File: sync_access_state.h

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (644 lines) | stat: -rw-r--r-- 32,996 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/* Copyright (c) 2019-2025 The Khronos Group Inc.
 * Copyright (c) 2019-2025 Valve Corporation
 * Copyright (c) 2019-2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once
#include "sync/sync_common.h"

class ResourceAccessState;
class WriteState;
struct ReadState;
struct ResourceFirstAccess;

// NOTE: the attachement read flag is put *only* in the access scope and not in the exect scope, since the ordering
//       rules apply only to this specific access for this stage, and not the stage as a whole. The ordering detection
//       also reflects this special case for read hazard detection (using access instead of exec scope)
constexpr VkPipelineStageFlags2 kColorAttachmentExecScope = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
const SyncAccessFlags kColorAttachmentAccessScope =
    SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_BIT |
    SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
    SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE_BIT |
    SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT;  // Note: this is intentionally not in the exec scope
constexpr VkPipelineStageFlags2 kDepthStencilAttachmentExecScope =
    VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT;
const SyncAccessFlags kDepthStencilAttachmentAccessScope =
    SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
    SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
    SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT;  // Note: this is intentionally not in the exec scope
constexpr VkPipelineStageFlags2 kRasterAttachmentExecScope = kDepthStencilAttachmentExecScope | kColorAttachmentExecScope;
const SyncAccessFlags kRasterAttachmentAccessScope = kDepthStencilAttachmentAccessScope | kColorAttachmentAccessScope;

enum SyncHazard {
    NONE = 0,
    READ_AFTER_WRITE,
    WRITE_AFTER_READ,
    WRITE_AFTER_WRITE,
    READ_RACING_WRITE,
    WRITE_RACING_WRITE,
    WRITE_RACING_READ,
    WRITE_AFTER_PRESENT,  // Once presented, an image may not be used until acquired
    READ_AFTER_PRESENT,
    PRESENT_AFTER_READ,  // Must be unreferenced and visible to present
    PRESENT_AFTER_WRITE,
};

enum class SyncOrdering : uint8_t {
    kOrderingNone = 0,
    kNonAttachment = kOrderingNone,
    kColorAttachment = 1,
    kDepthStencilAttachment = 2,
    kRaster = 3,
    kNumOrderings = 4,
};

struct SyncFlag {
    enum : uint32_t {
        kLoadOp = 1u << 0,
        kStoreOp = 1u << 1,
    };
};
using SyncFlags = uint32_t;

const char *string_SyncHazardVUID(SyncHazard hazard);

struct SyncHazardInfo {
    bool is_write = false;
    bool is_prior_write = false;
    bool is_racing_hazard = false;

    bool IsWrite() const { return is_write; }
    bool IsRead() const { return !is_write; }
    bool IsPriorWrite() const { return is_prior_write; }
    bool IsPriorRead() const { return !is_prior_write; }
    bool IsRacingHazard() const { return is_racing_hazard; }
};
SyncHazardInfo GetSyncHazardInfo(SyncHazard hazard);

class HazardResult {
  public:
    struct HazardState {
        std::unique_ptr<const ResourceAccessState> access_state;
        std::unique_ptr<const ResourceFirstAccess> recorded_access;
        SyncAccessIndex access_index = std::numeric_limits<SyncAccessIndex>::max();
        SyncAccessIndex prior_access_index;
        ResourceUsageTag tag = ResourceUsageTag();
        uint32_t handle_index = vvl::kNoIndex32;
        SyncHazard hazard = NONE;
        HazardState(const ResourceAccessState *access_state, const SyncAccessInfo &usage_info, SyncHazard hazard,
                    SyncAccessIndex prior_access_index, ResourceUsageTagEx tag_ex);
    };

    static HazardResult HazardVsPriorWrite(const ResourceAccessState *access_state, const SyncAccessInfo &usage_info,
                                           SyncHazard hazard, const WriteState &prior_write);
    static HazardResult HazardVsPriorRead(const ResourceAccessState *access_state, const SyncAccessInfo &usage_info,
                                          SyncHazard hazard, const ReadState &prior_read);

    void AddRecordedAccess(const ResourceFirstAccess &first_access);

    bool IsHazard() const { return state_.has_value() && NONE != state_->hazard; }
    bool IsWAWHazard() const;
    ResourceUsageTag Tag() const {
        assert(state_);
        return state_->tag;
    }
    ResourceUsageTagEx TagEx() const {
        assert(state_);
        return ResourceUsageTagEx{state_->tag, state_->handle_index};
    }
    SyncHazard Hazard() const {
        assert(state_);
        return state_->hazard;
    }
    const std::unique_ptr<const ResourceFirstAccess> &RecordedAccess() const {
        assert(state_);
        return state_->recorded_access;
    }
    const HazardState &State() const {
        assert(state_);
        return state_.value();
    }

  private:
    std::optional<HazardState> state_;
};

struct SyncExecScope {
    VkPipelineStageFlags2 mask_param;  // the xxxStageMask parameter passed by the caller
    VkPipelineStageFlags2 exec_scope;  // all earlier or later stages that would be affected by a barrier using this scope.
    SyncAccessFlags valid_accesses;    // all valid accesses that can be used with this scope.

    SyncExecScope() : mask_param(0), exec_scope(0), valid_accesses(0) {}
    SyncExecScope(VkPipelineStageFlags2 mask_param, VkPipelineStageFlags2 exec_scope, const SyncAccessFlags &valid_accesses)
        : mask_param(mask_param), exec_scope(exec_scope), valid_accesses(valid_accesses) {}

    static SyncExecScope MakeSrc(VkQueueFlags queue_flags, VkPipelineStageFlags2 src_stage_mask,
                                 const VkPipelineStageFlags2 disabled_feature_mask = 0);
    static SyncExecScope MakeDst(VkQueueFlags queue_flags, VkPipelineStageFlags2 src_stage_mask);
};

struct SemaphoreScope : SyncExecScope {
    SemaphoreScope(QueueId qid, const SyncExecScope &exec_scope) : SyncExecScope(exec_scope), queue(qid) {}
    SemaphoreScope() = default;
    QueueId queue;
};

struct SyncBarrier {
    struct AllAccess {};
    SyncExecScope src_exec_scope;
    SyncAccessFlags src_access_scope;
    SyncExecScope dst_exec_scope;
    SyncAccessFlags dst_access_scope;

    SyncBarrier() = default;
    SyncBarrier(const SyncExecScope &src_exec, const SyncExecScope &dst_exec);
    SyncBarrier(const SyncExecScope &src_exec, const SyncExecScope &dst_exec, const AllAccess &);
    SyncBarrier(const SyncExecScope &src_exec, VkAccessFlags2 src_access_mask, const SyncExecScope &dst_exec,
                VkAccessFlags2 dst_access_mask);
    SyncBarrier(VkQueueFlags queue_flags, const VkSubpassDependency2 &barrier);
    SyncBarrier(const std::vector<SyncBarrier> &barriers);
};

struct ResourceFirstAccess {
    const SyncAccessInfo *usage_info;
    ResourceUsageTag tag;
    uint32_t handle_index;
    SyncOrdering ordering_rule;

    ResourceFirstAccess(const SyncAccessInfo &usage_info, ResourceUsageTagEx tag_ex, SyncOrdering ordering_rule)
        : usage_info(&usage_info), tag(tag_ex.tag), handle_index(tag_ex.handle_index), ordering_rule(ordering_rule) {}
    bool operator==(const ResourceFirstAccess &rhs) const {
        return (tag == rhs.tag) && (usage_info == rhs.usage_info) && (ordering_rule == rhs.ordering_rule);
    }
    ResourceUsageTagEx TagEx() const { return {tag, handle_index}; }
};

using QueueId = uint32_t;
struct OrderingBarrier {
    VkPipelineStageFlags2 exec_scope;
    SyncAccessFlags access_scope;
    OrderingBarrier() = default;
    OrderingBarrier(const OrderingBarrier &) = default;
    OrderingBarrier(VkPipelineStageFlags2 es, SyncAccessFlags as) : exec_scope(es), access_scope(as) {}
    OrderingBarrier &operator=(const OrderingBarrier &) = default;
    OrderingBarrier &operator|=(const OrderingBarrier &rhs) {
        exec_scope |= rhs.exec_scope;
        access_scope |= rhs.access_scope;
        return *this;
    }
    bool operator==(const OrderingBarrier &rhs) const {
        return (exec_scope == rhs.exec_scope) && (access_scope == rhs.access_scope);
    }
};

using ResourceUsageTagSet = CachedInsertSet<ResourceUsageTag, 4>;

// Mutliple read operations can be simlutaneously (and independently) synchronized,
// given the only the second execution scope creates a dependency chain, we have to track each,
// but only up to one per pipeline stage (as another read from the *same* stage become more recent,
// and applicable one for hazard detection
struct ReadState {
    VkPipelineStageFlags2 stage;        // The stage of this read
    SyncAccessIndex access_index;       // TODO: Revisit whether this needs to support multiple reads per stage
    VkPipelineStageFlags2 barriers;     // all applicable barriered stages
    VkPipelineStageFlags2 sync_stages;  // reads known to have happened after this
    ResourceUsageTag tag;
    uint32_t handle_index;
    QueueId queue;
    VkPipelineStageFlags2 pending_dep_chain;  // Should be zero except during barrier application
                                              // Excluded from comparison
    ReadState() = default;
    ReadState(VkPipelineStageFlags2 stage, SyncAccessIndex access_index, ResourceUsageTagEx tag_ex);
    void Set(VkPipelineStageFlags2 stage, SyncAccessIndex access_index, ResourceUsageTagEx tag_ex);

    ResourceUsageTagEx TagEx() const { return {tag, handle_index}; }
    bool operator==(const ReadState &rhs) const {
        return (stage == rhs.stage) && (access_index == rhs.access_index) && (barriers == rhs.barriers) &&
               (sync_stages == rhs.sync_stages) && (tag == rhs.tag) && (queue == rhs.queue) &&
               (pending_dep_chain == rhs.pending_dep_chain);
    }
    void Normalize() { pending_dep_chain = VK_PIPELINE_STAGE_2_NONE; }
    bool IsReadBarrierHazard(VkPipelineStageFlags2 src_exec_scope) const {
        // If the read stage is not in the src sync scope
        // *AND* not execution chained with an existing sync barrier (that's the or)
        // then the barrier access is unsafe (R/W after R)
        return (src_exec_scope & (stage | barriers)) == 0;
    }
    bool IsReadBarrierHazard(QueueId barrier_queue, VkPipelineStageFlags2 src_exec_scope,
                             const SyncAccessFlags &src_access_scope) const {
        // If the read stage is not in the src sync scope
        // *AND* not execution chained with an existing sync barrier (that's the or)
        // then the barrier access is unsafe (R/W after R)
        VkPipelineStageFlags2 queue_ordered_stage = (queue == barrier_queue) ? stage : VK_PIPELINE_STAGE_2_NONE;

        // Current implementation relies on TOP_OF_PIPE constant due to the fact that it's non-zero value
        // and AND-ing with it can create execution dependency when it's necessary. When NONE constant is
        // used, which equals to zero, then AND-ing with it always results in 0 which means "no barrier",
        // so it's not possible to use NONE internally in equivalent way to TOP_OF_PIPE.
        // Replace NONE with TOP_OF_PIPE in the scenarios where they are equivalent.
        //
        // If we update implementation to get rid of deprecated TOP_OF_PIPE/BOTTOM_OF_PIPE then we must
        // invert the condition below and exchange TOP_OF_PIPE and NONE roles, so deprecated stages would
        // not propagate into implementation internals.
        if (src_exec_scope == VK_PIPELINE_STAGE_2_NONE && src_access_scope.none()) {
            src_exec_scope = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
        }

        return (src_exec_scope & (queue_ordered_stage | barriers)) == 0;
    }
    bool ReadInScopeOrChain(VkPipelineStageFlags2 exec_scope) const { return (exec_scope & (stage | barriers)) != 0; }
    bool ReadInQueueScopeOrChain(QueueId queue, VkPipelineStageFlags2 exec_scope) const;
    bool ReadInEventScope(VkPipelineStageFlags2 exec_scope, QueueId scope_queue, ResourceUsageTag scope_tag) const {
        // If this read is the same one we included in the set event and in scope, then apply the execution barrier...
        // NOTE: That's not really correct... this read stage might *not* have been included in the setevent, and the barriers
        // representing the chain might have changed since then (that would be an odd usage), so as a first approximation
        // we'll assume the barriers *haven't* been changed since (if the tag hasn't), and while this could be a false
        // positive in the case of Set; SomeBarrier; Wait; we'll live with it until we can add more state to the first scope
        // capture (the specific write and read stages that *were* in scope at the moment of SetEvents.
        return (tag < scope_tag) && ReadInQueueScopeOrChain(scope_queue, exec_scope);
    }
    void ApplyReadBarrier(VkPipelineStageFlags2 dst_scope) { pending_dep_chain |= dst_scope; }
    VkPipelineStageFlags2 ApplyPendingBarriers();
};

class WriteState {
  public:
    WriteState() = default;
    WriteState(const SyncAccessInfo &usage_info, ResourceUsageTagEx tag_ex, SyncFlags flags = 0);

    bool operator==(const WriteState &rhs) const {
        return (access_ == rhs.access_) && (barriers_ == rhs.barriers_) && (tag_ == rhs.tag_) && (queue_ == rhs.queue_) &&
               (dependency_chain_ == rhs.dependency_chain_);
    }
    bool WriteInChain(VkPipelineStageFlags2 src_exec_scope) const;
    bool WriteInScope(const SyncAccessFlags &src_access_scope) const;
    bool WriteInSourceScopeOrChain(VkPipelineStageFlags2 src_exec_scope, SyncAccessFlags src_access_scope) const;
    bool WriteInQueueSourceScopeOrChain(QueueId queue, VkPipelineStageFlags2 src_exec_scope,
                                        const SyncAccessFlags &src_access_scope) const;

    bool WriteInEventScope(VkPipelineStageFlags2 src_exec_scope, const SyncAccessFlags &src_access_scope, QueueId scope_queue,
                           ResourceUsageTag scope_tag) const;

    SyncAccessIndex Index() const { return access_->access_index; }
    bool IsIndex(SyncAccessIndex access_index) const { return Index() == access_index; }
    bool IsQueue(QueueId other_queue) const { return queue_ == other_queue; }
    const SyncAccessInfo &Access() const { return *access_; }
    const SyncAccessFlags &Barriers() const { return barriers_; }
    ResourceUsageTag Tag() const { return tag_; }
    ResourceUsageTagEx TagEx() const { return {tag_, handle_index_}; }
    bool IsWriteHazard(const SyncAccessInfo &usage_info) const;
    bool IsOrdered(const OrderingBarrier &ordering, QueueId queue_id) const;
    bool IsLoadOp() const { return flags_ & SyncFlag::kLoadOp; }

    bool IsWriteBarrierHazard(QueueId queue_id, VkPipelineStageFlags2 src_exec_scope,
                              const SyncAccessFlags &src_access_scope) const;

    void SetQueueId(QueueId id);
    void Set(const SyncAccessInfo &usage_info, ResourceUsageTagEx tag_ex, SyncFlags flags);
    void MergeBarriers(const WriteState &other);
    void OffsetTag(ResourceUsageTag offset) { tag_ += offset; }

    bool HasPendingState() const { return pending_barriers_.any() || (0 != pending_dep_chain_); }
    void UpdatePendingBarriers(const SyncBarrier &barrier);
    void ApplyPendingBarriers();
    void UpdatePendingLayoutOrdering(const SyncBarrier &barrier);
    const OrderingBarrier &GetPendingLayoutOrdering() const { return pending_layout_ordering_; }

  private:
    const SyncAccessInfo *access_;
    SyncAccessFlags barriers_;  // union of applicable barrier masks since last write
    ResourceUsageTag tag_;
    uint32_t handle_index_;
    QueueId queue_;
    SyncFlags flags_;
    // intially zero, but accumulating the dstStages of barriers if they chain.
    VkPipelineStageFlags2 dependency_chain_;

    // Write specific layout state
    OrderingBarrier pending_layout_ordering_;
    VkPipelineStageFlags2 pending_dep_chain_;
    SyncAccessFlags pending_barriers_;

    friend ResourceAccessState;
};

class ResourceAccessState {
  protected:
    using OrderingBarriers = std::array<OrderingBarrier, static_cast<size_t>(SyncOrdering::kNumOrderings)>;
    using FirstAccesses = small_vector<ResourceFirstAccess, 3>;

  public:
    HazardResult DetectHazard(const SyncAccessInfo &usage_info) const;
    HazardResult DetectHazard(const SyncAccessInfo &usage_info, const OrderingBarrier &ordering, SyncFlags flags,
                              QueueId queue_id) const;
    HazardResult DetectHazard(const ResourceAccessState &recorded_use, QueueId queue_id, const ResourceUsageRange &tag_range) const;

    HazardResult DetectAsyncHazard(const SyncAccessInfo &usage_info, ResourceUsageTag start_tag, QueueId queue_id) const;
    HazardResult DetectAsyncHazard(const ResourceAccessState &recorded_use, const ResourceUsageRange &tag_range,
                                   ResourceUsageTag start_tag, QueueId queue_id) const;

    HazardResult DetectBarrierHazard(const SyncAccessInfo &usage_info, QueueId queue_id, VkPipelineStageFlags2 source_exec_scope,
                                     const SyncAccessFlags &source_access_scope) const;
    HazardResult DetectBarrierHazard(const SyncAccessInfo &usage_info, const ResourceAccessState &scope_state,
                                     VkPipelineStageFlags2 source_exec_scope, const SyncAccessFlags &source_access_scope,
                                     QueueId event_queue, ResourceUsageTag event_tag) const;

    void Update(const SyncAccessInfo &usage_info, SyncOrdering ordering_rule, ResourceUsageTagEx tag_ex, SyncFlags flags = 0);
    void SetWrite(const SyncAccessInfo &usage_info, ResourceUsageTagEx tag_ex, SyncFlags flags = 0);
    void ClearWrite();
    void ClearRead();
    void ClearFirstUse();
    void Resolve(const ResourceAccessState &other);
    void ApplyBarriers(const std::vector<SyncBarrier> &barriers, bool layout_transition);
    void ApplyBarriersImmediate(const SyncBarrier &barriers);
    template <typename ScopeOps>
    void ApplyBarrier(ScopeOps &&scope, const SyncBarrier &barrier, bool layout_transition,
                      uint32_t layout_transition_handle_index = vvl::kNoIndex32);
    void ApplyPendingBarriers(ResourceUsageTag tag);
    void ApplySemaphore(const SemaphoreScope &signal, const SemaphoreScope wait);

    struct WaitQueueTagPredicate {
        QueueId queue;
        ResourceUsageTag tag;
        bool operator()(const ReadState &read_access) const;       // Read access predicate
        bool operator()(const ResourceAccessState &access) const;  // Write access predicate
    };
    friend WaitQueueTagPredicate;

    struct WaitTagPredicate {
        ResourceUsageTag tag;
        bool operator()(const ReadState &read_access) const;       // Read access predicate
        bool operator()(const ResourceAccessState &access) const;  // Write access predicate
    };
    friend WaitTagPredicate;

    struct WaitAcquirePredicate {
        ResourceUsageTag present_tag;
        ResourceUsageTag acquire_tag;
        bool operator()(const ReadState &read_access) const;       // Read access predicate
        bool operator()(const ResourceAccessState &access) const;  // Write access predicate
    };
    friend WaitAcquirePredicate;

    template <typename Predicate>
    bool ApplyPredicatedWait(Predicate &predicate);

    bool FirstAccessInTagRange(const ResourceUsageRange &tag_range) const;

    void OffsetTag(ResourceUsageTag offset);
    ResourceAccessState();

    bool HasPendingState() const { return (0 != pending_layout_transition) || (last_write && last_write->HasPendingState()); }
    bool HasWriteOp() const { return last_write.has_value(); }
    SyncAccessIndex LastWriteOp() const { return last_write.has_value() ? last_write->Index() : SYNC_ACCESS_INDEX_NONE; }
    bool IsLastWriteOp(SyncAccessIndex access_index) const { return LastWriteOp() == access_index; }
    ResourceUsageTag LastWriteTag() const { return last_write.has_value() ? last_write->Tag() : ResourceUsageTag(0); }
    bool operator==(const ResourceAccessState &rhs) const {
        const bool write_same = (read_execution_barriers == rhs.read_execution_barriers) &&
                                (input_attachment_read == rhs.input_attachment_read) && (last_write == rhs.last_write);

        const bool read_write_same = write_same && (last_read_stages == rhs.last_read_stages) && (last_reads == rhs.last_reads);

        const bool same = read_write_same && (first_accesses_ == rhs.first_accesses_) &&
                          (first_read_stages_ == rhs.first_read_stages_) &&
                          (first_write_layout_ordering_ == rhs.first_write_layout_ordering_);

        return same;
    }
    bool operator!=(const ResourceAccessState &rhs) const { return !(*this == rhs); }
    VkPipelineStageFlags2 GetReadBarriers(SyncAccessIndex access_index) const;
    SyncAccessFlags GetWriteBarriers() const { return last_write.has_value() ? last_write->Barriers() : SyncAccessFlags(); }
    void SetQueueId(QueueId id);

    bool IsWriteBarrierHazard(QueueId queue_id, VkPipelineStageFlags2 src_exec_scope,
                              const SyncAccessFlags &src_access_scope) const;
    bool WriteInSourceScopeOrChain(VkPipelineStageFlags2 src_exec_scope, SyncAccessFlags src_access_scope) const;
    bool WriteInQueueSourceScopeOrChain(QueueId queue, VkPipelineStageFlags2 src_exec_scope,
                                        const SyncAccessFlags &src_access_scope) const;
    bool WriteInEventScope(VkPipelineStageFlags2 src_exec_scope, const SyncAccessFlags &src_access_scope, QueueId scope_queue,
                           ResourceUsageTag scope_tag) const;

    struct UntaggedScopeOps {
        bool WriteInScope(const SyncBarrier &barrier, const ResourceAccessState &access) const {
            return access.WriteInSourceScopeOrChain(barrier.src_exec_scope.exec_scope, barrier.src_access_scope);
        }
        bool ReadInScope(const SyncBarrier &barrier, const ReadState &read_state) const {
            return read_state.ReadInScopeOrChain(barrier.src_exec_scope.exec_scope);
        }
    };

    struct QueueScopeOps {
        bool WriteInScope(const SyncBarrier &barrier, const ResourceAccessState &access) const {
            return access.WriteInQueueSourceScopeOrChain(queue, barrier.src_exec_scope.exec_scope, barrier.src_access_scope);
        }
        bool ReadInScope(const SyncBarrier &barrier, const ReadState &read_state) const {
            return read_state.ReadInQueueScopeOrChain(queue, barrier.src_exec_scope.exec_scope);
        }
        QueueScopeOps(QueueId scope_queue) : queue(scope_queue) {}
        QueueId queue;
    };

    struct EventScopeOps {
        bool WriteInScope(const SyncBarrier &barrier, const ResourceAccessState &access) const {
            return access.WriteInEventScope(barrier.src_exec_scope.exec_scope, barrier.src_access_scope, scope_queue, scope_tag);
        }
        bool ReadInScope(const SyncBarrier &barrier, const ReadState &read_state) const {
            return read_state.ReadInEventScope(barrier.src_exec_scope.exec_scope, scope_queue, scope_tag);
        }
        EventScopeOps(QueueId qid, ResourceUsageTag event_tag) : scope_queue(qid), scope_tag(event_tag) {}
        QueueId scope_queue;
        ResourceUsageTag scope_tag;
    };

    void Normalize();
    void GatherReferencedTags(ResourceUsageTagSet &used) const;

    static const OrderingBarrier &GetOrderingRules(SyncOrdering ordering_enum) {
        return kOrderingRules[static_cast<size_t>(ordering_enum)];
    }

  private:
    static constexpr VkPipelineStageFlags2 kInvalidAttachmentStage = ~VkPipelineStageFlags2(0);
    bool IsRAWHazard(const SyncAccessInfo &usage_info) const;

    bool WriteInScope(const SyncAccessFlags &src_access_scope) const;
    // Apply ordering scope to write hazard detection

    bool ReadInSourceScopeOrChain(VkPipelineStageFlags2 src_exec_scope) const {
        return (0 != (src_exec_scope & (last_read_stages | read_execution_barriers)));
    }

    static bool IsReadHazard(VkPipelineStageFlags2 stage_mask, const VkPipelineStageFlags2 barriers) {
        return stage_mask != (stage_mask & barriers);
    }

    bool IsReadHazard(VkPipelineStageFlags2 stage_mask, const ReadState &read_access) const {
        return IsReadHazard(stage_mask, read_access.barriers);
    }
    VkPipelineStageFlags2 GetOrderedStages(QueueId queue_id, const OrderingBarrier &ordering, SyncFlags flags) const;

    void UpdateFirst(ResourceUsageTagEx tag_ex, const SyncAccessInfo &usage_info, SyncOrdering ordering_rule);
    void TouchupFirstForLayoutTransition(ResourceUsageTag tag, const OrderingBarrier &layout_ordering);
    void MergePending(const ResourceAccessState &other);
    void MergeReads(const ResourceAccessState &other);

    // TODO: Add a NONE (zero) enum to SyncStageAccessFlags for input_attachment_read and last_write

    // With reads, each must be "safe" relative to it's prior write, so we need only
    // save the most recent write operation (as anything *transitively* unsafe would arleady
    // be included
    // SyncStageAccessFlags write_barriers;              // union of applicable barrier masks since last write
    // VkPipelineStageFlags2 write_dependency_chain;  // intiially zero, but accumulating the dstStages of barriers if they
    // chain. ResourceUsageTag write_tag; QueueId write_queue;
    std::optional<WriteState> last_write;  // only the most recent write

    VkPipelineStageFlags2 last_read_stages;
    VkPipelineStageFlags2 read_execution_barriers;
    using ReadStates = small_vector<ReadState, 3, uint32_t>;
    ReadStates last_reads;

    // TODO Input Attachment cleanup for multiple reads in a given stage
    // Tracks whether the fragment shader read is input attachment read
    bool input_attachment_read;

    // Not part of the write state, logically.  Can exist when !last_write
    // Pending execution state to support independent parallel barriers
    bool pending_layout_transition;
    uint32_t pending_layout_transition_handle_index = vvl::kNoIndex32;

    FirstAccesses first_accesses_;
    VkPipelineStageFlags2 first_read_stages_;
    OrderingBarrier first_write_layout_ordering_;
    bool first_access_closed_;

    static OrderingBarriers kOrderingRules;
};
using ResourceAccessStateFunction = std::function<void(ResourceAccessState *)>;
using ResourceAccessRangeMap = sparse_container::range_map<ResourceAddress, ResourceAccessState>;
using ResourceRangeMergeIterator = sparse_container::parallel_iterator<ResourceAccessRangeMap, const ResourceAccessRangeMap>;

// Apply the memory barrier without updating the existing barriers.  The execution barrier
// changes the "chaining" state, but to keep barriers independent, we defer this until all barriers
// of the batch have been processed. Also, depending on whether layout transition happens, we'll either
// replace the current write barriers or add to them, so accumulate to pending as well.
template <typename ScopeOps>
void ResourceAccessState::ApplyBarrier(ScopeOps &&scope, const SyncBarrier &barrier, bool layout_transition,
                                       uint32_t layout_transition_handle_index) {
    // For independent barriers we need to track what the new barriers and dependency chain *will* be when we're done
    // applying the memory barriers
    // NOTE: We update the write barrier if the write is in the first access scope or if there is a layout
    //       transistion, under the theory of "most recent access".  If the resource acces  *isn't* safe
    //       vs. this layout transition DetectBarrierHazard should report it.  We treat the layout
    //       transistion *as* a write and in scope with the barrier (it's before visibility).
    if (layout_transition) {
        if (!last_write.has_value()) {
            last_write.emplace(GetAccessInfo(SYNC_ACCESS_INDEX_NONE), ResourceUsageTagEx{0U});
        }
        last_write->UpdatePendingBarriers(barrier);
        last_write->UpdatePendingLayoutOrdering(barrier);
        pending_layout_transition = true;
        pending_layout_transition_handle_index = layout_transition_handle_index;
    } else {
        if (scope.WriteInScope(barrier, *this)) {
            last_write->UpdatePendingBarriers(barrier);
        }

        if (!pending_layout_transition) {
            // Once we're dealing with a layout transition (which is modelled as a *write*) then the last reads/chains
            // don't need to be tracked as we're just going to clear them.
            VkPipelineStageFlags2 stages_in_scope = VK_PIPELINE_STAGE_2_NONE;

            for (auto &read_access : last_reads) {
                // The | implements the "dependency chain" logic for this access, as the barriers field stores the second sync
                // scope
                if (scope.ReadInScope(barrier, read_access)) {
                    // We'll apply the barrier in the next loop, because it's DRY'r to do it one place.
                    stages_in_scope |= read_access.stage;
                }
            }

            for (auto &read_access : last_reads) {
                if (0 != ((read_access.stage | read_access.sync_stages) & stages_in_scope)) {
                    // If this stage, or any stage known to be synchronized after it are in scope, apply the barrier to this
                    // read NOTE: Forwarding barriers to known prior stages changes the sync_stages from shallow to deep,
                    // because the
                    //       barriers used to determine sync_stages have been propagated to all known earlier stages
                    read_access.ApplyReadBarrier(barrier.dst_exec_scope.exec_scope);
                }
            }
        }
    }
}

// Return if the resulting state is "empty"
template <typename Predicate>
bool ResourceAccessState::ApplyPredicatedWait(Predicate &predicate) {
    VkPipelineStageFlags2 sync_reads = VK_PIPELINE_STAGE_2_NONE;

    // Use the predicate to build a mask of the read stages we are synchronizing
    // Use the sync_stages to also detect reads known to be before any synchronized reads (first pass)
    for (auto &read_access : last_reads) {
        if (predicate(read_access)) {
            // If we know this stage is before any stage we syncing, or if the predicate tells us that we are waited for..
            sync_reads |= read_access.stage;
        }
    }

    // Now that we know the reads directly in scopejust need to go over the list again to pick up the "known earlier" stages.
    // NOTE: sync_stages is "deep" catching all stages synchronized after it because we forward barriers
    uint32_t unsync_count = 0;
    for (auto &read_access : last_reads) {
        if (0 != ((read_access.stage | read_access.sync_stages) & sync_reads)) {
            // This is redundant in the "stage" case, but avoids a second branch to get an accurate count
            sync_reads |= read_access.stage;
        } else {
            ++unsync_count;
        }
    }

    if (unsync_count) {
        if (sync_reads) {
            // When have some remaining unsynchronized reads, we have to rewrite the last_reads array.
            ReadStates unsync_reads;
            unsync_reads.reserve(unsync_count);
            VkPipelineStageFlags2 unsync_read_stages = VK_PIPELINE_STAGE_2_NONE;
            for (auto &read_access : last_reads) {
                if (0 == (read_access.stage & sync_reads)) {
                    unsync_reads.emplace_back(read_access);
                    unsync_read_stages |= read_access.stage;
                }
            }
            last_read_stages = unsync_read_stages;
            last_reads = std::move(unsync_reads);
        }
    } else {
        // Nothing remains (or it was empty to begin with)
        ClearRead();
    }

    bool all_clear = last_reads.empty();
    if (last_write.has_value()) {
        if (predicate(*this) || sync_reads) {
            // Clear any predicated write, or any the write from any any access with synchronized reads.
            // This could drop RAW detection, but only if the synchronized reads were RAW hazards, and given
            // MRR approach to reporting, this is consistent with other drops, especially since fixing the
            // RAW wit the sync_reads stages would preclude a subsequent RAW.
            ClearWrite();
        } else {
            all_clear = false;
        }
    }
    return all_clear;
}