static usage of the variable
result.insert(insn.Word(3));
break;
case spv::OpSampledImage:
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageDrefGather:
case spv::OpImageRead:
case spv::OpImage:
case spv::OpImageQueryFormat:
case spv::OpImageQueryOrder:
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLod:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageTexelPointer:
case spv::OpFragmentFetchAMD:
case spv::OpFragmentMaskFetchAMD:
// Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
// - NOT the shader input/output interfaces.
result.insert(insn.Word(3)); // Image or sampled image
break;
case spv::OpImageWrite:
result.insert(insn.Word(1)); // Image -- different operand order to above
break;
case spv::OpFunctionCall:
for (uint32_t i = 3; i < insn.Length(); i++) {
result.insert(insn.Word(i)); // fn itself, and all args
}
break;
case spv::OpExtInst:
for (uint32_t i = 5; i < insn.Length(); i++) {
result.insert(insn.Word(i)); // Operands to ext inst
}
break;
default: {
if (AtomicOperation(insn.Opcode())) {
result.insert(insn.Operand(0)); // ptr
}
break;
}
}
}
// Built-in can be both on the OpVariable or a inside a OpTypeStruct for Block built-in.
bool EntryPoint::IsBuiltInWritten(spv::BuiltIn built_in, const Module& module_state, const StageInterfaceVariable& variable,
const AccessChainVariableMap& access_chain_map) {
if (!variable.IsWrittenTo()) {
return false;
}
if (built_in == variable.decorations.builtin) {
return true; // The built-in is on the Variable
} else if (!variable.type_struct_info || variable.type_struct_info->decorations.member_decorations.empty()) {
return false;
}
for (const auto& member : variable.type_struct_info->decorations.member_decorations) {
if (built_in != member.second.builtin) continue;
// We have confirmed the Block variable was written to, now need to confirm an access to.
// Because Built-in can't both be the input and output at the same time, we can confirm all accesses are either all
// loads or all stores.
const auto it = access_chain_map.find(variable.id);
if (it == access_chain_map.end()) {
return false;
}
const uint32_t member_index = member.first;
for (const auto access_chain_insn : it->second) {
if (access_chain_insn->Length() < 5) continue;
// We know for sure any built-in inside a block are only 1-element deep so can just check the "Indexes 0" operand
// Also no built-in we are dealing with are inside array-of-structs
const Instruction* value_def = module_state.GetConstantDef(access_chain_insn->Word(4));
if (value_def) {
const uint32_t value = value_def->GetConstantValue();
if (value == member_index) {
return true;
}
}
}
break;
}
return false;
}
bool EntryPoint::HasBuiltIn(spv::BuiltIn built_in) const {
for (const auto* variable : built_in_variables) {
if (variable->decorations.builtin == built_in) {
return true;
}
}
return false;
}
vvl::unordered_set<uint32_t> EntryPoint::GetAccessibleIds(const Module& module_state, EntryPoint& entrypoint) {
vvl::unordered_set<uint32_t> result_ids;
// For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint.
// This is important for identifying the set of shader resources actually used by an entrypoint.
vvl::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.id);
while (!worklist.empty()) {
auto worklist_id_iter = worklist.begin();
auto worklist_id = *worklist_id_iter;
worklist.erase(worklist_id_iter);
const Instruction* next_insn = module_state.FindDef(worklist_id);
if (!next_insn) {
// ID is something we didn't collect in SpirvStaticData. that's OK -- we'll stumble across all kinds of things here
// that we may not care about.
continue;
}
// Try to add to the output set
if (!result_ids.insert(worklist_id).second) {
continue; // If we already saw this id, we don't want to walk it again.
}
if (next_insn->Opcode() == spv::OpFunction) {
// Scan whole body of the function
while (++next_insn, next_insn->Opcode() != spv::OpFunctionEnd) {
const auto& insn = *next_insn;
// Build up list of accessible ID
FindPointersAndObjects(insn, worklist);
// Gather any instructions info that is only for the EntryPoint and not whole module
switch (insn.Opcode()) {
case spv::OpEmitVertex:
case spv::OpEmitStreamVertex:
entrypoint.emit_vertex_geometry = true;
break;
default:
break;
}
}
}
}
return result_ids;
}
std::vector<StageInterfaceVariable> EntryPoint::GetStageInterfaceVariables(const Module& module_state, const EntryPoint& entrypoint,
const VariableAccessMap& variable_access_map,
const DebugNameMap& debug_name_map) {
std::vector<StageInterfaceVariable> variables;
// spirv-val validates that any Input/Output used in the entrypoint is listed in as interface IDs
uint32_t word = 3; // operand Name operand starts
// Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out
// the rest of the word - so we only need to look at the last byte in the word to determine which word contains the
// terminator.
while (entrypoint.entrypoint_insn.Word(word) & 0xff000000u) {
++word;
}
++word;
vvl::unordered_set<uint32_t> unique_interface_id;
for (; word < entrypoint.entrypoint_insn.Length(); word++) {
const uint32_t interface_id = entrypoint.entrypoint_insn.Word(word);
if (unique_interface_id.insert(interface_id).second == false) {
continue; // Before SPIR-V 1.4 duplicates of these IDs are allowed
};
// guaranteed by spirv-val to be a OpVariable
const Instruction& insn = *module_state.FindDef(interface_id);
if (insn.Word(3) != spv::StorageClassInput && insn.Word(3) != spv::StorageClassOutput) {
continue; // Only checking for input/output here
}
variables.emplace_back(module_state, insn, entrypoint.stage, variable_access_map, debug_name_map);
}
return variables;
}
std::vector<ResourceInterfaceVariable> EntryPoint::GetResourceInterfaceVariables(const Module& module_state, EntryPoint& entrypoint,
const ImageAccessMap& image_access_map,
const AccessChainVariableMap& access_chain_map,
const VariableAccessMap& variable_access_map,
const DebugNameMap& debug_name_map) {
std::vector<ResourceInterfaceVariable> variables;
// Now that the accessible_ids list is known, fill in any information that can be statically known per EntryPoint
for (const auto& accessible_id : entrypoint.accessible_ids) {
const Instruction& insn = *module_state.FindDef(accessible_id);
if (insn.Opcode() != spv::OpVariable) {
continue;
}
const uint32_t storage_class = insn.StorageClass();
// These are the only storage classes that interface with a descriptor
// see vkspec.html#interfaces-resources-descset
if (storage_class == spv::StorageClassUniform || storage_class == spv::StorageClassUniformConstant ||
storage_class == spv::StorageClassStorageBuffer) {
variables.emplace_back(module_state, entrypoint, insn, image_access_map, access_chain_map, variable_access_map,
debug_name_map);
} else if (storage_class == spv::StorageClassPushConstant) {
entrypoint.push_constant_variable =
std::make_shared<PushConstantVariable>(module_state, insn, entrypoint.stage, variable_access_map, debug_name_map);
}
}
return variables;
}
static inline bool IsImageOperandsBiasOffset(uint32_t type) {
return (type & (spv::ImageOperandsBiasMask | spv::ImageOperandsConstOffsetMask | spv::ImageOperandsOffsetMask |
spv::ImageOperandsConstOffsetsMask)) != 0;
}
ImageAccess::ImageAccess(const Module& module_state, const Instruction& image_insn, const FuncParameterMap& func_parameter_map)
: image_insn(image_insn) {
const uint32_t image_opcode = image_insn.Opcode();
// Get properties from each access instruction
switch (image_opcode) {
case spv::OpImageDrefGather:
case spv::OpImageSparseDrefGather:
is_dref = true;
break;
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod: {
is_dref = true;
is_sampler_implicitLod_dref_proj = true;
is_sampler_sampled = true;
break;
}
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod: {
is_sampler_implicitLod_dref_proj = true;
is_sampler_sampled = true;
break;
}
case spv::OpImageSampleExplicitLod:
case spv::OpImageSparseSampleExplicitLod: {
is_sampler_sampled = true;
break;
}
case spv::OpImageWrite:
texel_component_count = module_state.GetTexelComponentCount(image_insn);
break;
case spv::OpImageRead:
case spv::OpImageSparseRead:
case spv::OpImageTexelPointer:
case spv::OpImageFetch:
case spv::OpImageSparseFetch:
case spv::OpImageGather:
case spv::OpImageSparseGather:
case spv::OpImageQueryLod:
case spv::OpFragmentFetchAMD:
case spv::OpFragmentMaskFetchAMD:
break;
case spv::OpImageSparseTexelsResident:
assert(false); // This is not a proper OpImage* instruction, has no OpImage operand
break;
default:
assert(false); // This is an OpImage* we are not catching
break;
}
// There is only one way to write to images, everything else is considered a read access
access_mask |= (image_opcode == spv::OpImageWrite) ? AccessBit::image_write : AccessBit::image_read;
// Find any optional Image Operands
const uint32_t image_operand_position = OpcodeImageOperandsPosition(image_opcode);
if (image_insn.Length() > image_operand_position) {
const uint32_t image_operand_word = image_insn.Word(image_operand_position);
if (is_sampler_sampled) {
if (IsImageOperandsBiasOffset(image_operand_word)) {
is_sampler_bias_offset = true;
}
if ((image_operand_word & (spv::ImageOperandsConstOffsetMask | spv::ImageOperandsOffsetMask)) != 0) {
is_sampler_offset = true;
}
}
if ((image_operand_word & spv::ImageOperandsSignExtendMask) != 0) {
is_sign_extended = true;
} else if ((image_operand_word & spv::ImageOperandsZeroExtendMask) != 0) {
is_zero_extended = true;
}
}
// Do sampler searching as seperate walk to not have the "visited" loop protection be falsly triggered
std::vector<const Instruction*> sampler_insn_to_search;
auto walk_to_variables = [this, &module_state, &func_parameter_map, &sampler_insn_to_search](const Instruction* insn,
bool sampler) {
// Protect from loops
vvl::unordered_set<uint32_t> visited;
// stack of function call sites to search through
std::queue<const Instruction*> insn_to_search;
insn_to_search.push(insn);
bool new_func = false;
// Keep walking down until get to variables
while (!insn_to_search.empty()) {
// for debugging, easier if only search one function at a time
if (new_func) {
// If any function can't resolve to a variable, by design,
// it will kill searching other functions and those before it are now invalidated.
new_func = false;
insn = insn_to_search.front();
// spirv-val makes sure functions-to-functions are not recursive
visited.clear();
}
const uint32_t current_id = insn->ResultId();
const auto visited_iter = visited.find(current_id);
if (visited_iter != visited.end()) {
valid_access = false; // Caught in a loop
return;
}
visited.insert(current_id);
switch (insn->Opcode()) {
case spv::OpSampledImage:
// If there is a OpSampledImage we will need to split off and walk down to get the sampler variable
sampler_insn_to_search.push_back(module_state.FindDef(insn->Word(4)));
insn = module_state.FindDef(insn->Word(3));
break;
case spv::OpImage:
// OpImageFetch grabs OpImage before OpLoad
insn = module_state.FindDef(insn->Word(3));
break;
case spv::OpLoad:
// Follow the pointer being loaded
insn = module_state.FindDef(insn->Word(3));
break;
case spv::OpCopyObject:
// Follow the object being copied.
insn = module_state.FindDef(insn->Word(3));
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
case spv::OpPtrAccessChain:
case spv::OpInBoundsPtrAccessChain: {
// If Image is an array (but not descriptor indexing), then need to get the index.
const Instruction* const_def = module_state.GetConstantDef(insn->Word(4));
if (const_def) {
if (sampler) {
sampler_access_chain_index = const_def->GetConstantValue();
} else {
image_access_chain_index = const_def->GetConstantValue();
}
}
insn = module_state.FindDef(insn->Word(3));
break;
}
case spv::OpFunctionParameter: {
// might be dead-end, but end searching in this Function block
insn_to_search.pop();
new_func = true;
auto it = func_parameter_map.find(insn->ResultId());
if (it != func_parameter_map.end()) {
for (uint32_t arg : it->second) {
insn_to_search.push(module_state.FindDef(arg));
}
}
break;
}
case spv::OpVariable: {
if (sampler) {
variable_sampler_insn.push_back(insn);
} else {
variable_image_insn.push_back(insn);
}
insn_to_search.pop();
new_func = true; // keep searching if more functions
break;
}
default:
// Hit invalid (or unsupported) opcode
valid_access = false;
return;
}
}
};
const uint32_t image_operand = OpcodeImageAccessPosition(image_opcode);
assert(image_operand != 0);
const Instruction* insn = module_state.FindDef(image_insn.Word(image_operand));
walk_to_variables(insn, false);
for (const auto* sampler_insn : sampler_insn_to_search) {
walk_to_variables(sampler_insn, true);
}
}
EntryPoint::EntryPoint(const Module& module_state, const Instruction& entrypoint_insn, const ImageAccessMap& image_access_map,
const AccessChainVariableMap& access_chain_map, const VariableAccessMap& variable_access_map,
const DebugNameMap& debug_name_map)
: entrypoint_insn(entrypoint_insn),
execution_model(spv::ExecutionModel(entrypoint_insn.Word(1))),
stage(static_cast<VkShaderStageFlagBits>(ExecutionModelToShaderStageFlagBits(execution_model))),
id(entrypoint_insn.Word(2)),
name(entrypoint_insn.GetAsString(3)),
execution_mode(module_state.GetExecutionModeSet(id)),
emit_vertex_geometry(false),
accessible_ids(GetAccessibleIds(module_state, *this)),
resource_interface_variables(GetResourceInterfaceVariables(module_state, *this, image_access_map, access_chain_map,
variable_access_map, debug_name_map)),
stage_interface_variables(GetStageInterfaceVariables(module_state, *this, variable_access_map, debug_name_map)) {
// Tried to just create this map in GetResourceInterfaceVariables() but ran into errors because the function is static
for (const auto& variable : resource_interface_variables) {
resource_interface_variable_map[variable.id] = &variable;
}
// After all variables are made, can get references from them
// Also can set per-Entrypoint values now
for (const auto& variable : stage_interface_variables) {
if (variable.is_per_task_nv) {
continue; // SPV_NV_mesh_shader has a PerTaskNV which is not a builtin or interface
}
has_passthrough |= variable.decorations.Has(DecorationSet::passthrough_bit);
if (variable.is_builtin) {
built_in_variables.push_back(&variable);
if (variable.storage_class == spv::StorageClassInput) {
builtin_input_components += variable.total_builtin_components;
} else if (variable.storage_class == spv::StorageClassOutput) {
builtin_output_components += variable.total_builtin_components;
}
if (IsBuiltInWritten(spv::BuiltInPrimitiveShadingRateKHR, module_state, variable, access_chain_map)) {
written_builtin_primitive_shading_rate_khr = true;
}
if (IsBuiltInWritten(spv::BuiltInViewportIndex, module_state, variable, access_chain_map)) {
written_builtin_viewport_index = true;
}
if (IsBuiltInWritten(spv::BuiltInPointSize, module_state, variable, access_chain_map)) {
written_builtin_point_size = true;
}
if (IsBuiltInWritten(spv::BuiltInLayer, module_state, variable, access_chain_map)) {
written_builtin_layer = true;
}
if (IsBuiltInWritten(spv::BuiltInViewportMaskNV, module_state, variable, access_chain_map)) {
written_builtin_viewport_mask_nv = true;
}
} else {
user_defined_interface_variables.push_back(&variable);
if (variable.base_type.StorageClass() == spv::StorageClassPhysicalStorageBuffer) {
has_physical_storage_buffer_interface = true;
}
// After creating, make lookup table
if (variable.interface_slots.empty()) {
continue; // will skip for things like PhysicalStorageBuffer
}
for (const auto& slot : variable.interface_slots) {
if (variable.storage_class == spv::StorageClassInput) {
input_interface_slots[slot] = &variable;
if (!max_input_slot || slot.slot > max_input_slot->slot) {
max_input_slot = &slot;
max_input_slot_variable = &variable;
}
} else if (variable.storage_class == spv::StorageClassOutput) {
output_interface_slots[slot] = &variable;
if (!max_output_slot || slot.slot > max_output_slot->slot) {
max_output_slot = &slot;
max_output_slot_variable = &variable;
}
// Dual source blending can use a non-index of zero here
if (slot.Location() == 0 && slot.Component() == 3 && variable.decorations.index == 0) {
has_alpha_to_coverage_variable = true;
}
}
}
}
}
}
std::optional<VkPrimitiveTopology> Module::GetTopology(const EntryPoint& entrypoint) const {
std::optional<VkPrimitiveTopology> result;
// In tessellation shaders, PointMode is separate and trumps the tessellation topology.
if (entrypoint.execution_mode.Has(ExecutionModeSet::point_mode_bit)) {
result.emplace(VK_PRIMITIVE_TOPOLOGY_POINT_LIST);
} else if (entrypoint.execution_mode.primitive_topology != VK_PRIMITIVE_TOPOLOGY_MAX_ENUM) {
result.emplace(entrypoint.execution_mode.primitive_topology);
}
return result;
}
Module::StaticData::StaticData(const Module& module_state, StatelessData* stateless_data) {
if (!module_state.valid_spirv) return;
// Parse the words first so we have instruction class objects to use
{
std::vector<uint32_t>::const_iterator it = module_state.words_.cbegin();
it += 5; // skip first 5 word of header
instructions.reserve(module_state.words_.size() * 4);
while (it != module_state.words_.cend()) {
auto new_insn = instructions.emplace_back(it);
const uint32_t opcode = new_insn.Opcode();
// Check for opcodes that would require reparsing of the words
if (opcode == spv::OpGroupDecorate || opcode == spv::OpDecorationGroup || opcode == spv::OpGroupMemberDecorate) {
if (stateless_data) {
assert(stateless_data->has_group_decoration == false); // if assert, spirv-opt didn't flatten it
stateless_data->has_group_decoration = true;
return; // no need to continue parsing
}
}
it += new_insn.Length();
}
instructions.shrink_to_fit();
}
// These have their own object class, but need entire module parsed first
std::vector<const Instruction*> entry_point_instructions;
std::vector<const Instruction*> type_struct_instructions;
std::vector<const Instruction*> image_instructions;
std::vector<const Instruction*> func_call_instructions;
// both OpDecorate and OpMemberDecorate builtin instructions
std::vector<const Instruction*> builtin_decoration_instructions;
DebugNameMap debug_name_map;
std::vector<uint32_t> store_pointer_ids;
std::vector<uint32_t> load_pointer_ids;
std::vector<uint32_t> atomic_store_pointer_ids;
std::vector<uint32_t> atomic_load_pointer_ids;
AccessChainVariableMap access_chain_map;
uint32_t last_func_id = 0;
// < Function ID, OpFunctionParameter Ids >
vvl::unordered_map<uint32_t, std::vector<uint32_t>> func_parameter_list;
// Loop through once and build up the static data
// Also process the entry points
for (const Instruction& insn : instructions) {
// Build definition list
const uint32_t result_id = insn.ResultId();
if (result_id != 0) {
definitions[result_id] = &insn;
}
const uint32_t opcode = insn.Opcode();
switch (opcode) {
// Specialization constants
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
has_specialization_constants = true;
break;
// Decorations
case spv::OpDecorate: {
const uint32_t target_id = insn.Word(1);
decorations[target_id].Add(insn.Word(2), insn.Length() > 3u ? insn.Word(3) : 0u);
decoration_inst.push_back(&insn);
if (insn.Word(2) == spv::DecorationBuiltIn) {
builtin_decoration_instructions.push_back(&insn);
} else if (insn.Word(2) == spv::DecorationSpecId) {
id_to_spec_id[target_id] = insn.Word(3);
}
} break;
case spv::OpMemberDecorate: {
const uint32_t target_id = insn.Word(1);
const uint32_t member_index = insn.Word(2);
decorations[target_id].member_decorations[member_index].Add(insn.Word(3), insn.Length() > 4u ? insn.Word(4) : 0u);
member_decoration_inst.push_back(&insn);
if (insn.Word(3) == spv::DecorationBuiltIn) {
builtin_decoration_instructions.push_back(&insn);
}
} break;
case spv::OpCapability:
capability_list.push_back(static_cast<spv::Capability>(insn.Word(1)));
// Cache frequently checked capabilities
if (capability_list.back() == spv::CapabilityRuntimeDescriptorArray) {
has_capability_runtime_descriptor_array = true;
}
break;
case spv::OpVariable:
variable_inst.push_back(&insn);
break;
case spv::OpEmitStreamVertex:
case spv::OpEndStreamPrimitive:
if (stateless_data) {
stateless_data->transform_feedback_stream_inst.push_back(&insn);
}
break;
// Execution Mode
case spv::OpExecutionMode:
case spv::OpExecutionModeId: {
execution_modes[insn.Word(1)].Add(insn);
// Some OpExecutionModeId will have IDs after that need the entire module parsed first,
if (stateless_data && opcode == spv::OpExecutionModeId) {
stateless_data->execution_mode_id_inst.push_back(&insn);
}
} break;
// Listed from vkspec.html#ray-tracing-repack
case spv::OpTraceRayKHR:
case spv::OpTraceRayMotionNV:
case spv::OpReportIntersectionKHR:
case spv::OpExecuteCallableKHR:
if (stateless_data) {
stateless_data->has_invocation_repack_instruction = true;
}
break;
case spv::OpExtInstWithForwardRefsKHR:
if (stateless_data) {
stateless_data->has_ext_inst_with_forward_refs = true;
}
break;
// Entry points
case spv::OpEntryPoint: {
entry_point_instructions.push_back(&insn);
break;
}
// Shader Tile image instructions
case spv::OpDepthAttachmentReadEXT:
has_shader_tile_image_depth_read = true;
break;
case spv::OpStencilAttachmentReadEXT:
has_shader_tile_image_stencil_read = true;
break;
case spv::OpColorAttachmentReadEXT:
has_shader_tile_image_color_read = true;
break;
// Access operations
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageDrefGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageRead:
case spv::OpImageSparseRead:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageQueryLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpFragmentFetchAMD:
case spv::OpFragmentMaskFetchAMD: {
image_instructions.push_back(&insn);
break;
}
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
// from spec "return properties of the image descriptor that would be accessed. The image itself is not accessed."
break;
case spv::OpStore: {
store_pointer_ids.emplace_back(insn.Word(1)); // object id or AccessChain id
break;
}
case spv::OpImageWrite: {
image_instructions.push_back(&insn);
image_write_load_id_map.emplace(&insn, insn.Word(1));
break;
}
case spv::OpLoad: {
load_pointer_ids.emplace_back(insn.Word(3)); // object id or AccessChain id
break;
}
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain: {
const uint32_t base_id = insn.Word(3);
access_chain_map[base_id].push_back(&insn);
break;
}
case spv::OpImageTexelPointer: {
// All Image atomics go through here.
// Currrently only interested if used/accessed
image_instructions.push_back(&insn);
break;
}
case spv::OpTypeStruct: {
type_struct_instructions.push_back(&insn);
break;
}
case spv::OpReadClockKHR: {
if (stateless_data) {
stateless_data->read_clock_inst.push_back(&insn);
}
break;
}
case spv::OpTypeCooperativeMatrixNV:
case spv::OpCooperativeMatrixMulAddNV:
case spv::OpTypeCooperativeMatrixKHR:
case spv::OpCooperativeMatrixLoadKHR:
case spv::OpCooperativeMatrixStoreKHR:
case spv::OpCooperativeMatrixLengthKHR:
case spv::OpCooperativeMatrixMulAddKHR: {
cooperative_matrix_inst.push_back(&insn);
break;
}
case spv::OpTypeCooperativeVectorNV:
case spv::OpCooperativeVectorLoadNV:
case spv::OpCooperativeVectorStoreNV:
case spv::OpCooperativeVectorMatrixMulNV:
case spv::OpCooperativeVectorMatrixMulAddNV:
case spv::OpCooperativeVectorReduceSumAccumulateNV:
case spv::OpCooperativeVectorOuterProductAccumulateNV: {
cooperative_vector_inst.push_back(&insn);
break;
}
case spv::OpExtInst: {
if (insn.Word(4) == GLSLstd450InterpolateAtSample) {
uses_interpolate_at_sample = true;
}
break;
}
case spv::OpName: {
debug_name_map[insn.Word(1)] = &insn;
break;
}
case spv::OpLine:
case spv::OpSource: {
using_legacy_debug_info = true;
break;
}
case spv::OpExtInstImport: {
if (strcmp(insn.GetAsString(2), "NonSemantic.Shader.DebugInfo.100") == 0) {
shader_debug_info_set_id = insn.ResultId();
}
break;
}
// Build up Function mappings
case spv::OpFunction:
last_func_id = insn.ResultId();
func_parameter_list[last_func_id]; // create empty vector list
break;
case spv::OpFunctionParameter:
func_parameter_list[last_func_id].push_back(insn.ResultId());
break;
case spv::OpFunctionCall:
func_call_instructions.push_back(&insn);
break;
default:
if (AtomicOperation(opcode)) {
if (stateless_data) {
stateless_data->atomic_inst.push_back(&insn);
}
if (opcode == spv::OpAtomicStore) {
atomic_store_pointer_ids.emplace_back(insn.Operand(0));
} else {
atomic_load_pointer_ids.emplace_back(insn.Operand(0));
}
}
if (GroupOperation(opcode)) {
if (stateless_data) {
stateless_data->group_inst.push_back(&insn);
}
}
// We don't care about any other defs for now.
break;
}
}
FuncParameterMap func_parameter_map;
const uint32_t first_arg_word = 4;
for (const auto& func_def : func_parameter_list) {
const uint32_t func_id = func_def.first;
for (const Instruction* func_call : func_call_instructions) {
if (func_call->Word(3) != func_id) {
continue;
}
// guaranteed number of args/params is same
const uint32_t arg_count = (func_call->Length() - first_arg_word);
for (uint32_t i = 0; i < arg_count; i++) {
const uint32_t arg = func_call->Word(first_arg_word + i);
const uint32_t param = func_def.second[i];
func_parameter_map[param].push_back(arg);
}
}
}
// parsing, take every load/store find the variable it touches
// (image access are done later)
VariableAccessMap variable_access_map;
auto mark_variable_access = [&module_state, &variable_access_map](const std::vector<uint32_t>& ids, uint32_t access) {
for (const auto& object_id : ids) {
uint32_t variable_id = object_id;
const Instruction* insn = module_state.FindDef(object_id);
while (insn) {
switch (insn->Opcode()) {
case spv::OpImageTexelPointer: // used for atomics
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
case spv::OpCopyObject:
variable_id = insn->Word(3);
insn = module_state.FindDef(variable_id);
break;
case spv::OpVariable:
variable_access_map[variable_id] |= access;
insn = nullptr;
break;
default:
insn = nullptr;
break;
}
}
}
};
mark_variable_access(store_pointer_ids, AccessBit::write);
mark_variable_access(load_pointer_ids, AccessBit::read);
mark_variable_access(atomic_store_pointer_ids, AccessBit::atomic_write);
mark_variable_access(atomic_load_pointer_ids, AccessBit::atomic_read);
for (const Instruction* decoration_inst : builtin_decoration_instructions) {
const uint32_t built_in = decoration_inst->GetBuiltIn();
if (built_in == spv::BuiltInLayer) {
has_builtin_layer = true;
} else if (built_in == spv::BuiltInFullyCoveredEXT) {
if (stateless_data) {
stateless_data->has_builtin_fully_covered = true;
}
} else if (built_in == spv::BuiltInWorkgroupSize) {
has_builtin_workgroup_size = true;
builtin_workgroup_size_id = decoration_inst->Word(1);
} else if (built_in == spv::BuiltInDrawIndex) {
has_builtin_draw_index = true;
}
}
// Need to get struct first and EntryPoint's variables depend on it
for (const auto& insn : type_struct_instructions) {
auto new_struct = type_structs.emplace_back(std::make_shared<TypeStructInfo>(module_state, *insn));
type_struct_map[new_struct->id] = new_struct;
}
// Need to get ImageAccesses as EntryPoint's variables depend on it
std::vector<std::shared_ptr<ImageAccess>> image_accesses;
ImageAccessMap image_access_map;
for (const auto& insn : image_instructions) {
auto new_access = image_accesses.emplace_back(std::make_shared<ImageAccess>(module_state, *insn, func_parameter_map));
if (!new_access->variable_image_insn.empty() && new_access->valid_access) {
for (const Instruction* image_insn : new_access->variable_image_insn) {
image_access_map[image_insn->ResultId()].push_back(new_access);
}
}
}
// Need to build the definitions table for FindDef before looking for which instructions each entry point uses
for (const auto& insn : entry_point_instructions) {
entry_points.emplace_back(std::make_shared<EntryPoint>(module_state, *insn, image_access_map, access_chain_map,
variable_access_map, debug_name_map));
}
}
std::shared_ptr<const TypeStructInfo> Module::GetTypeStructInfo(const Instruction* insn) const {
while (true) {
if (insn->Opcode() == spv::OpVariable) {
insn = FindDef(insn->TypeId());
} else if (insn->Opcode() == spv::OpTypePointer) {
insn = FindDef(insn->Word(3));
} else if (insn->IsArray()) {
insn = FindDef(insn->Word(2));
} else if (insn->Opcode() == spv::OpTypeStruct) {
// return the actual execution modes for this id, or a default empty set.
const auto it = static_data_.type_struct_map.find(insn->ResultId());
return (it != static_data_.type_struct_map.end()) ? it->second : nullptr;
} else {
return nullptr;
}
}
}
std::string Module::GetDecorations(uint32_t id) const {
std::ostringstream ss;
for (const spirv::Instruction& insn : GetInstructions()) {
if (insn.Opcode() == spv::OpFunction) {
break; // decorations are found before first function block
} else if (insn.Opcode() == spv::OpDecorate && insn.Word(1) == id) {
ss << " " << string_SpvDecoration(insn.Word(2));
}
}
return ss.str();
}
std::string Module::GetName(uint32_t id) const {
for (const spirv::Instruction& insn : GetInstructions()) {
if (insn.Opcode() == spv::OpFunction) {
break; // names are found before first function block
} else if (insn.Opcode() == spv::OpName && insn.Word(1) == id) {
return insn.GetAsString(2);
}
}
return "";
}
std::string Module::GetMemberName(uint32_t id, uint32_t member_index) const {
for (const spirv::Instruction& insn : GetInstructions()) {
if (insn.Opcode() == spv::OpFunction) {
break; // names are found before first function block
} else if (insn.Opcode() == spv::OpMemberName && insn.Word(1) == id && insn.Word(2) == member_index) {
return insn.GetAsString(3);
}
}
return "";
}
// Used to pretty-print the OpType* for an error message
void Module::DescribeTypeInner(std::ostringstream& ss, uint32_t type, uint32_t indent) const {
const Instruction* insn = FindDef(type);
auto indent_by = [&ss](uint32_t i) {
for (uint32_t x = 0; x < i; x++) {
ss << '\t';
}
};
switch (insn->Opcode()) {
case spv::OpTypeBool:
ss << "bool";
break;
case spv::OpTypeInt:
ss << (insn->Word(3) ? 's' : 'u') << "int" << insn->Word(2);
break;
case spv::OpTypeFloat:
ss << "float" << insn->Word(2);
break;
case spv::OpTypeVector:
ss << "vec" << insn->Word(3) << " of ";
DescribeTypeInner(ss, insn->Word(2), indent);
break;
case spv::OpTypeMatrix:
ss << "mat" << insn->Word(3) << " of ";
DescribeTypeInner(ss, insn->Word(2), indent);
break;
case spv::OpTypeArray:
ss << "array[" << GetConstantValueById(insn->Word(3)) << "] of ";
DescribeTypeInner(ss, insn->Word(2), indent);
break;
case spv::OpTypeRuntimeArray:
ss << "runtime array[] of ";
DescribeTypeInner(ss, insn->Word(2), indent);
break;
case spv::OpTypePointer:
ss << "pointer to " << string_SpvStorageClass(insn->Word(2)) << " -> ";
DescribeTypeInner(ss, insn->Word(3), indent);
break;
case spv::OpTypeStruct: {
ss << "struct of {\n";
indent++;
for (uint32_t i = 2; i < insn->Length(); i++) {
indent_by(indent);
ss << "- ";
DescribeTypeInner(ss, insn->Word(i), indent);
auto name = GetMemberName(type, i - 2);
if (!name.empty()) {
ss << " \"" << name << "\"";
}
ss << '\n';
}
indent--;
indent_by(indent);
ss << '}';
auto name = GetName(type);
if (!name.empty()) {
ss << " \"" << name << "\"";
}
break;
}
case spv::OpTypeSampler:
ss << "sampler";
break;
case spv::OpTypeSampledImage:
ss << "sampler+";
DescribeTypeInner(ss, insn->Word(2), indent);
break;
case spv::OpTypeImage:
ss << "image(dim=" << insn->Word(3) << ", sampled=" << insn->Word(7) << ")";
break;
case spv::OpTypeAccelerationStructureNV:
ss << "accelerationStruture";
break;
default:
ss << "unknown type";
break;
}
}
std::string Module::DescribeType(uint32_t type) const {
std::ostringstream ss;
DescribeTypeInner(ss, type, 0);
return ss.str();
}
std::string Module::DescribeVariable(uint32_t id) const {
std::ostringstream ss;
auto name = GetName(id);
if (!name.empty()) {
ss << "Variable \"" << name << "\"";
auto decorations = GetDecorations(id);
if (!decorations.empty()) {
ss << " (Decorations:" << decorations << ')';
}
ss << '\n';
}
return ss.str();
}
std::string Module::DescribeInstruction(const Instruction& error_insn) const {
if (static_data_.shader_debug_info_set_id == 0 && !static_data_.using_legacy_debug_info) {
return error_insn.Describe();
}
const Instruction* last_line_inst = nullptr;
for (const auto& insn : static_data_.instructions) {
const uint32_t opcode = insn.Opcode();
if (opcode == spv::OpExtInst && insn.Word(3) == static_data_.shader_debug_info_set_id &&
insn.Word(4) == NonSemanticShaderDebugInfo100DebugLine) {
last_line_inst = &insn;
} else if (opcode == spv::OpLine) {
last_line_inst = &insn;
} else if (opcode == spv::OpFunctionEnd) {
last_line_inst = nullptr; // debug lines can't cross functions boundaries
}
if (insn == error_insn) {
break;
}
}
if (!last_line_inst) {
return error_insn.Describe(); // can't find a suitable line above instruciton
}
std::ostringstream ss;
ss << error_insn.Describe();
ss << "\nError occurred at ";
GetShaderSourceInfo(ss, words_, *last_line_inst);
return ss.str();
}
std::shared_ptr<const EntryPoint> Module::FindEntrypoint(char const* name, VkShaderStageFlagBits stageBits) const {
if (!name) return nullptr;
for (const auto& entry_point : static_data_.entry_points) {
if (entry_point->name.compare(name) == 0 && entry_point->stage == stageBits) {
return entry_point;
}
}
return nullptr;
}
// Because the following is legal, need the entry point
// OpEntryPoint GLCompute %main "name_a"
// OpEntryPoint GLCompute %main "name_b"
// Assumes shader module contains no spec constants used to set the local size values
LocalSize Module::FindLocalSize(const EntryPoint& entrypoint) const {
LocalSize local_size;
// "If an object is decorated with the WorkgroupSize decoration, this takes precedence over any LocalSize or LocalSizeId
// execution mode."
if (static_data_.has_builtin_workgroup_size) {
const Instruction* composite_def = FindDef(static_data_.builtin_workgroup_size_id);
if (composite_def->Opcode() == spv::OpConstantComposite) {
// VUID-WorkgroupSize-WorkgroupSize-04427 makes sure this is a OpTypeVector of int32
local_size.x = GetConstantValueById(composite_def->Word(3));
local_size.y = GetConstantValueById(composite_def->Word(4));
local_size.z = GetConstantValueById(composite_def->Word(5));
return local_size;
}
}
if (entrypoint.execution_mode.Has(ExecutionModeSet::local_size_bit)) {
local_size = entrypoint.execution_mode.local_size;
} else if (entrypoint.execution_mode.Has(ExecutionModeSet::local_size_id_bit)) {
// Uses ExecutionModeLocalSizeId so need to resolve ID value
local_size.x = GetConstantValueById(entrypoint.execution_mode.local_size.x);
local_size.y = GetConstantValueById(entrypoint.execution_mode.local_size.y);
local_size.z = GetConstantValueById(entrypoint.execution_mode.local_size.z);
}
return local_size;
}
uint32_t Module::CalculateWorkgroupSharedMemory() const {
uint32_t total_size = 0;
// when using WorkgroupMemoryExplicitLayoutKHR
// either all or none the structs are decorated with Block,
// if using block, all must decorated with Aliased.
// In this case we want to find the MAX not ADD the block sizes
bool find_max_block = false;
for (const Instruction* insn : static_data_.variable_inst) {
// StorageClass Workgroup is shared memory
if (insn->StorageClass() == spv::StorageClassWorkgroup) {
if (GetDecorationSet(insn->Word(2)).Has(DecorationSet::aliased_bit)) {
find_max_block = true;
}
const Instruction* type = GetVariablePointerType(*insn);
// structs might have an offset padding
const uint32_t variable_shared_size =
(type->Opcode() == spv::OpTypeStruct) ? GetTypeStructInfo(type)->GetSize(*this).size : GetTypeBytesSize(type);
if (find_max_block) {
total_size = std::max(total_size, variable_shared_size);
} else {
total_size += variable_shared_size;
}
}
}
return total_size;
}
uint32_t Module::CalculateTaskPayloadMemory() const {
uint32_t total_size = 0;
for (const Instruction* insn : static_data_.variable_inst) {
if (insn->StorageClass() == spv::StorageClassTaskPayloadWorkgroupEXT) {
const Instruction* type = GetVariablePointerType(*insn);
const uint32_t variable_shared_size = GetTypeBytesSize(type);
total_size += variable_shared_size;
}
}
return total_size;
}
// If the instruction at |id| is a OpConstant or copy of a constant, returns the instruction
// Cases such as runtime arrays, will not find a constant and return NULL
const Instruction* Module::GetConstantDef(uint32_t id) const {
const Instruction* value = FindDef(id);
// If id is a copy, see where it was copied from
if (value && ((value->Opcode() == spv::OpCopyObject) || (value->Opcode() == spv::OpCopyLogical))) {
id = value->Word(3);
value = FindDef(id);
}
if (value && (value->Opcode() == spv::OpConstant)) {
return value;
}
return nullptr;
}
// Returns the constant value described by the instruction at |id|
// Caller ensures there can't be a runtime array or specialization constants
uint32_t Module::GetConstantValueById(uint32_t id) const {
const Instruction* value = GetConstantDef(id);
// If this hit, most likley a runtime array (probably from VK_EXT_descriptor_indexing)
// or unhandled specialization constants
// Caller needs to call GetConstantDef() and check if null
if (!value) {
// TODO - still not fixed
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/6293
return 1;
}
return value->GetConstantValue();
}
// Returns the number of Location slots used for a given ID reference to a OpType*
uint32_t Module::GetLocationsConsumedByType(uint32_t type) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetLocationsConsumedByType(insn->Word(3));
case spv::OpTypeArray: {
// Spec: "If an array of size n and each element takes m locations,
// it will be assigned m × n consecutive locations starting with the location specified"
const uint32_t locations = GetLocationsConsumedByType(insn->Word(2));
const uint32_t array_size = GetConstantValueById(insn->Word(3));
return locations * array_size;
}
case spv::OpTypeMatrix: {
// Spec: "if n × m matrix, the number of locations assigned for each matrix will be the same as for an n-element array
// of m-component vectors"
const uint32_t column_type = insn->Word(2);
const uint32_t column_count = insn->Word(3);
return column_count * GetLocationsConsumedByType(column_type);
}
case spv::OpTypeVector: {
const Instruction* scalar_type = FindDef(insn->Word(2));
const uint32_t width = scalar_type->GetByteWidth();
const uint32_t vector_length = insn->Word(3);
const uint32_t components = width * vector_length;
// Locations are 128-bit wide (4 components)
// 3- and 4-component vectors of 64 bit types require two.
return (components / 5) + 1;
}
case spv::OpTypeStruct: {
uint32_t sum = 0;
// first 2 words of struct are not the elements to check
for (uint32_t i = 2; i < insn->Length(); i++) {
sum += GetLocationsConsumedByType(insn->Word(i));
}
return sum;
}
default:
// Scalars (Int, Float, Bool, etc) are are just 1.
return 1;
}
}
// Returns the number of Components slots used for a given ID reference to a OpType*
uint32_t Module::GetComponentsConsumedByType(uint32_t type) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetComponentsConsumedByType(insn->Word(3));
case spv::OpTypeArray:
// Skip array as each array element is a whole new Location and we care only about the base type
// ex. vec3[5] will only return 3
return GetComponentsConsumedByType(insn->Word(2));
case spv::OpTypeMatrix: {
const uint32_t column_type = insn->Word(2);
const uint32_t column_count = insn->Word(3);
return column_count * GetComponentsConsumedByType(column_type);
}
case spv::OpTypeVector: {
const Instruction* scalar_type = FindDef(insn->Word(2));
const uint32_t width = scalar_type->GetByteWidth();
const uint32_t vector_length = insn->Word(3);
return width * vector_length; // One component is 32-bit
}
case spv::OpTypeStruct: {
uint32_t sum = 0;
// first 2 words of struct are not the elements to check
for (uint32_t i = 2; i < insn->Length(); i++) {
sum += GetComponentsConsumedByType(insn->Word(i));
}
return sum;
}
default:
// Int, Float, Bool, etc
return insn->GetByteWidth();
}
}
// characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above.
// also used for input attachments, as we statically know their format.
NumericType Module::GetNumericType(uint32_t type) const {
const Instruction* insn = FindDef(type);
switch (insn->Opcode()) {
case spv::OpTypeInt:
return insn->Word(3) ? NumericTypeSint : NumericTypeUint;
case spv::OpTypeFloat:
return NumericTypeFloat;
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeImage:
return GetNumericType(insn->Word(2));
case spv::OpTypePointer:
return GetNumericType(insn->Word(3));
default:
return NumericTypeUnknown;
}
}
bool Module::HasRuntimeArray(uint32_t type_id) const {
const Instruction* type = FindDef(type_id);
if (!type) {
return false;
}
while (type->IsArray() || type->Opcode() == spv::OpTypePointer || type->Opcode() == spv::OpTypeSampledImage) {
if (type->Opcode() == spv::OpTypeRuntimeArray) {
return true;
}
const uint32_t next_word = (type->Opcode() == spv::OpTypePointer) ? 3 : 2;
type = FindDef(type->Word(next_word));
}
return false;
}
std::string InterfaceSlot::Describe() const {
std::stringstream msg;
msg << "Location = " << Location() << " | Component = " << Component() << " | Type = " << string_SpvOpcode(type) << " "
<< bit_width << " bits";
return msg.str();
}
uint32_t GetFormatType(VkFormat format) {
if (vkuFormatIsSINT(format)) return NumericTypeSint;
if (vkuFormatIsUINT(format)) return NumericTypeUint;
// Formats such as VK_FORMAT_D16_UNORM_S8_UINT are both
if (vkuFormatIsDepthAndStencil(format)) return NumericTypeFloat | NumericTypeUint;
if (format == VK_FORMAT_UNDEFINED) return NumericTypeUnknown;
// everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader.
return NumericTypeFloat;
}
char const* string_NumericType(uint32_t type) {
if (type == NumericTypeSint) return "SINT";
if (type == NumericTypeUint) return "UINT";
if (type == NumericTypeFloat) return "FLOAT";
return "(none)";
}
const char* VariableBase::FindDebugName(const VariableBase& variable, const DebugNameMap& debug_name_map) {
const char* name = "";
// We prefer to always get the variable name if it has it
auto name_it = debug_name_map.find(variable.id);
if (name_it != debug_name_map.end()) {
name = name_it->second->GetAsString(2);
}
// if the shader looks like
// layout(binding=0) uniform StructName { vec4 x };
// The variable name will be an empty string, for this, grab the struct name instead
if (!name[0] && variable.type_struct_info) {
name_it = debug_name_map.find(variable.type_struct_info->id);
if (name_it != debug_name_map.end()) {
name = name_it->second->GetAsString(2);
}
}
return name;
}
VariableBase::VariableBase(const Module& module_state, const Instruction& insn, VkShaderStageFlagBits stage,
const VariableAccessMap& variable_access_map, const DebugNameMap& debug_name_map)
: id(insn.ResultId()),
type_id(insn.TypeId()),
storage_class(static_cast<spv::StorageClass>(insn.Word(3))),
decorations(module_state.GetDecorationSet(id)),
type_struct_info(module_state.GetTypeStructInfo(&insn)),
access_mask(AccessBit::empty),
stage(stage),
debug_name(FindDebugName(*this, debug_name_map)) {
assert(insn.Opcode() == spv::OpVariable);
// Finding the access of an image is more complex we will set that using the ImageAccessMap later
// (Also there are no images for push constant or stage interface variables)
auto access_it = variable_access_map.find(id);
if (access_it != variable_access_map.end()) {
access_mask = access_it->second;
}
}
std::string VariableBase::DescribeDescriptor() const {
std::ostringstream ss;
ss << "[Set " << decorations.set << ", Binding " << decorations.binding;
if (!debug_name.empty()) {
ss << ", variable \"" << debug_name << "\"";
}
ss << "]";
return ss.str();
}
bool StageInterfaceVariable::IsPerTaskNV(const StageInterfaceVariable& variable) {
// will always be in a struct member
if (variable.type_struct_info &&
(variable.stage == VK_SHADER_STAGE_MESH_BIT_EXT || variable.stage == VK_SHADER_STAGE_TASK_BIT_EXT)) {
return variable.type_struct_info->decorations.HasInMember(DecorationSet::per_task_nv);
}
return false;
}
// Some cases there is an array that is there to be "per-vertex" (or related)
// We want to remove this as it is not part of the Location caluclation or true type of variable
bool StageInterfaceVariable::IsArrayInterface(const StageInterfaceVariable& variable) {
switch (variable.stage) {
case VK_SHADER_STAGE_GEOMETRY_BIT:
return variable.storage_class == spv::StorageClassInput;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
return !variable.is_patch;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
return !variable.is_patch && (variable.storage_class == spv::StorageClassInput);
case VK_SHADER_STAGE_FRAGMENT_BIT:
return variable.is_per_vertex && (variable.storage_class == spv::StorageClassInput);
case VK_SHADER_STAGE_MESH_BIT_EXT:
return !variable.is_per_task_nv && (variable.storage_class == spv::StorageClassOutput);
default:
break;
}
return false;
}
const Instruction& StageInterfaceVariable::FindBaseType(StageInterfaceVariable& variable, const Module& module_state) {
// base type is always just grabbing the type of the OpTypePointer tied to the variables
// This is allowed only here because interface variables are never Phyiscal pointers
const Instruction* base_type = module_state.FindDef(module_state.FindDef(variable.type_id)->Word(3));
// Strip away the first array, if any, if special interface array
// Most times won't be anything to strip
if (variable.is_array_interface && base_type->IsArray()) {
const uint32_t type_id = base_type->Word(2);
base_type = module_state.FindDef(type_id);
}
while (base_type->Opcode() == spv::OpTypeArray) {
variable.array_size *= module_state.GetConstantValueById(base_type->Word(3));
base_type = module_state.FindDef(base_type->Word(2));
}
return *base_type;
}
bool StageInterfaceVariable::IsBuiltin(const StageInterfaceVariable& variable, const Module& module_state) {
const auto decoration_set = module_state.GetDecorationSet(variable.id);
// If OpTypeStruct, will grab it's own decoration set
return decoration_set.HasAnyBuiltIn() || (variable.type_struct_info && variable.type_struct_info->decorations.HasAnyBuiltIn());
}
// This logic is based off assumption that the Location are implicit and not member decorations
// when we have structs-of-structs, only the top struct can have explicit locations given
static uint32_t GetStructInterfaceSlots(const Module& module_state, std::shared_ptr<const TypeStructInfo> type_struct_info,
std::vector<InterfaceSlot>& slots, uint32_t starting_location) {
uint32_t locations_added = 0;
for (uint32_t i = 0; i < type_struct_info->length; i++) {
const auto& member = type_struct_info->members[i];
// Keep walking down nested structs
if (member.type_struct_info) {
const uint32_t array_size = module_state.GetFlattenArraySize(*member.insn);
for (uint32_t j = 0; j < array_size; j++) {
locations_added +=
GetStructInterfaceSlots(module_state, member.type_struct_info, slots, starting_location + locations_added);
}
continue;
}
const uint32_t member_id = member.id;
const uint32_t components = module_state.GetComponentsConsumedByType(member_id);
const uint32_t locations = module_state.GetLocationsConsumedByType(member_id);
// Info needed to test type matching later
const Instruction* numerical_type = module_state.GetBaseTypeInstruction(member_id);
const uint32_t numerical_type_opcode = numerical_type->Opcode();
const uint32_t numerical_type_width = numerical_type->GetBitWidth();
for (uint32_t j = 0; j < locations; j++) {
for (uint32_t k = 0; k < components; k++) {
slots.emplace_back(starting_location + locations_added, k, numerical_type_opcode, numerical_type_width);
}
locations_added++;
}
}
return locations_added;
}
std::vector<InterfaceSlot> StageInterfaceVariable::GetInterfaceSlots(StageInterfaceVariable& variable, const Module& module_state) {
std::vector<InterfaceSlot> slots;
if (variable.is_builtin || variable.is_per_task_nv) {
// SPV_NV_mesh_shader has a PerTaskNV which is not a builtin or interface
return slots;
}
if (variable.base_type.StorageClass() == spv::StorageClassPhysicalStorageBuffer) {
// PhysicalStorageBuffer interfaces not supported (https://gitlab.khronos.org/spirv/SPIR-V/-/issues/779)
return slots;
}
if (variable.type_struct_info) {
// Structs has two options being labeled
// 1. The block is given a Location, need to walk though and add up starting for that value
// 2. The block is NOT given a Location, each member has dedicated decoration
const bool block_decorated_with_location = variable.decorations.location != kInvalidValue;
if (block_decorated_with_location) {
// In case of option 1, need to keep track as we go
uint32_t base_location = variable.decorations.location;
for (const auto& members : variable.type_struct_info->members) {
const uint32_t member_id = members.id;
const uint32_t components = module_state.GetComponentsConsumedByType(member_id);
// Info needed to test type matching later
const Instruction* numerical_type = module_state.GetBaseTypeInstruction(member_id);
ASSERT_AND_CONTINUE(numerical_type);
const uint32_t numerical_type_opcode = numerical_type->Opcode();
// TODO - Handle nested structs
if (numerical_type_opcode == spv::OpTypeStruct) {
variable.nested_struct = true;
break;
}
const uint32_t numerical_type_width = numerical_type->GetBitWidth();
for (uint32_t j = 0; j < components; j++) {
slots.emplace_back(base_location, j, numerical_type_opcode, numerical_type_width);
}
base_location++; // If using, each members starts a new Location
}
} else {
// Option 2
for (uint32_t i = 0; i < variable.type_struct_info->length; i++) {
const auto& member = variable.type_struct_info->members[i];
const uint32_t member_id = member.id;
// Location/Components cant be decorated in nested structs, so no need to keep checking further
// The spec says all or non of the member variables must have Location
const auto member_decoration = variable.type_struct_info->decorations.member_decorations.at(i);
uint32_t location = member_decoration.location;
const uint32_t starting_component = member_decoration.component;
if (member.type_struct_info) {
const uint32_t array_size = module_state.GetFlattenArraySize(*member.insn);
for (uint32_t j = 0; j < array_size; j++) {
location += GetStructInterfaceSlots(module_state, member.type_struct_info, slots, location);
}
} else {
const uint32_t components = module_state.GetComponentsConsumedByType(member_id);
// Info needed to test type matching later
const Instruction* numerical_type = module_state.GetBaseTypeInstruction(member_id);
const uint32_t numerical_type_opcode = numerical_type->Opcode();
const uint32_t numerical_type_width = numerical_type->GetBitWidth();
for (uint32_t j = 0; j < components; j++) {
slots.emplace_back(location, starting_component + j, numerical_type_opcode, numerical_type_width);
}
}
}
}
} else {
uint32_t locations = 0;
// Will have array peeled off already
const uint32_t type_id = variable.base_type.ResultId();
locations = module_state.GetLocationsConsumedByType(type_id);
const uint32_t components = module_state.GetComponentsConsumedByType(type_id);
// Info needed to test type matching later
const Instruction* numerical_type = module_state.GetBaseTypeInstruction(type_id);
const uint32_t numerical_type_opcode = numerical_type->Opcode();
const uint32_t numerical_type_width = numerical_type->GetBitWidth();
const uint32_t starting_location = variable.decorations.location;
const uint32_t starting_component = variable.decorations.component;
for (uint32_t array_index = 0; array_index < variable.array_size; array_index++) {
// offet into array if there is one
const uint32_t location = starting_location + (locations * array_index);
for (uint32_t component = 0; component < components; component++) {
slots.emplace_back(location, component + starting_component, numerical_type_opcode, numerical_type_width);
}
}
}
return slots;
}
std::vector<uint32_t> StageInterfaceVariable::GetBuiltinBlock(const StageInterfaceVariable& variable, const Module& module_state) {
// Built-in Location slot will always be [zero, size]
std::vector<uint32_t> slots;
// Only check block built-ins - many builtin are non-block and not used between shaders
if (!variable.is_builtin || !variable.type_struct_info) {
return slots;
}
const auto& decoration_set = variable.type_struct_info->decorations;
if (decoration_set.Has(DecorationSet::block_bit)) {
for (uint32_t i = 0; i < variable.type_struct_info->length; i++) {
slots.push_back(decoration_set.member_decorations.at(i).builtin);
}
}
return slots;
}
uint32_t StageInterfaceVariable::GetBuiltinComponents(const StageInterfaceVariable& variable, const Module& module_state) {
uint32_t count = 0;
if (!variable.is_builtin) {
return count;
}
if (variable.type_struct_info) {
for (const auto& members : variable.type_struct_info->members) {
count += module_state.GetComponentsConsumedByType(members.id);
}
} else {
const uint32_t base_type_id = variable.base_type.ResultId();
count += module_state.GetComponentsConsumedByType(base_type_id);
}
return count;
}
StageInterfaceVariable::StageInterfaceVariable(const Module& module_state, const Instruction& insn, VkShaderStageFlagBits stage,
const VariableAccessMap& variable_access_map, const DebugNameMap& debug_name_map)
: VariableBase(module_state, insn, stage, variable_access_map, debug_name_map),
is_patch(decorations.Has(DecorationSet::patch_bit)),
is_per_vertex(decorations.Has(DecorationSet::per_vertex_bit)),
is_per_task_nv(IsPerTaskNV(*this)),
is_array_interface(IsArrayInterface(*this)),
base_type(FindBaseType(*this, module_state)),
is_builtin(IsBuiltin(*this, module_state)),
nested_struct(false),
interface_slots(GetInterfaceSlots(*this, module_state)),
builtin_block(GetBuiltinBlock(*this, module_state)),
total_builtin_components(GetBuiltinComponents(*this, module_state)) {}
const Instruction& ResourceInterfaceVariable::FindBaseType(ResourceInterfaceVariable& variable, const Module& module_state) {
// Takes a OpVariable and looks at the the descriptor type it uses. This will find things such as if the variable is writable,
// image atomic operation, matching images to samplers, etc
const Instruction* type = module_state.FindDef(variable.type_id);
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type->IsArray() || type->Opcode() == spv::OpTypePointer || type->Opcode() == spv::OpTypeSampledImage) {
if (type->IsArray() || type->Opcode() == spv::OpTypeSampledImage) {
// currently just tracks 1D arrays
if (type->Opcode() == spv::OpTypeArray && variable.array_length == 0) {
variable.array_length = module_state.GetConstantValueById(type->Word(3));
} else if (type->Opcode() == spv::OpTypeRuntimeArray) {
variable.array_length = spirv::kRuntimeArray;
}
if (type->Opcode() == spv::OpTypeSampledImage) {
variable.is_type_sampled_image = true;
}
type = module_state.FindDef(type->Word(2)); // Element type
} else {
type = module_state.FindDef(type->Word(3)); // Pointer type
}
}
return *type;
}
bool ResourceInterfaceVariable::IsStorageBuffer(const ResourceInterfaceVariable& variable) {
// before VK_KHR_storage_buffer_storage_class Storage Buffer were a Uniform storage class
const bool physical_storage_buffer = variable.storage_class == spv::StorageClassPhysicalStorageBuffer;
const bool storage_buffer = variable.storage_class == spv::StorageClassStorageBuffer;
const bool uniform = variable.storage_class == spv::StorageClassUniform;
// Block decorations are always on the struct of the variable
const bool buffer_block =
variable.type_struct_info && variable.type_struct_info->decorations.Has(DecorationSet::buffer_block_bit);
const bool block = variable.type_struct_info && variable.type_struct_info->decorations.Has(DecorationSet::block_bit);
return ((uniform && buffer_block) || ((storage_buffer || physical_storage_buffer) && block));
}
ResourceInterfaceVariable::ResourceInterfaceVariable(const Module& module_state, const EntryPoint& entrypoint,
const Instruction& insn, const ImageAccessMap& image_access_map,
const AccessChainVariableMap& access_chain_map,
const VariableAccessMap& variable_access_map,
const DebugNameMap& debug_name_map)
: VariableBase(module_state, insn, entrypoint.stage, variable_access_map, debug_name_map),
array_length(0), // updated in FindBaseType (if array is found)
is_type_sampled_image(false),
base_type(FindBaseType(*this, module_state)),
is_runtime_descriptor_array(module_state.HasRuntimeArray(type_id)),
is_storage_buffer(IsStorageBuffer(*this)) {
// to make sure no padding in-between the struct produce noise and force same data to become a different hash
info = {}; // will be cleared with c++11 initialization
info.image_dim = base_type.FindImageDim();
info.is_image_array = base_type.IsImageArray();
info.is_multisampled = base_type.IsImageMultisampled();
// Handle anything specific to the base type
if (base_type.Opcode() == spv::OpTypeImage) {
info.image_format = CompatibleSpirvImageFormat(base_type.Word(8));
info.image_sampled_type_numeric = module_state.GetNumericType(base_type.Word(2));
info.image_sampled_type_width = (uint8_t)module_state.GetTypeBitsSize(&base_type);
// Things marked regardless of the image being accessed or not
const bool is_sampled_without_sampler = base_type.Word(7) == 2; // Word(7) == Sampled
if (is_sampled_without_sampler) {
if (info.image_dim == spv::DimSubpassData) {
is_input_attachment = true;
if (array_length != spirv::kRuntimeArray) {
input_attachment_index_read.resize(array_length);
}
} else if (info.image_dim == spv::DimBuffer) {
is_storage_texel_buffer = true;
} else {
is_storage_image = true;
}
}
const auto image_access_it = image_access_map.find(id);
if (image_access_it != image_access_map.end()) {
for (const auto& image_access_ptr : image_access_it->second) {
const auto& image_access = *image_access_ptr;
info.is_dref |= image_access.is_dref;
info.is_sampler_implicitLod_dref_proj |= image_access.is_sampler_implicitLod_dref_proj;
info.is_sampler_sampled |= image_access.is_sampler_sampled;
info.is_sampler_bias_offset |= image_access.is_sampler_bias_offset;
info.is_sampler_offset |= image_access.is_sampler_offset;
info.is_sign_extended |= image_access.is_sign_extended;
info.is_zero_extended |= image_access.is_zero_extended;
access_mask |= image_access.access_mask;
const bool is_image_without_format =
((is_sampled_without_sampler) && (base_type.Word(8) == spv::ImageFormatUnknown));
if (image_access.access_mask & AccessBit::image_write) {
if (is_image_without_format) {
info.is_write_without_format |= true;
if (image_access.texel_component_count != kInvalidValue) {
write_without_formats_component_count_list.push_back(image_access.texel_component_count);
}
}
}
if (image_access.access_mask & AccessBit::image_read) {
if (is_image_without_format) {
info.is_read_without_format |= true;
}
// If accessed in an array, track which indexes were read, if not runtime array
if (is_input_attachment && !module_state.HasRuntimeArray(type_id)) {
if (image_access.image_access_chain_index != kInvalidValue) {
input_attachment_index_read[image_access.image_access_chain_index] = true;
} else {
// if InputAttachment is accessed from load, just a single, non-array, index
input_attachment_index_read.resize(1);
input_attachment_index_read[0] = true;
}
}
}
// if not CombinedImageSampler, need to find all Samplers that were accessed with the image
if (!image_access.variable_sampler_insn.empty() && !is_type_sampled_image) {
// if no AccessChain, it is same conceptually as being zero
const uint32_t image_index =
image_access.image_access_chain_index != kInvalidValue ? image_access.image_access_chain_index : 0;
const uint32_t sampler_index =
image_access.sampler_access_chain_index != kInvalidValue ? image_access.sampler_access_chain_index : 0;
if (image_index >= samplers_used_by_image.size()) {
samplers_used_by_image.resize(image_index + 1);
}
for (const Instruction* sampler_insn : image_access.variable_sampler_insn) {
const uint32_t sampler_variable_id = sampler_insn->ResultId();
sampled_image_sampler_variable_ids.insert(sampler_variable_id);
const auto& decoration_set = module_state.GetDecorationSet(sampler_variable_id);
samplers_used_by_image[image_index].emplace(
SamplerUsedByImage{DescriptorSlot{decoration_set.set, decoration_set.binding}, sampler_index});
}
}
}
}
}
info.access_mask = access_mask;
descriptor_hash = hash_util::Hash64(&info, sizeof(info));
}
PushConstantVariable::PushConstantVariable(const Module& module_state, const Instruction& insn, VkShaderStageFlagBits stage,
const VariableAccessMap& variable_access_map, const DebugNameMap& debug_name_map)
: VariableBase(module_state, insn, stage, variable_access_map, debug_name_map), offset(vvl::kU32Max), size(0) {
assert(type_struct_info != nullptr); // Push Constants need to be structs
auto struct_size = type_struct_info->GetSize(module_state);
offset = struct_size.offset;
size = struct_size.size;
}
TypeStructInfo::TypeStructInfo(const Module& module_state, const Instruction& struct_insn)
: id(struct_insn.Word(1)), length(struct_insn.Length() - 2), decorations(module_state.GetDecorationSet(id)) {
members.resize(length);
for (uint32_t i = 0; i < length; i++) {
Member& member = members[i];
member.id = struct_insn.Word(2 + i);
member.insn = module_state.FindDef(member.id);
member.type_struct_info = module_state.GetTypeStructInfo(member.insn);
const auto it = decorations.member_decorations.find(i);
if (it != decorations.member_decorations.end()) {
member.decorations = &it->second;
}
}
}
TypeStructSize TypeStructInfo::GetSize(const Module& module_state) const {
uint32_t offset = vvl::kU32Max;
uint32_t size = 0;
// Non-Blocks don't have offset so can get packed size
if (!decorations.Has(DecorationSet::block_bit)) {
offset = 0;
size = module_state.GetTypeBytesSize(module_state.FindDef(id));
return {offset, size};
}
// Currently to know the range we only need to know
// - The lowest offset element is in root struct
// - how large the highest offset element is in root struct
//
// Note structs don't have to be ordered, the following is legal
// OpMemberDecorate %x 1 Offset 0
// OpMemberDecorate %x 0 Offset 4
//
// Info at https://gitlab.khronos.org/spirv/SPIR-V/-/issues/763
uint32_t highest_element_index = 0;
uint32_t highest_element_offset = 0;
for (uint32_t i = 0; i < members.size(); i++) {
const auto& member = members[i];
// all struct elements are required to have offset decorations in Block
const uint32_t member_offset = member.decorations->offset;
offset = std::min(offset, member_offset);
if (member_offset > highest_element_offset) {
highest_element_index = i;
highest_element_offset = member_offset;
}
}
const auto& highest_member = members[highest_element_index];
uint32_t highest_element_size = 0;
if (highest_member.insn->Opcode() == spv::OpTypeArray &&
module_state.FindDef(highest_member.insn->Word(3))->Opcode() == spv::OpSpecConstant) {
// TODO - This is a work-around because currently we only apply SpecConstant for workgroup size
// The shader validation needs to be fixed so we handle all cases when spec constant are applied, while still being catious
// of the fact that information is not known until pipeline creation (not at shader module creation time)
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/5911
highest_element_size = module_state.FindDef(highest_member.insn->Word(3))->Word(3);
} else {
highest_element_size = module_state.GetTypeBytesSize(highest_member.insn);
}
size = (highest_element_size + highest_element_offset) - offset;
return {offset, size};
}
uint32_t Module::GetNumComponentsInBaseType(const Instruction* insn) const {
const uint32_t opcode = insn->Opcode();
uint32_t component_count = 0;
if (opcode == spv::OpTypeFloat || opcode == spv::OpTypeInt) {
component_count = 1;
} else if (opcode == spv::OpTypeVector) {
component_count = insn->Word(3);
} else if (opcode == spv::OpTypeMatrix) {
const Instruction* column_type = FindDef(insn->Word(2));
// Because we are calculating components for a single location we do not care about column count
component_count = GetNumComponentsInBaseType(column_type); // vector length
} else if (opcode == spv::OpTypeArray) {
const Instruction* element_type = FindDef(insn->Word(2));
component_count = GetNumComponentsInBaseType(element_type); // element length
} else if (opcode == spv::OpTypeStruct) {
for (uint32_t i = 2; i < insn->Length(); ++i) {
component_count += GetNumComponentsInBaseType(FindDef(insn->Word(i)));
}
} else if (opcode == spv::OpTypePointer) {
const Instruction* type = FindDef(insn->Word(3));
component_count = GetNumComponentsInBaseType(type);
}
return component_count;
}
// Returns the total size in 'bits' of any OpType*
uint32_t Module::GetTypeBitsSize(const Instruction* insn) const {
const uint32_t opcode = insn->Opcode();
uint32_t bit_size = 0;
if (opcode == spv::OpTypeVector) {
const Instruction* component_type = FindDef(insn->Word(2));
uint32_t scalar_width = GetTypeBitsSize(component_type);
uint32_t component_count = insn->Word(3);
bit_size = scalar_width * component_count;
} else if (opcode == spv::OpTypeMatrix) {
const Instruction* column_type = FindDef(insn->Word(2));
uint32_t vector_width = GetTypeBitsSize(column_type);
uint32_t column_count = insn->Word(3);
bit_size = vector_width * column_count;
} else if (opcode == spv::OpTypeArray) {
const Instruction* element_type = FindDef(insn->Word(2));
const uint32_t element_width = GetTypeBitsSize(element_type);
const Instruction* length_type = FindDef(insn->Word(3));
const uint32_t length = length_type->GetConstantValue();
// ArrayStride is only between element, not applied on the end of last element
// Things like Private variable don't have explicit layout and can use element size
uint32_t array_stride = element_width;
for (const spirv::Instruction* decoration_inst : static_data_.decoration_inst) {
if (decoration_inst->Word(1) == insn->ResultId()) {
if (decoration_inst->Word(2) == spv::DecorationArrayStride) {
// Need to represent as bits here
array_stride = decoration_inst->Word(3) * 8;
break;
}
}
}
bit_size = ((length - 1) * array_stride) + element_width;
} else if (opcode == spv::OpTypeStruct) {
// Will not consider any possible Offset, gets size of a packed struct
for (uint32_t i = 2; i < insn->Length(); ++i) {
bit_size += GetTypeBitsSize(FindDef(insn->Word(i)));
}
} else if (opcode == spv::OpTypePointer) {
if (insn->StorageClass() == spv::StorageClassPhysicalStorageBuffer) {
// All PhysicalStorageBuffer are just 64-bit pointers
// We don't need to go chasing it to find the size, as it is not calculated for any VUs
bit_size = 64;
} else {
const Instruction* type = FindDef(insn->Word(3));
bit_size = GetTypeBitsSize(type);
}
} else if (opcode == spv::OpVariable) {
const Instruction* type = FindDef(insn->TypeId());
bit_size = GetTypeBitsSize(type);
} else if (opcode == spv::OpTypeImage) {
const Instruction* type = FindDef(insn->Word(2));
bit_size = GetTypeBitsSize(type);
} else if (opcode == spv::OpTypeVoid) {
// Sampled Type of OpTypeImage can be a void
bit_size = 0;
} else {
bit_size = insn->GetBitWidth();
}
return bit_size;
}
// Returns the total size in 'bytes' of any OpType*
uint32_t Module::GetTypeBytesSize(const Instruction* insn) const { return GetTypeBitsSize(insn) / 8; }
// Returns the base type (float, int or unsigned int) or struct (can have multiple different base types inside)
// Will return 0 if it can not be determined
uint32_t Module::GetBaseType(const Instruction* insn) const {
const uint32_t opcode = insn->Opcode();
if (opcode == spv::OpTypeFloat || opcode == spv::OpTypeInt || opcode == spv::OpTypeBool || opcode == spv::OpTypeStruct) {
// point to itself as its the base type (or a struct that needs to be traversed still)
return insn->Word(1);
} else if (opcode == spv::OpTypeVector) {
const Instruction* component_type = FindDef(insn->Word(2));
return GetBaseType(component_type);
} else if (opcode == spv::OpTypeMatrix) {
const Instruction* column_type = FindDef(insn->Word(2));
return GetBaseType(column_type);
} else if (opcode == spv::OpTypeArray || opcode == spv::OpTypeRuntimeArray) {
const Instruction* element_type = FindDef(insn->Word(2));
return GetBaseType(element_type);
} else if (opcode == spv::OpTypePointer) {
const auto& storage_class = insn->StorageClass();
const Instruction* type = FindDef(insn->Word(3));
if (storage_class == spv::StorageClassPhysicalStorageBuffer && type->Opcode() == spv::OpTypeStruct) {
// A physical storage buffer to a struct has a chance to point to itself and can't resolve a baseType
// GLSL example:
// layout(buffer_reference) buffer T1 {
// T1 b[2];
// };
return 0;
}
return GetBaseType(type);
}
// If we assert here, we are missing a valid base type that must be handled. Without this assert, a return value of 0 will
// produce a hard bug to track
assert(false);
return 0;
}
const Instruction* Module::GetBaseTypeInstruction(uint32_t type) const {
const Instruction* insn = FindDef(type);
const uint32_t base_insn_id = GetBaseType(insn);
// Will return end() if an invalid/unknown base_insn_id is returned
return FindDef(base_insn_id);
}
// return %A in:
// %B = OpTypePointer Input %A
// %C = OpVariable %B Input
const Instruction* Module::GetVariablePointerType(const spirv::Instruction& var_insn) const {
assert(var_insn.Opcode() == spv::OpVariable);
const uint32_t result_type_id = var_insn.TypeId();
const Instruction* type_pointer = FindDef(result_type_id);
return FindDef(type_pointer->Word(3));
}
// Returns type_id if id has type or zero otherwise
uint32_t Module::GetTypeId(uint32_t id) const {
const Instruction* type = FindDef(id);
return type ? type->TypeId() : 0;
}
// Return zero if nothing is found
uint32_t Module::GetTexelComponentCount(const Instruction& insn) const {
uint32_t texel_component_count = 0;
switch (insn.Opcode()) {
case spv::OpImageWrite: {
const Instruction* texel_def = FindDef(insn.Word(3));
const Instruction* texel_type = FindDef(texel_def->Word(1));
texel_component_count = (texel_type->Opcode() == spv::OpTypeVector) ? texel_type->Word(3) : 1;
break;
}
default:
break;
}
return texel_component_count;
}
// Takes an array like [3][2][4] and returns 24
// If not an array, returns 1
uint32_t Module::GetFlattenArraySize(const Instruction& insn) const {
uint32_t array_size = 1;
if (insn.Opcode() == spv::OpTypeArray) {
array_size = GetConstantValueById(insn.Word(3));
const Instruction* element_insn = FindDef(insn.Word(2));
if (element_insn->Opcode() == spv::OpTypeArray) {
array_size *= GetFlattenArraySize(*element_insn);
}
}
return array_size;
}
AtomicInstructionInfo Module::GetAtomicInfo(const Instruction& insn) const {
AtomicInstructionInfo info;
// All atomics have a pointer referenced
const uint32_t pointer_index = insn.Opcode() == spv::OpAtomicStore ? 1 : 3;
const Instruction* access = FindDef(insn.Word(pointer_index));
// spirv-val will catch if not OpTypePointer
const Instruction* pointer = FindDef(access->Word(1));
info.storage_class = pointer->StorageClass();
const Instruction* data_type = FindDef(pointer->Word(3));
if (data_type->Opcode() == spv::OpTypeVector) {
info.vector_size = data_type->Word(3);
data_type = FindDef(data_type->Word(2));
}
info.type = data_type->Opcode();
info.bit_width = data_type->GetBitWidth();
return info;
}
} // namespace spirv
|