1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
/*
* Copyright (c) 2019-2025 Valve Corporation
* Copyright (c) 2019-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "sync/sync_common.h"
#include "sync/sync_access_state.h"
struct SubpassDependencyGraphNode;
namespace vvl {
class Bindable;
class Buffer;
class Event;
class Image;
class ImageView;
class VideoPictureResource;
class VideoSession;
} // namespace vvl
bool SimpleBinding(const vvl::Bindable &bindable);
VkDeviceSize ResourceBaseAddress(const vvl::Buffer &buffer);
// ForEachEntryInRangesUntil -- Execute Action for each map entry in the generated ranges until it returns true
//
// Action is const w.r.t. map
// Action is allowed (assumed) to modify pos
// Action must not advance pos for ranges strictly < pos->first
// Action must handle range strictly less than pos->first correctly
// Action must handle pos == end correctly
// Action is assumed to only require invocation once per map entry
// RangeGen must be strictly monotonic
// Note: If Action invocations are heavyweight and inter-entry (gap) calls are not needed
// add a template or function parameter to skip them. TBD.
template <typename RangeMap, typename RangeGen, typename Action>
bool ForEachEntryInRangesUntil(const RangeMap &map, RangeGen &range_gen, Action &action) {
using RangeType = typename RangeGen::RangeType;
using IndexType = typename RangeType::index_type;
auto pos = map.lower_bound(*range_gen);
const auto end = map.end();
IndexType skip_limit = 0;
for (; range_gen->non_empty() && pos != end; ++range_gen) {
RangeType range = *range_gen;
// See if a prev pos has covered this range
if (range.end <= skip_limit) {
// Since the map is const, we needn't call action on the same pos again
continue;
}
// If the current range was *partially* covered be a previous pos, trim, such that Action is only
// called once for a given range (and pos)
if (range.begin < skip_limit) {
range.begin = skip_limit;
}
// Now advance pos as needed to match range
if (pos->first.strictly_less(range)) {
++pos;
if (pos == end) break;
if (pos->first.strictly_less(range)) {
pos = map.lower_bound(range);
if (pos == end) break;
}
assert(pos == map.lower_bound(range));
}
// If the range intersects pos->first, consider Action performed for that map entry, and
// make sure not to call Action for this pos for any subsequent ranges
skip_limit = range.end > pos->first.begin ? pos->first.end : 0U;
// Action is allowed to alter pos but shouldn't do so if range is strictly < pos->first
if (action(range, end, pos)) return true;
}
// Action needs to handle the "at end " condition (and can be useful for recursive actions)
for (; range_gen->non_empty(); ++range_gen) {
if (action(*range_gen, end, pos)) return true;
}
return false;
}
struct NoopBarrierAction {
explicit NoopBarrierAction() {}
void operator()(ResourceAccessState *access) const {}
const bool layout_transition = false;
};
// This functor applies a collection of barriers, updating the "pending state" in each touched memory range, and optionally
// resolves the pending state. Suitable for processing Global memory barriers, or Subpass Barriers when the "final" barrier
// of a collection is known/present.
template <typename BarrierOp, typename OpVector = std::vector<BarrierOp>>
class ApplyBarrierOpsFunctor {
public:
using Iterator = ResourceAccessRangeMap::iterator;
// Only called with a gap, and pos at the lower_bound(range)
inline Iterator Infill(ResourceAccessRangeMap *accesses, const Iterator &pos, const ResourceAccessRange &range) const {
if (!infill_default_) {
return pos;
}
ResourceAccessState default_state;
auto inserted = accesses->insert(pos, std::make_pair(range, default_state));
return inserted;
}
void operator()(const Iterator &pos) const {
auto &access_state = pos->second;
for (const auto &op : barrier_ops_) {
op(&access_state);
}
if (resolve_) {
// If this is the last (or only) batch, we can do the pending resolve as the last step in this operation to avoid
// another walk
access_state.ApplyPendingBarriers(tag_);
}
}
// A valid tag is required IFF layout_transition is true, as transitions are write ops
ApplyBarrierOpsFunctor(bool resolve, typename OpVector::size_type size_hint, ResourceUsageTag tag)
: resolve_(resolve), infill_default_(false), barrier_ops_(), tag_(tag) {
barrier_ops_.reserve(size_hint);
}
void EmplaceBack(const BarrierOp &op) {
barrier_ops_.emplace_back(op);
infill_default_ |= op.layout_transition;
}
private:
bool resolve_;
bool infill_default_;
OpVector barrier_ops_;
const ResourceUsageTag tag_;
};
// This functor applies a single barrier, updating the "pending state" in each touched memory range, but does not
// resolve the pendinging state. Suitable for processing Image and Buffer barriers from PipelineBarriers or Events
template <typename BarrierOp>
class ApplyBarrierFunctor : public ApplyBarrierOpsFunctor<BarrierOp, small_vector<BarrierOp, 1>> {
using Base = ApplyBarrierOpsFunctor<BarrierOp, small_vector<BarrierOp, 1>>;
public:
ApplyBarrierFunctor(const BarrierOp &barrier_op) : Base(false, 1, kInvalidTag) { Base::EmplaceBack(barrier_op); }
};
// This functor resolves the pendinging state.
class ResolvePendingBarrierFunctor : public ApplyBarrierOpsFunctor<NoopBarrierAction, small_vector<NoopBarrierAction, 1>> {
using Base = ApplyBarrierOpsFunctor<NoopBarrierAction, small_vector<NoopBarrierAction, 1>>;
public:
ResolvePendingBarrierFunctor(ResourceUsageTag tag) : Base(true, 0, tag) {}
};
struct ApplySubpassTransitionBarriersAction {
explicit ApplySubpassTransitionBarriersAction(const std::vector<SyncBarrier> &barriers_) : barriers(barriers_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
access->ApplyBarriers(barriers, true);
}
const std::vector<SyncBarrier> &barriers;
};
struct QueueTagOffsetBarrierAction {
QueueTagOffsetBarrierAction(QueueId qid, ResourceUsageTag offset) : queue_id(qid), tag_offset(offset) {}
void operator()(ResourceAccessState *access) const {
access->OffsetTag(tag_offset);
access->SetQueueId(queue_id);
};
QueueId queue_id;
ResourceUsageTag tag_offset;
};
struct ApplyTrackbackStackAction {
explicit ApplyTrackbackStackAction(const std::vector<SyncBarrier> &barriers_,
const ResourceAccessStateFunction *previous_barrier_ = nullptr)
: barriers(barriers_), previous_barrier(previous_barrier_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
assert(!access->HasPendingState());
access->ApplyBarriers(barriers, false);
// NOTE: We can use invalid tag, as these barriers do no include layout transitions (would assert in SetWrite)
access->ApplyPendingBarriers(kInvalidTag);
if (previous_barrier) {
assert(bool(*previous_barrier));
(*previous_barrier)(access);
}
}
const std::vector<SyncBarrier> &barriers;
const ResourceAccessStateFunction *previous_barrier;
};
template <typename SubpassNode>
struct SubpassBarrierTrackback {
std::vector<SyncBarrier> barriers;
const SubpassNode *source_subpass = nullptr;
SubpassBarrierTrackback() = default;
SubpassBarrierTrackback(const SubpassBarrierTrackback &) = default;
SubpassBarrierTrackback(const SubpassNode *source_subpass_, VkQueueFlags queue_flags_,
const std::vector<const VkSubpassDependency2 *> &subpass_dependencies_)
: barriers(), source_subpass(source_subpass_) {
barriers.reserve(subpass_dependencies_.size());
for (const VkSubpassDependency2 *dependency : subpass_dependencies_) {
assert(dependency);
barriers.emplace_back(queue_flags_, *dependency);
}
}
SubpassBarrierTrackback(const SubpassNode *source_subpass_, const SyncBarrier &barrier_)
: barriers(1, barrier_), source_subpass(source_subpass_) {}
SubpassBarrierTrackback &operator=(const SubpassBarrierTrackback &) = default;
};
class AttachmentViewGen {
public:
enum Gen { kViewSubresource = 0, kRenderArea = 1, kDepthOnlyRenderArea = 2, kStencilOnlyRenderArea = 3, kGenSize = 4 };
AttachmentViewGen(const vvl::ImageView *image_view, const VkOffset3D &offset, const VkExtent3D &extent);
AttachmentViewGen(const AttachmentViewGen &other) = default;
AttachmentViewGen(AttachmentViewGen &&other) = default;
const vvl::ImageView *GetViewState() const { return view_; }
const std::optional<ImageRangeGen> &GetRangeGen(Gen type) const;
bool IsValid() const { return gen_store_[Gen::kViewSubresource].has_value(); }
Gen GetDepthStencilRenderAreaGenType(bool depth_op, bool stencil_op) const;
private:
const vvl::ImageView *view_ = nullptr;
std::array<std::optional<ImageRangeGen>, Gen::kGenSize> gen_store_;
};
using AttachmentViewGenVector = std::vector<AttachmentViewGen>;
class AccessContext {
public:
using ScopeMap = ResourceAccessRangeMap;
enum DetectOptions : uint32_t {
kDetectPrevious = 1U << 0,
kDetectAsync = 1U << 1,
kDetectAll = (kDetectPrevious | kDetectAsync)
};
using TrackBack = SubpassBarrierTrackback<AccessContext>;
HazardResult DetectHazard(const vvl::Buffer &buffer, SyncAccessIndex access_index, const ResourceAccessRange &range) const;
HazardResult DetectHazard(const vvl::Image &image, SyncAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range, bool is_depth_sliced) const;
HazardResult DetectHazard(const vvl::ImageView &image_view, SyncAccessIndex current_usage) const;
HazardResult DetectHazard(const ImageRangeGen &ref_range_gen, SyncAccessIndex current_usage,
SyncOrdering ordering_rule = SyncOrdering::kOrderingNone, SyncFlags flags = 0) const;
HazardResult DetectHazard(const vvl::ImageView &image_view, const VkOffset3D &offset, const VkExtent3D &extent,
SyncAccessIndex current_usage, SyncOrdering ordering_rule) const;
HazardResult DetectHazard(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, SyncAccessIndex current_usage,
SyncOrdering ordering_rule, SyncFlags flags = 0) const;
HazardResult DetectHazard(const vvl::VideoSession &vs_state, const vvl::VideoPictureResource &resource,
SyncAccessIndex current_usage) const;
HazardResult DetectHazard(const vvl::Image &image, const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, bool is_depth_sliced, SyncAccessIndex current_usage,
SyncOrdering ordering_rule = SyncOrdering::kOrderingNone) const;
HazardResult DetectImageBarrierHazard(const vvl::Image &image, const VkImageSubresourceRange &subresource_range,
VkPipelineStageFlags2 src_exec_scope, const SyncAccessFlags &src_access_scope,
QueueId queue_id, const ScopeMap &scope_map, ResourceUsageTag scope_tag,
DetectOptions options) const;
HazardResult DetectImageBarrierHazard(const AttachmentViewGen &attachment_view, const SyncBarrier &barrier,
DetectOptions options) const;
HazardResult DetectImageBarrierHazard(const vvl::Image &image, VkPipelineStageFlags2 src_exec_scope,
const SyncAccessFlags &src_access_scope, const VkImageSubresourceRange &subresource_range,
DetectOptions options) const;
HazardResult DetectSubpassTransitionHazard(const TrackBack &track_back, const AttachmentViewGen &attach_view) const;
HazardResult DetectFirstUseHazard(QueueId queue_id, const ResourceUsageRange &tag_range,
const AccessContext &access_context) const;
const TrackBack &GetDstExternalTrackBack() const { return dst_external_; }
void Reset() {
prev_.clear();
prev_by_subpass_.clear();
async_.clear();
src_external_ = nullptr;
dst_external_ = TrackBack();
start_tag_ = ResourceUsageTag();
access_state_map_.clear();
}
void ResolvePreviousAccesses();
void ResolveFromContext(const AccessContext &from);
template <typename ResolveOp>
void ResolveFromContext(ResolveOp &&resolve_op, const AccessContext &from_context,
const ResourceAccessState *infill_state = nullptr, bool recur_to_infill = false);
template <typename ResolveOp>
void ResolveFromContext(ResolveOp &&resolve_op, const AccessContext &from_context,
subresource_adapter::ImageRangeGenerator range_gen, const ResourceAccessState *infill_state = nullptr,
bool recur_to_infill = false);
void UpdateAccessState(const vvl::Buffer &buffer, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, ResourceUsageTagEx tag_ex);
void UpdateAccessState(const vvl::Image &image, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const ResourceUsageTag &tag);
void UpdateAccessState(const vvl::Image &image, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset, const VkExtent3D &extent,
ResourceUsageTagEx tag_ex);
void UpdateAccessState(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, SyncAccessIndex current_usage,
SyncOrdering ordering_rule, ResourceUsageTag tag, SyncFlags flags = 0);
void UpdateAccessState(const vvl::ImageView &image_view, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent, ResourceUsageTagEx tag_ex);
void UpdateAccessState(const vvl::ImageView &image_view, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
ResourceUsageTagEx tag_ex);
void UpdateAccessState(const ImageRangeGen &range_gen, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
ResourceUsageTagEx tag_ex, SyncFlags flags = 0);
void UpdateAccessState(ImageRangeGen &range_gen, SyncAccessIndex current_usage, SyncOrdering ordering_rule,
ResourceUsageTagEx tag_ex, SyncFlags flags = 0);
void UpdateAccessState(const vvl::VideoSession &vs_state, const vvl::VideoPictureResource &resource,
SyncAccessIndex current_usage, ResourceUsageTag tag);
void ResolveChildContexts(const std::vector<AccessContext> &contexts);
void ImportAsyncContexts(const AccessContext &from);
void ClearAsyncContexts() { async_.clear(); }
template <typename Action>
void ApplyUpdateAction(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, const Action &action);
template <typename Action>
void ApplyToContext(const Action &barrier_action);
AccessContext(uint32_t subpass, VkQueueFlags queue_flags, const std::vector<SubpassDependencyGraphNode> &dependencies,
const std::vector<AccessContext> &contexts, const AccessContext *external_context);
AccessContext() { Reset(); }
AccessContext(const AccessContext ©_from) = default;
void Trim();
void TrimAndClearFirstAccess();
void AddReferencedTags(ResourceUsageTagSet &referenced) const;
ResourceAccessRangeMap &GetAccessStateMap() { return access_state_map_; }
const ResourceAccessRangeMap &GetAccessStateMap() const { return access_state_map_; }
const TrackBack *GetTrackBackFromSubpass(uint32_t subpass) const {
if (subpass == VK_SUBPASS_EXTERNAL) {
return src_external_;
} else {
assert(subpass < prev_by_subpass_.size());
return prev_by_subpass_[subpass];
}
}
void SetStartTag(ResourceUsageTag tag) { start_tag_ = tag; }
ResourceUsageTag StartTag() const { return start_tag_; }
template <typename Action>
void ForAll(Action &&action);
template <typename Action>
void ConstForAll(Action &&action) const;
template <typename Predicate>
void EraseIf(Predicate &&pred);
// For use during queue submit building up the QueueBatchContext AccessContext for validation, otherwise clear.
void AddAsyncContext(const AccessContext *context, ResourceUsageTag tag, QueueId queue_id);
class AsyncReference {
public:
AsyncReference(const AccessContext &async_context, ResourceUsageTag async_tag, QueueId queue_id)
: context_(&async_context), tag_(async_tag), queue_id_(queue_id) {}
const AccessContext &Context() const { return *context_; }
// For RenderPass time validation this is "start tag", for QueueSubmit, this is the earliest
// unsynchronized tag for the Queue being tested against (max synchrononous + 1, perhaps)
ResourceUsageTag StartTag() const;
QueueId GetQueueId() const { return queue_id_; }
protected:
const AccessContext *context_;
ResourceUsageTag tag_; // Start of open ended asynchronous range
QueueId queue_id_;
};
template <typename Action, typename RangeGen>
void UpdateMemoryAccessState(const Action &action, RangeGen &range_gen);
private:
template <typename Action>
static void UpdateMemoryAccessRangeState(ResourceAccessRangeMap &accesses, Action &action, const ResourceAccessRange &range);
struct UpdateMemoryAccessStateFunctor {
using Iterator = ResourceAccessRangeMap::iterator;
Iterator Infill(ResourceAccessRangeMap *accesses, const Iterator &pos, const ResourceAccessRange &range) const;
void operator()(const Iterator &pos) const;
UpdateMemoryAccessStateFunctor(const AccessContext &context_, SyncAccessIndex usage_, SyncOrdering ordering_rule_,
ResourceUsageTagEx tag_ex, SyncFlags flags = 0)
: context(context_), usage_info(GetAccessInfo(usage_)), ordering_rule(ordering_rule_), tag_ex(tag_ex), flags(flags) {}
const AccessContext &context;
const SyncAccessInfo &usage_info;
const SyncOrdering ordering_rule;
const ResourceUsageTagEx tag_ex;
const SyncFlags flags;
};
// Follow the context previous to access the access state, supporting "lazy" import into the context. Not intended for
// subpass layout transition, as the pending state handling is more complex
// TODO: See if returning the lower_bound would be useful from a performance POV -- look at the lower_bound overhead
// Would need to add a "hint" overload to parallel_iterator::invalidate_[AB] call, if so.
void ResolvePreviousAccess(const ResourceAccessRange &range, ResourceAccessRangeMap *descent_map,
const ResourceAccessState *infill_state,
const ResourceAccessStateFunction *previous_barrier = nullptr) const;
template <typename BarrierAction>
void ResolvePreviousAccessStack(const ResourceAccessRange &range, ResourceAccessRangeMap *descent_map,
const ResourceAccessState *infill_state, const BarrierAction &previous_barrie) const;
template <typename BarrierAction>
void ResolveAccessRange(const ResourceAccessRange &range, BarrierAction &barrier_action, ResourceAccessRangeMap *resolve_map,
const ResourceAccessState *infill_state, bool recur_to_infill = true) const;
template <typename Detector>
HazardResult DetectHazardRange(Detector &detector, const ResourceAccessRange &range, DetectOptions options) const;
template <typename Detector, typename RangeGen>
HazardResult DetectHazardGeneratedRanges(Detector &detector, RangeGen &range_gen, DetectOptions options) const;
template <typename Detector, typename RangeGen>
HazardResult DetectHazardGeneratedRanges(Detector &detector, const RangeGen &range_gen, DetectOptions options) const {
RangeGen mutable_gen(range_gen);
return DetectHazardGeneratedRanges<Detector, RangeGen>(detector, mutable_gen, options);
}
template <typename Detector>
HazardResult DetectHazard(Detector &detector, const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
DetectOptions options) const;
template <typename Detector>
HazardResult DetectHazard(Detector &detector, const vvl::Image &image, const VkImageSubresourceRange &subresource_range,
const VkOffset3D &offset, const VkExtent3D &extent, bool is_depth_sliced,
DetectOptions options) const;
template <typename Detector>
HazardResult DetectHazard(Detector &detector, const vvl::Image &image, const VkImageSubresourceRange &subresource_range,
bool is_depth_sliced, DetectOptions options) const;
template <typename Detector>
HazardResult DetectHazardOneRange(Detector &detector, bool detect_prev, ResourceAccessRangeMap::const_iterator &pos,
const ResourceAccessRangeMap::const_iterator &the_end,
const ResourceAccessRange &range) const;
template <typename Detector, typename RangeGen>
HazardResult DetectAsyncHazard(const Detector &detector, const RangeGen &const_range_gen, ResourceUsageTag async_tag,
QueueId async_queue_id) const;
template <typename NormalizeOp>
void Trim(NormalizeOp &&normalize);
template <typename Detector>
HazardResult DetectPreviousHazard(Detector &detector, const ResourceAccessRange &range) const;
ResourceAccessRangeMap access_state_map_;
std::vector<TrackBack> prev_;
std::vector<TrackBack *> prev_by_subpass_;
// These contexts *must* have the same lifespan as this context, or be cleared, before the referenced contexts can expire
std::vector<AsyncReference> async_;
TrackBack *src_external_;
TrackBack dst_external_;
ResourceUsageTag start_tag_;
};
// The semantics of the InfillUpdateOps of infill_update_range are slightly different than for the UpdateMemoryAccessState Action
// operations, as this simplifies the generic traversal. So we wrap them in a semantics Adapter to get the same effect.
template <typename Action>
struct ActionToOpsAdapter {
using Map = ResourceAccessRangeMap;
using Range = typename Map::key_type;
using Iterator = typename Map::iterator;
using IndexType = typename Map::index_type;
void infill(Map &accesses, const Iterator &pos, const Range &infill_range) const {
// Combine Infill and update operations to make the generic implementation simpler
Iterator infill = action.Infill(&accesses, pos, infill_range);
if (infill == accesses.end()) return; // Allow action to 'pass' on filling in the blanks
// Need to apply the action to the Infill. 'infill_update_range' expect ops.infill to be completely done with
// the infill_range, where as Action::Infill assumes the caller will apply the action() logic to the infill_range
for (; infill != pos; ++infill) {
assert(infill != accesses.end());
action(infill);
}
}
void update(const Iterator &pos) const { action(pos); }
const Action &action;
};
template <typename Action>
void AccessContext::ApplyToContext(const Action &barrier_action) {
// Note: Barriers do *not* cross context boundaries, applying to accessess within.... (at least for renderpass subpasses)
UpdateMemoryAccessRangeState(access_state_map_, barrier_action, kFullRange);
}
template <typename Action>
void AccessContext::UpdateMemoryAccessRangeState(ResourceAccessRangeMap &accesses, Action &action,
const ResourceAccessRange &range) {
ActionToOpsAdapter<Action> ops{action};
infill_update_range(accesses, range, ops);
}
template <typename Action, typename RangeGen>
void AccessContext::UpdateMemoryAccessState(const Action &action, RangeGen &range_gen) {
ActionToOpsAdapter<Action> ops{action};
infill_update_rangegen(access_state_map_, range_gen, ops);
}
template <typename Action>
void AccessContext::ApplyUpdateAction(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, const Action &action) {
const std::optional<ImageRangeGen> &ref_range_gen = view_gen.GetRangeGen(gen_type);
if (ref_range_gen) {
ImageRangeGen range_gen(*ref_range_gen);
UpdateMemoryAccessState(action, range_gen);
}
}
// A non recursive range walker for the asynchronous contexts (those we have no barriers with)
template <typename Detector, typename RangeGen>
HazardResult AccessContext::DetectAsyncHazard(const Detector &detector, const RangeGen &const_range_gen, ResourceUsageTag async_tag,
QueueId async_queue_id) const {
using RangeType = typename RangeGen::RangeType;
using ConstIterator = ResourceAccessRangeMap::const_iterator;
RangeGen range_gen(const_range_gen);
HazardResult hazard;
auto do_async_hazard_check = [&detector, async_tag, async_queue_id, &hazard](const RangeType &range, const ConstIterator &end,
ConstIterator &pos) {
while (pos != end && pos->first.begin < range.end) {
hazard = detector.DetectAsync(pos, async_tag, async_queue_id);
if (hazard.IsHazard()) return true;
++pos;
}
return false;
};
ForEachEntryInRangesUntil(access_state_map_, range_gen, do_async_hazard_check);
return hazard;
}
template <typename Detector>
HazardResult AccessContext::DetectHazardOneRange(Detector &detector, bool detect_prev, ResourceAccessRangeMap::const_iterator &pos,
const ResourceAccessRangeMap::const_iterator &the_end,
const ResourceAccessRange &range) const {
HazardResult hazard;
ResourceAccessRange gap = {range.begin, range.begin};
while (pos != the_end && pos->first.begin < range.end) {
// Cover any leading gap, or gap between entries
if (detect_prev) {
// TODO: After profiling we may want to change the descent logic such that we don't recur per gap...
// Cover any leading gap, or gap between entries
gap.end = pos->first.begin; // We know this begin is < range.end
if (gap.non_empty()) {
// Recur on all gaps
hazard = DetectPreviousHazard(detector, gap);
if (hazard.IsHazard()) return hazard;
}
// Set up for the next gap. If pos..end is >= range.end, loop will exit, and trailing gap will be empty
gap.begin = pos->first.end;
}
hazard = detector.Detect(pos);
if (hazard.IsHazard()) return hazard;
++pos;
}
if (detect_prev) {
// Detect in the trailing empty as needed
gap.end = range.end;
if (gap.non_empty()) {
hazard = DetectPreviousHazard(detector, gap);
}
}
return hazard;
}
template <typename Detector>
HazardResult AccessContext::DetectHazardRange(Detector &detector, const ResourceAccessRange &range, DetectOptions options) const {
SingleRangeGenerator range_gen(range);
return DetectHazardGeneratedRanges(detector, range_gen, options);
}
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(const ResourceAccessRange &range, BarrierAction &barrier_action,
ResourceAccessRangeMap *resolve_map, const ResourceAccessState *infill_state,
bool recur_to_infill) const {
if (!range.non_empty()) return;
ResourceRangeMergeIterator current(*resolve_map, access_state_map_, range.begin);
while (current->range.non_empty() && range.includes(current->range.begin)) {
const auto current_range = current->range & range;
if (current->pos_B->valid) {
const auto &src_pos = current->pos_B->lower_bound;
ResourceAccessState access(src_pos->second); // intentional copy
barrier_action(&access);
if (current->pos_A->valid) {
const auto trimmed = sparse_container::split(current->pos_A->lower_bound, *resolve_map, current_range);
trimmed->second.Resolve(access);
current.invalidate_A(trimmed);
} else {
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current_range, access));
current.invalidate_A(inserted); // Update the parallel iterator to point at the insert segment
}
} else {
// we have to descend to fill this gap
if (recur_to_infill) {
ResourceAccessRange recurrence_range = current_range;
// The current context is empty for the current range, so recur to fill the gap.
// Since we will be recurring back up the DAG, expand the gap descent to cover the full range for which B
// is not valid, to minimize that recurrence
if (current->pos_B.at_end()) {
// Do the remainder here....
recurrence_range.end = range.end;
} else {
// Recur only over the range until B becomes valid (within the limits of range).
recurrence_range.end = std::min(range.end, current->pos_B->lower_bound->first.begin);
}
ResolvePreviousAccessStack(recurrence_range, resolve_map, infill_state, barrier_action);
// Given that there could be gaps we need to seek carefully to not repeatedly search the same gaps in the next
// iterator of the outer while.
// Set the parallel iterator to the end of this range s.t. ++ will move us to the next range whether or
// not the end of the range is a gap. For the seek to work, first we need to warn the parallel iterator
// we stepped on the dest map
const auto seek_to = recurrence_range.end - 1; // The subtraction is safe as range can't be empty (loop condition)
current.invalidate_A(); // Changes current->range
current.seek(seek_to);
} else if (!current->pos_A->valid && infill_state) {
// If we didn't find anything in the current range, and we aren't reccuring... we infill if required
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current->range, *infill_state));
current.invalidate_A(inserted); // Update the parallel iterator to point at the correct segment after insert
}
}
if (current->range.non_empty()) {
++current;
}
}
// Infill if range goes passed both the current and resolve map prior contents
if (recur_to_infill && (current->range.end < range.end)) {
ResourceAccessRange trailing_fill_range = {current->range.end, range.end};
ResolvePreviousAccessStack<BarrierAction>(trailing_fill_range, resolve_map, infill_state, barrier_action);
}
}
// A recursive range walker for hazard detection, first for the current context and the (DetectHazardRecur) to walk
// the DAG of the contexts (for example subpasses)
template <typename Detector, typename RangeGen>
HazardResult AccessContext::DetectHazardGeneratedRanges(Detector &detector, RangeGen &range_gen, DetectOptions options) const {
HazardResult hazard;
// Do this before range_gen is incremented s.t. the copies used will be correct
if (static_cast<uint32_t>(options) & DetectOptions::kDetectAsync) {
// Async checks don't require recursive lookups, as the async lists are exhaustive for the top-level context
// so we'll check these first
for (const auto &async_ref : async_) {
hazard = async_ref.Context().DetectAsyncHazard(detector, range_gen, async_ref.StartTag(), async_ref.GetQueueId());
if (hazard.IsHazard()) return hazard;
}
}
const bool detect_prev = (static_cast<uint32_t>(options) & DetectOptions::kDetectPrevious) != 0;
using RangeType = typename RangeGen::RangeType;
using ConstIterator = ResourceAccessRangeMap::const_iterator;
auto do_detect_hazard_range = [this, &detector, &hazard, detect_prev](const RangeType &range, const ConstIterator &end,
ConstIterator &pos) {
hazard = DetectHazardOneRange(detector, detect_prev, pos, end, range);
return hazard.IsHazard();
};
ForEachEntryInRangesUntil(access_state_map_, range_gen, do_detect_hazard_range);
return hazard;
}
template <typename Detector>
HazardResult AccessContext::DetectPreviousHazard(Detector &detector, const ResourceAccessRange &range) const {
ResourceAccessRangeMap descent_map;
ResolvePreviousAccess(range, &descent_map, nullptr);
for (auto prev = descent_map.begin(); prev != descent_map.end(); ++prev) {
HazardResult hazard = detector.Detect(prev);
if (hazard.IsHazard()) {
return hazard;
}
}
return {};
}
template <typename Predicate>
void AccessContext::EraseIf(Predicate &&pred) {
// Note: Don't forward, we don't want r-values moved, since we're going to make multiple calls.
vvl::EraseIf(access_state_map_, pred);
}
template <typename ResolveOp>
void AccessContext::ResolveFromContext(ResolveOp &&resolve_op, const AccessContext &from_context,
const ResourceAccessState *infill_state, bool recur_to_infill) {
from_context.ResolveAccessRange(kFullRange, resolve_op, &access_state_map_, infill_state, recur_to_infill);
}
// TODO: ImageRangeGenerator is a huge object. Here we make a copy. There is at least one place where it is
// already constructed on the stack and can be modified directly without copy. In other cases we need
// to copy. It's important to reduce size of ImageRangeGenerator (potentially for performance, not memory usage,
// the latter is a bounus).
template <typename ResolveOp>
void AccessContext::ResolveFromContext(ResolveOp &&resolve_op, const AccessContext &from_context,
subresource_adapter::ImageRangeGenerator range_gen, const ResourceAccessState *infill_state,
bool recur_to_infill) {
for (; range_gen->non_empty(); ++range_gen) {
from_context.ResolveAccessRange(*range_gen, resolve_op, &access_state_map_, infill_state, recur_to_infill);
}
}
template <typename BarrierAction>
void AccessContext::ResolvePreviousAccessStack(const ResourceAccessRange &range, ResourceAccessRangeMap *descent_map,
const ResourceAccessState *infill_state,
const BarrierAction &previous_barrier) const {
ResourceAccessStateFunction stacked_barrier(std::ref(previous_barrier));
ResolvePreviousAccess(range, descent_map, infill_state, &stacked_barrier);
}
|