File: sync_op.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (1330 lines) | stat: -rw-r--r-- 68,201 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
/*
 * Copyright (c) 2019-2025 Valve Corporation
 * Copyright (c) 2019-2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "sync/sync_op.h"
#include "sync/sync_renderpass.h"
#include "sync/sync_access_context.h"
#include "sync/sync_commandbuffer.h"
#include "sync/sync_image.h"

#include "state_tracker/buffer_state.h"
#include "state_tracker/cmd_buffer_state.h"
#include "state_tracker/render_pass_state.h"

#include "sync/sync_validation.h"
#include "utils/sync_utils.h"

// Range generators for to allow event scope filtration to be limited to the top of the resource access traversal pipeline
//
// Note: there is no "begin/end" or reset facility.  These are each written as "one time through" generators.
//
// Usage:
//  Constructor() -- initializes the generator to point to the begin of the space declared.
//  *  -- the current range of the generator empty signfies end
//  ++ -- advance to the next non-empty range (or end)

// Generate the ranges that are the intersection of range and the entries in the RangeMap
template <typename RangeMap, typename KeyType = typename RangeMap::key_type>
class MapRangesRangeGenerator {
  public:
    // Default constructed is safe to dereference for "empty" test, but for no other operation.
    MapRangesRangeGenerator() : range_(), map_(nullptr), map_pos_(), current_() {
        // Default construction for KeyType *must* be empty range
        assert(current_.empty());
    }
    MapRangesRangeGenerator(const RangeMap &filter, const KeyType &range) : range_(range), map_(&filter), map_pos_(), current_() {
        SeekBegin();
    }
    MapRangesRangeGenerator(const MapRangesRangeGenerator &from) = default;

    const KeyType &operator*() const { return current_; }
    const KeyType *operator->() const { return &current_; }
    MapRangesRangeGenerator &operator++() {
        ++map_pos_;
        UpdateCurrent();
        return *this;
    }

    bool operator==(const MapRangesRangeGenerator &other) const { return current_ == other.current_; }

  protected:
    void UpdateCurrent() {
        if (map_pos_ != map_->cend()) {
            current_ = range_ & map_pos_->first;
        } else {
            current_ = KeyType();
        }
    }
    void SeekBegin() {
        map_pos_ = map_->lower_bound(range_);
        UpdateCurrent();
    }

    // Adding this functionality here, to avoid gratuitous Base:: qualifiers in the derived class
    // Note: Not exposed in this classes public interface to encourage using a consistent ++/empty generator semantic
    template <typename Pred>
    MapRangesRangeGenerator &PredicatedIncrement(Pred &pred) {
        do {
            ++map_pos_;
        } while (map_pos_ != map_->cend() && map_pos_->first.intersects(range_) && !pred(map_pos_));
        UpdateCurrent();
        return *this;
    }

    const KeyType range_;
    const RangeMap *map_;
    typename RangeMap::const_iterator map_pos_;
    KeyType current_;
};
using EventSimpleRangeGenerator = MapRangesRangeGenerator<AccessContext::ScopeMap>;

// Generate the ranges that are the intersection of the RangeGen ranges and the entries in the FilterMap
// Templated to allow for different Range generators or map sources...
template <typename RangeMap, typename RangeGen, typename KeyType = typename RangeMap::key_type>
class FilteredGeneratorGenerator {
  public:
    // Default constructed is safe to dereference for "empty" test, but for no other operation.
    FilteredGeneratorGenerator() : filter_(nullptr), gen_(), filter_pos_(), current_() {
        // Default construction for KeyType *must* be empty range
        assert(current_.empty());
    }
    FilteredGeneratorGenerator(const RangeMap &filter, RangeGen &gen) : filter_(&filter), gen_(gen), filter_pos_(), current_() {
        SeekBegin();
    }
    FilteredGeneratorGenerator(const FilteredGeneratorGenerator &from) = default;
    const KeyType &operator*() const { return current_; }
    const KeyType *operator->() const { return &current_; }
    FilteredGeneratorGenerator &operator++() {
        KeyType gen_range = GenRange();
        KeyType filter_range = FilterRange();
        current_ = KeyType();
        while (gen_range.non_empty() && filter_range.non_empty() && current_.empty()) {
            if (gen_range.end > filter_range.end) {
                // if the generated range is beyond the filter_range, advance the filter range
                filter_range = AdvanceFilter();
            } else {
                gen_range = AdvanceGen();
            }
            current_ = gen_range & filter_range;
        }
        return *this;
    }

    bool operator==(const FilteredGeneratorGenerator &other) const { return current_ == other.current_; }

  private:
    KeyType AdvanceFilter() {
        ++filter_pos_;
        auto filter_range = FilterRange();
        if (filter_range.valid()) {
            FastForwardGen(filter_range);
        }
        return filter_range;
    }
    KeyType AdvanceGen() {
        ++gen_;
        auto gen_range = GenRange();
        if (gen_range.valid()) {
            FastForwardFilter(gen_range);
        }
        return gen_range;
    }

    KeyType FilterRange() const { return (filter_pos_ != filter_->cend()) ? filter_pos_->first : KeyType(); }
    KeyType GenRange() const { return *gen_; }

    KeyType FastForwardFilter(const KeyType &range) {
        auto filter_range = FilterRange();
        int retry_count = 0;
        const static int kRetryLimit = 2;  // TODO -- determine whether this limit is optimal
        while (!filter_range.empty() && (filter_range.end <= range.begin)) {
            if (retry_count < kRetryLimit) {
                ++filter_pos_;
                filter_range = FilterRange();
                retry_count++;
            } else {
                // Okay we've tried walking, do a seek.
                filter_pos_ = filter_->lower_bound(range);
                break;
            }
        }
        return FilterRange();
    }

    // TODO: Consider adding "seek" (or an absolute bound "get" to range generators to make this walk
    // faster.
    KeyType FastForwardGen(const KeyType &range) {
        auto gen_range = GenRange();
        while (!gen_range.empty() && (gen_range.end <= range.begin)) {
            ++gen_;
            gen_range = GenRange();
        }
        return gen_range;
    }

    void SeekBegin() {
        auto gen_range = GenRange();
        if (gen_range.empty()) {
            current_ = KeyType();
            filter_pos_ = filter_->cend();
        } else {
            filter_pos_ = filter_->lower_bound(gen_range);
            current_ = gen_range & FilterRange();
        }
    }

    const RangeMap *filter_;
    RangeGen gen_;
    typename RangeMap::const_iterator filter_pos_;
    KeyType current_;
};

using EventImageRangeGenerator = FilteredGeneratorGenerator<AccessContext::ScopeMap, subresource_adapter::ImageRangeGenerator>;

// Helper functions for SyncOpPipelineBarrier::ReplayRecord
namespace PipelineBarrier {
void ApplyBarriers(const std::vector<SyncBufferMemoryBarrier> &barriers, QueueId queue_id, AccessContext *access_context) {
    for (const SyncBufferMemoryBarrier &barrier : barriers) {
        ApplyBarrierFunctor update_action(PipelineBarrierOp(queue_id, barrier.barrier, false));

        const auto base_address = ResourceBaseAddress(*barrier.buffer);
        ResourceAccessRange range = SimpleBinding(*barrier.buffer) ? (barrier.range + base_address) : ResourceAccessRange();
        SingleRangeGenerator<ResourceAccessRange> range_gen(range);

        access_context->UpdateMemoryAccessState(update_action, range_gen);
    }
}

void ApplyBarriers(const std::vector<SyncImageMemoryBarrier> &barriers, QueueId queue_id, AccessContext *access_context) {
    for (const SyncImageMemoryBarrier &barrier : barriers) {
        ApplyBarrierFunctor update_action(
            PipelineBarrierOp(queue_id, barrier.barrier, barrier.layout_transition, barrier.handle_index));
        const auto &sub_state = syncval_state::SubState(*barrier.image);
        auto range_gen = sub_state.MakeImageRangeGen(barrier.subresource_range, false);
        access_context->UpdateMemoryAccessState(update_action, range_gen);
    }
}

void ApplyGlobalBarriers(const std::vector<SyncBarrier> &barriers, QueueId queue_id, ResourceUsageTag tag,
                         AccessContext *access_context) {
    auto barriers_functor = ApplyBarrierOpsFunctor<PipelineBarrierOp>(true, barriers.size(), tag);
    for (const auto &barrier : barriers) {
        barriers_functor.EmplaceBack(PipelineBarrierOp(queue_id, barrier, false));
    }
    auto range_gen = SingleRangeGenerator<ResourceAccessRange>(kFullRange);
    access_context->UpdateMemoryAccessState(barriers_functor, range_gen);
}
}  // namespace PipelineBarrier

// Helper functions for SyncOpWaitEvents::ReplayRecord
namespace Events {

// Need to restrict to only valid exec and access scope for this event
SyncBarrier RestrictToEvent(const SyncBarrier &barrier, const SyncEventState &sync_event) {
    SyncBarrier result = barrier;
    result.src_exec_scope.exec_scope = sync_event.scope.exec_scope & barrier.src_exec_scope.exec_scope;
    result.src_access_scope = sync_event.scope.valid_accesses & barrier.src_access_scope;
    return result;
}

void ApplyBarriers(const std::vector<SyncBufferMemoryBarrier> &barriers, QueueId queue_id, AccessContext *access_context,
                   const SyncEventState &sync_event) {
    for (const SyncBufferMemoryBarrier &barrier : barriers) {
        auto sync_barrier = RestrictToEvent(barrier.barrier, sync_event);
        ApplyBarrierFunctor update_action(WaitEventBarrierOp(queue_id, sync_event.first_scope_tag, sync_barrier, false));

        const auto base_address = ResourceBaseAddress(*barrier.buffer);
        ResourceAccessRange range = SimpleBinding(*barrier.buffer) ? (barrier.range + base_address) : ResourceAccessRange();
        EventSimpleRangeGenerator range_gen(sync_event.FirstScope(), range);

        access_context->UpdateMemoryAccessState(update_action, range_gen);
    }
}

void ApplyBarriers(const std::vector<SyncImageMemoryBarrier> &barriers, QueueId queue_id, AccessContext *access_context,
                   const SyncEventState &sync_event) {
    for (const SyncImageMemoryBarrier &barrier : barriers) {
        auto sync_barrier = RestrictToEvent(barrier.barrier, sync_event);
        ApplyBarrierFunctor update_action(
            WaitEventBarrierOp(queue_id, sync_event.first_scope_tag, sync_barrier, barrier.layout_transition));

        const auto &sub_state = syncval_state::SubState(*barrier.image);
        auto range_gen = sub_state.MakeImageRangeGen(barrier.subresource_range, false);
        EventImageRangeGenerator filtered_range_gen(sync_event.FirstScope(), range_gen);

        access_context->UpdateMemoryAccessState(update_action, filtered_range_gen);
    }
}

void ApplyGlobalBarriers(const std::vector<SyncBarrier> &barriers, QueueId queue_id, ResourceUsageTag tag,
                         AccessContext *access_context, const SyncEventState &sync_event) {
    auto barriers_functor = ApplyBarrierOpsFunctor<WaitEventBarrierOp>(false, barriers.size(), tag);
    for (const auto &barrier : barriers) {
        auto restricted_barrier = RestrictToEvent(barrier, sync_event);
        barriers_functor.EmplaceBack(WaitEventBarrierOp(queue_id, sync_event.first_scope_tag, restricted_barrier, false));
    }
    auto range_gen = EventSimpleRangeGenerator(sync_event.FirstScope(), kFullRange);
    access_context->UpdateMemoryAccessState(barriers_functor, range_gen);
}
}  // namespace Events

void BarrierSet::MakeMemoryBarriers(const SyncExecScope &src, const SyncExecScope &dst, uint32_t memory_barrier_count,
                                    const VkMemoryBarrier *barriers) {
    memory_barriers.reserve(std::max<uint32_t>(1, memory_barrier_count));
    for (const VkMemoryBarrier &barrier : vvl::make_span(barriers, memory_barrier_count)) {
        SyncBarrier sync_barrier(src, barrier.srcAccessMask, dst, barrier.dstAccessMask);
        memory_barriers.emplace_back(sync_barrier);
    }
    if (memory_barrier_count == 0) {
        // If there are no global memory barriers, force an exec barrier
        memory_barriers.emplace_back(SyncBarrier(src, dst));
    }
    single_exec_scope = true;
}

void BarrierSet::MakeBufferMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src, const SyncExecScope &dst,
                                          uint32_t barrier_count, const VkBufferMemoryBarrier *barriers) {
    buffer_memory_barriers.reserve(barrier_count);
    for (const VkBufferMemoryBarrier &barrier : vvl::make_span(barriers, barrier_count)) {
        if (auto buffer = sync_state.Get<vvl::Buffer>(barrier.buffer)) {
            const auto range = MakeRange(*buffer, barrier.offset, barrier.size);
            const SyncBarrier sync_barrier(src, barrier.srcAccessMask, dst, barrier.dstAccessMask);
            buffer_memory_barriers.emplace_back(buffer, sync_barrier, range);
        }
    }
}

void BarrierSet::MakeMemoryBarriers(VkQueueFlags queue_flags, uint32_t memory_barrier_count, const VkMemoryBarrier2 *barriers) {
    memory_barriers.reserve(memory_barrier_count);
    for (const VkMemoryBarrier2 &barrier : vvl::make_span(barriers, memory_barrier_count)) {
        auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
        auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
        SyncBarrier sync_barrier(src, barrier.srcAccessMask, dst, barrier.dstAccessMask);
        memory_barriers.emplace_back(sync_barrier);
    }
    single_exec_scope = false;
}

void BarrierSet::MakeBufferMemoryBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t barrier_count,
                                          const VkBufferMemoryBarrier2 *barriers) {
    buffer_memory_barriers.reserve(barrier_count);
    for (const VkBufferMemoryBarrier2 &barrier : vvl::make_span(barriers, barrier_count)) {
        auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
        auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
        if (auto buffer = sync_state.Get<vvl::Buffer>(barrier.buffer)) {
            const auto range = MakeRange(*buffer, barrier.offset, barrier.size);
            const SyncBarrier sync_barrier(src, barrier.srcAccessMask, dst, barrier.dstAccessMask);
            buffer_memory_barriers.emplace_back(buffer, sync_barrier, range);
        }
    }
}

void BarrierSet::MakeImageMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src, const SyncExecScope &dst,
                                         uint32_t barrier_count, const VkImageMemoryBarrier *barriers) {
    image_memory_barriers.reserve(barrier_count);
    for (const auto [index, barrier] : vvl::enumerate(barriers, barrier_count)) {
        if (auto image = sync_state.Get<vvl::Image>(barrier.image)) {
            auto subresource_range = image->NormalizeSubresourceRange(barrier.subresourceRange);
            const SyncBarrier sync_barrier(src, barrier.srcAccessMask, dst, barrier.dstAccessMask);
            const bool layout_transition = barrier.oldLayout != barrier.newLayout;
            image_memory_barriers.emplace_back(image, sync_barrier, subresource_range, layout_transition, index);
        }
    }
}

void BarrierSet::MakeImageMemoryBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t barrier_count,
                                         const VkImageMemoryBarrier2 *barriers) {
    image_memory_barriers.reserve(barrier_count);
    for (const auto [index, barrier] : vvl::enumerate(barriers, barrier_count)) {
        auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
        auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
        auto image = sync_state.Get<vvl::Image>(barrier.image);
        if (image) {
            auto subresource_range = image->NormalizeSubresourceRange(barrier.subresourceRange);
            const SyncBarrier sync_barrier(src, barrier.srcAccessMask, dst, barrier.dstAccessMask);
            const bool layout_transition = barrier.oldLayout != barrier.newLayout;
            image_memory_barriers.emplace_back(image, sync_barrier, subresource_range, layout_transition, index);
        }
    }
}

SyncOpPipelineBarrier::SyncOpPipelineBarrier(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags,
                                             VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
                                             uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
                                             uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers,
                                             uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers)
    : SyncOpBase(command) {
    const auto src_exec_scope = SyncExecScope::MakeSrc(queue_flags, srcStageMask);
    const auto dst_exec_scope = SyncExecScope::MakeDst(queue_flags, dstStageMask);
    barrier_set_.src_exec_scope = src_exec_scope;
    barrier_set_.dst_exec_scope = dst_exec_scope;
    barrier_set_.MakeMemoryBarriers(src_exec_scope, dst_exec_scope, memoryBarrierCount, pMemoryBarriers);
    barrier_set_.MakeBufferMemoryBarriers(sync_state, src_exec_scope, dst_exec_scope, bufferMemoryBarrierCount,
                                          pBufferMemoryBarriers);
    barrier_set_.MakeImageMemoryBarriers(sync_state, src_exec_scope, dst_exec_scope, imageMemoryBarrierCount, pImageMemoryBarriers);
}

SyncOpPipelineBarrier::SyncOpPipelineBarrier(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags,
                                             const VkDependencyInfo &dep_info)
    : SyncOpBase(command) {
    const ExecScopes stage_masks = sync_utils::GetExecScopes(dep_info);
    barrier_set_.src_exec_scope = SyncExecScope::MakeSrc(queue_flags, stage_masks.src);
    barrier_set_.dst_exec_scope = SyncExecScope::MakeDst(queue_flags, stage_masks.dst);
    barrier_set_.MakeMemoryBarriers(queue_flags, dep_info.memoryBarrierCount, dep_info.pMemoryBarriers);
    barrier_set_.MakeBufferMemoryBarriers(sync_state, queue_flags, dep_info.bufferMemoryBarrierCount,
                                          dep_info.pBufferMemoryBarriers);
    barrier_set_.MakeImageMemoryBarriers(sync_state, queue_flags, dep_info.imageMemoryBarrierCount, dep_info.pImageMemoryBarriers);
}

bool SyncOpPipelineBarrier::Validate(const CommandBufferAccessContext &cb_context) const {
    bool skip = false;
    const auto *context = cb_context.GetCurrentAccessContext();
    assert(context);
    if (!context) return skip;

    // Validate Image Layout transitions
    for (const auto &image_barrier : barrier_set_.image_memory_barriers) {
        if (!image_barrier.layout_transition) {
            continue;
        }
        const vvl::Image &image_state = *image_barrier.image;
        const auto hazard = context->DetectImageBarrierHazard(image_state, image_barrier.barrier.src_exec_scope.exec_scope,
                                                              image_barrier.barrier.src_access_scope,
                                                              image_barrier.subresource_range, AccessContext::kDetectAll);
        if (hazard.IsHazard()) {
            LogObjectList objlist(cb_context.GetCBState().Handle(), image_state.Handle());
            const Location loc(command_);
            const SyncValidator &sync_state = cb_context.GetSyncState();
            const std::string resource_description = sync_state.FormatHandle(image_state.Handle());
            const std::string error =
                sync_state.error_messages_.ImageBarrierError(hazard, cb_context, command_, resource_description, image_barrier);
            skip |= sync_state.SyncError(hazard.Hazard(), objlist, loc, error);
        }
    }
    return skip;
}

ResourceUsageTag SyncOpPipelineBarrier::Record(CommandBufferAccessContext *cb_context) {
    const auto tag = cb_context->NextCommandTag(command_);
    for (const auto &buffer_barrier : barrier_set_.buffer_memory_barriers) {
        cb_context->AddCommandHandle(tag, buffer_barrier.buffer->Handle());
    }
    for (auto &image_barrier : barrier_set_.image_memory_barriers) {
        if (image_barrier.layout_transition) {
            const auto tag_ex = cb_context->AddCommandHandle(tag, image_barrier.image->Handle());
            image_barrier.handle_index = tag_ex.handle_index;
        }
    }
    ReplayRecord(*cb_context, tag);
    return tag;
}

void SyncOpPipelineBarrier::ReplayRecord(CommandExecutionContext &exec_context, const ResourceUsageTag exec_tag) const {
    if (!exec_context.ValidForSyncOps()) return;

    SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
    AccessContext *access_context = exec_context.GetCurrentAccessContext();
    const auto queue_id = exec_context.GetQueueId();
    PipelineBarrier::ApplyBarriers(barrier_set_.buffer_memory_barriers, queue_id, access_context);
    PipelineBarrier::ApplyBarriers(barrier_set_.image_memory_barriers, queue_id, access_context);
    PipelineBarrier::ApplyGlobalBarriers(barrier_set_.memory_barriers, queue_id, exec_tag, access_context);
    if (barrier_set_.single_exec_scope) {
        events_context->ApplyBarrier(barrier_set_.src_exec_scope, barrier_set_.dst_exec_scope, exec_tag);
    } else {
        for (const auto &barrier : barrier_set_.memory_barriers) {
            events_context->ApplyBarrier(barrier.src_exec_scope, barrier.dst_exec_scope, exec_tag);
        }
    }
}

bool SyncOpPipelineBarrier::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    // The layout transitions happen at the replay tag
    ResourceUsageRange first_use_range = {recorded_tag, recorded_tag + 1};
    return replay.DetectFirstUseHazard(first_use_range);
}

SyncOpWaitEvents::SyncOpWaitEvents(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags,
                                   uint32_t eventCount, const VkEvent *pEvents, VkPipelineStageFlags srcStageMask,
                                   VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount,
                                   const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
                                   const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
                                   const VkImageMemoryBarrier *pImageMemoryBarriers)
    : SyncOpBase(command), barrier_sets_(1) {
    auto &barrier_set = barrier_sets_[0];
    const auto src_exec_scope = SyncExecScope::MakeSrc(queue_flags, srcStageMask);
    const auto dst_exec_scope = SyncExecScope::MakeDst(queue_flags, dstStageMask);
    barrier_set.src_exec_scope = src_exec_scope;
    barrier_set.dst_exec_scope = dst_exec_scope;
    barrier_set.MakeMemoryBarriers(src_exec_scope, dst_exec_scope, memoryBarrierCount, pMemoryBarriers);
    barrier_set.MakeBufferMemoryBarriers(sync_state, src_exec_scope, dst_exec_scope, bufferMemoryBarrierCount,
                                         pBufferMemoryBarriers);
    barrier_set.MakeImageMemoryBarriers(sync_state, src_exec_scope, dst_exec_scope, imageMemoryBarrierCount, pImageMemoryBarriers);
    MakeEventsList(sync_state, eventCount, pEvents);
}

SyncOpWaitEvents::SyncOpWaitEvents(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags,
                                   uint32_t eventCount, const VkEvent *pEvents, const VkDependencyInfo *pDependencyInfo)
    : SyncOpBase(command), barrier_sets_(eventCount) {
    for (uint32_t i = 0; i < eventCount; i++) {
        const auto &dep_info = pDependencyInfo[i];
        auto &barrier_set = barrier_sets_[i];
        auto stage_masks = sync_utils::GetExecScopes(dep_info);
        barrier_set.src_exec_scope = SyncExecScope::MakeSrc(queue_flags, stage_masks.src);
        barrier_set.dst_exec_scope = SyncExecScope::MakeDst(queue_flags, stage_masks.dst);
        barrier_set.MakeMemoryBarriers(queue_flags, dep_info.memoryBarrierCount, dep_info.pMemoryBarriers);
        barrier_set.MakeBufferMemoryBarriers(sync_state, queue_flags, dep_info.bufferMemoryBarrierCount,
                                             dep_info.pBufferMemoryBarriers);
        barrier_set.MakeImageMemoryBarriers(sync_state, queue_flags, dep_info.imageMemoryBarrierCount,
                                            dep_info.pImageMemoryBarriers);
    }
    MakeEventsList(sync_state, eventCount, pEvents);
}

const char *const SyncOpWaitEvents::kIgnored = "Wait operation is ignored for this event.";

bool SyncOpWaitEvents::Validate(const CommandBufferAccessContext &cb_context) const {
    bool skip = false;
    const auto &sync_state = cb_context.GetSyncState();
    const VkCommandBuffer command_buffer_handle = cb_context.GetCBState().VkHandle();

    // This is only interesting at record and not replay (Execute/Submit) time.
    for (size_t barrier_set_index = 0; barrier_set_index < barrier_sets_.size(); barrier_set_index++) {
        const auto &barrier_set = barrier_sets_[barrier_set_index];
        if (barrier_set.single_exec_scope) {
            const Location loc(command_);
            if (barrier_set.src_exec_scope.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
                const std::string vuid = std::string("SYNC-") + std::string(CmdName()) + std::string("-hostevent-unsupported");
                sync_state.LogInfo(vuid, command_buffer_handle, loc,
                                   "srcStageMask includes %s, unsupported by synchronization validation.",
                                   string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT));
            } else {
                const auto &barriers = barrier_set.memory_barriers;
                for (size_t barrier_index = 0; barrier_index < barriers.size(); barrier_index++) {
                    const auto &barrier = barriers[barrier_index];
                    if (barrier.src_exec_scope.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
                        const std::string vuid =
                            std::string("SYNC-") + std::string(CmdName()) + std::string("-hostevent-unsupported");

                        sync_state.LogInfo(vuid, command_buffer_handle, loc,
                                           "srcStageMask %s of %s %zu, %s %zu, unsupported by synchronization validation.",
                                           string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT), "pDependencyInfo",
                                           barrier_set_index, "pMemoryBarriers", barrier_index);
                    }
                }
            }
        }
    }

    // The rest is common to record time and replay time.
    skip |= DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
    return skip;
}

bool SyncOpWaitEvents::DoValidate(const CommandExecutionContext &exec_context, const ResourceUsageTag base_tag) const {
    bool skip = false;
    const auto &sync_state = exec_context.GetSyncState();
    const QueueId queue_id = exec_context.GetQueueId();

    VkPipelineStageFlags2 event_stage_masks = 0U;
    VkPipelineStageFlags2 barrier_mask_params = 0U;
    bool events_not_found = false;
    const auto *events_context = exec_context.GetCurrentEventsContext();
    assert(events_context);
    size_t barrier_set_index = 0;
    size_t barrier_set_incr = (barrier_sets_.size() == 1) ? 0 : 1;
    const Location loc(command_);
    for (const auto &event : events_) {
        const auto *sync_event = events_context->Get(event.get());
        const auto &barrier_set = barrier_sets_[barrier_set_index];
        if (!sync_event) {
            // NOTE PHASE2: This is where we'll need queue submit time validation to come back and check the srcStageMask bits
            //              or solve this with replay creating the SyncEventState in the queue context... also this will be a
            //              new validation error... wait without previously submitted set event...
            events_not_found = true;  // Demote "extra_stage_bits" error to warning, to avoid false positives at *record time*
            barrier_set_index += barrier_set_incr;
            continue;  // Core, Lifetimes, or Param check needs to catch invalid events.
        }

        // For replay calls, don't revalidate "same command buffer" events
        if (sync_event->last_command_tag >= base_tag) continue;

        const VkEvent event_handle = sync_event->event->VkHandle();
        // TODO add "destroyed" checks

        if (sync_event->first_scope) {
            // Only accumulate barrier and event stages if there is a pending set in the current context
            barrier_mask_params |= barrier_set.src_exec_scope.mask_param;
            event_stage_masks |= sync_event->scope.mask_param;
        }

        const auto &src_exec_scope = barrier_set.src_exec_scope;

        const auto ignore_reason = sync_event->IsIgnoredByWait(command_, src_exec_scope.mask_param);
        if (ignore_reason) {
            switch (ignore_reason) {
                case SyncEventState::ResetWaitRace:
                case SyncEventState::Reset2WaitRace: {
                    // Four permuations of Reset and Wait calls...
                    const char *vuid = (command_ == vvl::Func::vkCmdWaitEvents) ? "VUID-vkCmdResetEvent-event-03834"
                                                                                : "VUID-vkCmdResetEvent-event-03835";
                    if (ignore_reason == SyncEventState::Reset2WaitRace) {
                        vuid = (command_ == vvl::Func::vkCmdWaitEvents) ? "VUID-vkCmdResetEvent2-event-03831"
                                                                        : "VUID-vkCmdResetEvent2-event-03832";
                    }
                    const char *const message =
                        "%s %s operation following %s without intervening execution barrier, may cause race condition. %s";
                    skip |= sync_state.LogError(vuid, event_handle, loc, message, sync_state.FormatHandle(event_handle).c_str(),
                                                CmdName(), vvl::String(sync_event->last_command), kIgnored);
                    break;
                }
                case SyncEventState::SetRace: {
                    // Issue error message that Wait is waiting on an signal subject to race condition, and is thus ignored for
                    // this event
                    const char *const vuid = "SYNC-vkCmdWaitEvents-unsynchronized-setops";
                    const char *const message =
                        "%s Unsychronized %s calls result in race conditions w.r.t. event signalling, %s %s";
                    const char *const reason = "First synchronization scope is undefined.";
                    skip |= sync_state.LogError(vuid, event_handle, loc, message, sync_state.FormatHandle(event_handle).c_str(),
                                                vvl::String(sync_event->last_command), reason, kIgnored);
                    break;
                }
                case SyncEventState::MissingStageBits: {
                    const auto missing_bits = sync_event->scope.mask_param & ~src_exec_scope.mask_param;
                    // Issue error message that event waited for is not in wait events scope
                    const char *const vuid = "VUID-vkCmdWaitEvents-srcStageMask-01158";
                    const char *const message =
                        "%s stageMask %s includes stages not present in srcStageMask %s. Stages missing from srcStageMask: %s. %s";
                    skip |= sync_state.LogError(vuid, event_handle, loc, message, sync_state.FormatHandle(event_handle).c_str(),
                                                sync_utils::StringPipelineStageFlags(sync_event->scope.mask_param).c_str(),
                                                sync_utils::StringPipelineStageFlags(src_exec_scope.mask_param).c_str(),
                                                sync_utils::StringPipelineStageFlags(missing_bits).c_str(), kIgnored);
                    break;
                }
                case SyncEventState::SetVsWait2: {
                    skip |= sync_state.LogError(
                        "VUID-vkCmdWaitEvents2-pEvents-03837", event_handle, loc, "Follows set of %s by %s. Disallowed.",
                        sync_state.FormatHandle(event_handle).c_str(), vvl::String(sync_event->last_command));
                    break;
                }
                case SyncEventState::MissingSetEvent: {
                    // TODO: There are conditions at queue submit time where we can definitively say that
                    // a missing set event is an error.  Add those if not captured in CoreChecks
                    break;
                }
                default:
                    assert(ignore_reason == SyncEventState::NotIgnored);
            }
        } else if (barrier_set.image_memory_barriers.size()) {
            const auto &image_memory_barriers = barrier_set.image_memory_barriers;
            const auto *context = exec_context.GetCurrentAccessContext();
            assert(context);
            for (const auto &image_memory_barrier : image_memory_barriers) {
                if (!image_memory_barrier.layout_transition) continue;
                const auto *image_state = image_memory_barrier.image.get();
                if (!image_state) continue;
                const auto &subresource_range = image_memory_barrier.subresource_range;
                const auto &src_access_scope = image_memory_barrier.barrier.src_access_scope;
                const auto hazard = context->DetectImageBarrierHazard(
                    *image_state, subresource_range, sync_event->scope.exec_scope, src_access_scope, queue_id,
                    sync_event->FirstScope(), sync_event->first_scope_tag, AccessContext::DetectOptions::kDetectAll);
                if (hazard.IsHazard()) {
                    LogObjectList objlist(exec_context.Handle(), image_state->Handle());
                    const std::string resource_description = sync_state.FormatHandle(image_state->Handle());
                    const std::string error = sync_state.error_messages_.ImageBarrierError(
                        hazard, exec_context, command_, resource_description, image_memory_barrier);
                    skip |= sync_state.SyncError(hazard.Hazard(), image_state->Handle(), loc, error);
                    break;
                }
            }
        }
        // TODO:  Add infrastructure for checking pDependencyInfo's vs. CmdSetEvent2 VUID - vkCmdWaitEvents2KHR - pEvents -
        // 03839
        barrier_set_index += barrier_set_incr;
    }

    // Note that we can't check for HOST in pEvents as we don't track that set event type
    const auto extra_stage_bits = (barrier_mask_params & ~VK_PIPELINE_STAGE_2_HOST_BIT) & ~event_stage_masks;
    if (extra_stage_bits) {
        assert(vvl::Func::vkCmdWaitEvents == command_);
        // Issue error message that event waited for is not in wait events scope
        const char *const message =
            "srcStageMask 0x%" PRIx64 " contains stages not present in pEvents stageMask. Extra stages are %s.%s";
        const auto handle = exec_context.Handle();
        if (!events_not_found) {
            skip |= sync_state.LogError("VUID-vkCmdWaitEvents-srcStageMask-01158", handle, loc, message, barrier_mask_params,
                                        sync_utils::StringPipelineStageFlags(extra_stage_bits).c_str(), "");
        }
    }
    return skip;
}

ResourceUsageTag SyncOpWaitEvents::Record(CommandBufferAccessContext *cb_context) {
    const auto tag = cb_context->NextCommandTag(command_);

    ReplayRecord(*cb_context, tag);
    return tag;
}

void SyncOpWaitEvents::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag exec_tag) const {
    // Unlike PipelineBarrier, WaitEvent is *not* limited to accesses within the current subpass (if any) and thus needs to import
    // all accesses. Can instead import for all first_scopes, or a union of them, if this becomes a performance/memory issue,
    // but with no idea of the performance of the union, nor of whether it even matters... take the simplest approach here,
    if (!exec_context.ValidForSyncOps()) return;
    AccessContext *access_context = exec_context.GetCurrentAccessContext();
    SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
    const QueueId queue_id = exec_context.GetQueueId();

    access_context->ResolvePreviousAccesses();

    size_t barrier_set_index = 0;
    size_t barrier_set_incr = (barrier_sets_.size() == 1) ? 0 : 1;
    assert(barrier_sets_.size() == 1 || (barrier_sets_.size() == events_.size()));
    for (auto &event_shared : events_) {
        if (!event_shared.get()) continue;
        auto *sync_event = events_context->GetFromShared(event_shared);

        sync_event->last_command = command_;
        sync_event->last_command_tag = exec_tag;

        const auto &barrier_set = barrier_sets_[barrier_set_index];
        const auto &dst = barrier_set.dst_exec_scope;
        if (!sync_event->IsIgnoredByWait(command_, barrier_set.src_exec_scope.mask_param)) {
            // These apply barriers one at a time as the are restricted to the resource ranges specified per each barrier,
            // but do not update the dependency chain information (but set the "pending" state) // s.t. the order independence
            // of the barriers is maintained.
            Events::ApplyBarriers(barrier_set.buffer_memory_barriers, queue_id, access_context, *sync_event);
            Events::ApplyBarriers(barrier_set.image_memory_barriers, queue_id, access_context, *sync_event);
            Events::ApplyGlobalBarriers(barrier_set.memory_barriers, queue_id, exec_tag, access_context, *sync_event);

            // Apply the global barrier to the event itself (for race condition tracking)
            // Events don't happen at a stage, so we need to store the unexpanded ALL_COMMANDS if set for inter-event-calls
            sync_event->barriers = dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
            sync_event->barriers |= dst.exec_scope;
        } else {
            // We ignored this wait, so we don't have any effective synchronization barriers for it.
            sync_event->barriers = 0U;
        }
        barrier_set_index += barrier_set_incr;
    }

    // Apply the pending barriers
    ResolvePendingBarrierFunctor apply_pending_action(exec_tag);
    access_context->ApplyToContext(apply_pending_action);
}

bool SyncOpWaitEvents::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    return DoValidate(replay.GetExecutionContext(), replay.GetBaseTag() + recorded_tag);
}

void SyncOpWaitEvents::MakeEventsList(const SyncValidator &sync_state, uint32_t event_count, const VkEvent *events) {
    events_.reserve(event_count);
    for (uint32_t event_index = 0; event_index < event_count; event_index++) {
        events_.emplace_back(sync_state.Get<vvl::Event>(events[event_index]));
    }
}

SyncOpResetEvent::SyncOpResetEvent(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
                                   VkPipelineStageFlags2 stageMask)
    : SyncOpBase(command), event_(sync_state.Get<vvl::Event>(event)), exec_scope_(SyncExecScope::MakeSrc(queue_flags, stageMask)) {}

bool SyncOpResetEvent::Validate(const CommandBufferAccessContext &cb_context) const {
    return DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
}

bool SyncOpResetEvent::DoValidate(const CommandExecutionContext &exec_context, const ResourceUsageTag base_tag) const {
    auto *events_context = exec_context.GetCurrentEventsContext();
    assert(events_context);
    bool skip = false;
    if (!events_context) return skip;

    const auto &sync_state = exec_context.GetSyncState();
    const auto *sync_event = events_context->Get(event_);
    if (!sync_event) return skip;  // Core, Lifetimes, or Param check needs to catch invalid events.

    if (sync_event->last_command_tag > base_tag) return skip;  // if we validated this in recording of the secondary, don't repeat

    const char *const set_wait =
        "%s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
        "hazards.";
    const char *message = set_wait;  // Only one message this call.
    if (!sync_event->HasBarrier(exec_scope_.mask_param, exec_scope_.exec_scope)) {
        const char *vuid = nullptr;
        switch (sync_event->last_command) {
            case vvl::Func::vkCmdSetEvent:
            case vvl::Func::vkCmdSetEvent2KHR:
            case vvl::Func::vkCmdSetEvent2:
                // Needs a barrier between set and reset
                vuid = "SYNC-vkCmdResetEvent-missingbarrier-set";
                break;
            case vvl::Func::vkCmdWaitEvents:
            case vvl::Func::vkCmdWaitEvents2KHR:
            case vvl::Func::vkCmdWaitEvents2: {
                // Needs to be in the barriers chain (either because of a barrier, or because of dstStageMask
                vuid = "SYNC-vkCmdResetEvent-missingbarrier-wait";
                break;
            }
            case vvl::Func::Empty:
            case vvl::Func::vkCmdResetEvent:
            case vvl::Func::vkCmdResetEvent2KHR:
            case vvl::Func::vkCmdResetEvent2:
                break;  // Valid, but nothing to do
            default:
                assert(false);
                break;
        }
        if (vuid) {
            const Location loc(command_);
            skip |= sync_state.LogError(vuid, event_->Handle(), loc, message, sync_state.FormatHandle(event_->Handle()).c_str(),
                                        CmdName(), vvl::String(sync_event->last_command));
        }
    }
    return skip;
}

ResourceUsageTag SyncOpResetEvent::Record(CommandBufferAccessContext *cb_context) {
    const auto tag = cb_context->NextCommandTag(command_);
    ReplayRecord(*cb_context, tag);
    return tag;
}

bool SyncOpResetEvent::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    return DoValidate(replay.GetExecutionContext(), replay.GetBaseTag() + recorded_tag);
}

void SyncOpResetEvent::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag exec_tag) const {
    if (!exec_context.ValidForSyncOps()) return;
    SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();

    auto *sync_event = events_context->GetFromShared(event_);
    if (!sync_event) return;  // Core, Lifetimes, or Param check needs to catch invalid events.

    // Update the event state
    sync_event->last_command = command_;
    sync_event->last_command_tag = exec_tag;
    sync_event->unsynchronized_set = vvl::Func::Empty;
    sync_event->ResetFirstScope();
    sync_event->barriers = 0U;
}

SyncOpSetEvent::SyncOpSetEvent(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
                               VkPipelineStageFlags2 stageMask, const AccessContext *access_context)
    : SyncOpBase(command),
      event_(sync_state.Get<vvl::Event>(event)),
      recorded_context_(),
      src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, stageMask)),
      dep_info_() {
    // Snapshot the current access_context for later inspection at wait time.
    // NOTE: This appears brute force, but given that we only save a "first-last" model of access history, the current
    //       access context (include barrier state for chaining) won't necessarily contain the needed information at Wait
    //       or Submit time reference.
    if (access_context) {
        recorded_context_ = std::make_shared<const AccessContext>(*access_context);
    }
}

SyncOpSetEvent::SyncOpSetEvent(vvl::Func command, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
                               const VkDependencyInfo &dep_info, const AccessContext *access_context)
    : SyncOpBase(command),
      event_(sync_state.Get<vvl::Event>(event)),
      recorded_context_(),
      src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, sync_utils::GetExecScopes(dep_info).src)),
      dep_info_(new vku::safe_VkDependencyInfo(&dep_info)) {
    if (access_context) {
        recorded_context_ = std::make_shared<const AccessContext>(*access_context);
    }
}

bool SyncOpSetEvent::Validate(const CommandBufferAccessContext &cb_context) const {
    return DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
}
bool SyncOpSetEvent::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    return DoValidate(replay.GetExecutionContext(), replay.GetBaseTag() + recorded_tag);
}

bool SyncOpSetEvent::DoValidate(const CommandExecutionContext &exec_context, const ResourceUsageTag base_tag) const {
    bool skip = false;

    const auto &sync_state = exec_context.GetSyncState();
    auto *events_context = exec_context.GetCurrentEventsContext();
    assert(events_context);
    if (!events_context) return skip;

    const auto *sync_event = events_context->Get(event_);
    if (!sync_event) return skip;  // Core, Lifetimes, or Param check needs to catch invalid events.

    if (sync_event->last_command_tag >= base_tag) return skip;  // for replay we don't want to revalidate internal "last commmand"

    const char *const reset_set =
        "%s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
        "hazards.";
    const char *const wait =
        "%s %s operation following %s without intervening vkCmdResetEvent, may result in data hazard and is ignored.";

    if (!sync_event->HasBarrier(src_exec_scope_.mask_param, src_exec_scope_.exec_scope)) {
        const char *vuid_stem = nullptr;
        const char *message = nullptr;
        switch (sync_event->last_command) {
            case vvl::Func::vkCmdResetEvent:
            case vvl::Func::vkCmdResetEvent2KHR:
            case vvl::Func::vkCmdResetEvent2:
                // Needs a barrier between reset and set
                vuid_stem = "-missingbarrier-reset";
                message = reset_set;
                break;
            case vvl::Func::vkCmdSetEvent:
            case vvl::Func::vkCmdSetEvent2KHR:
            case vvl::Func::vkCmdSetEvent2:
                // Needs a barrier between set and set
                vuid_stem = "-missingbarrier-set";
                message = reset_set;
                break;
            case vvl::Func::vkCmdWaitEvents:
            case vvl::Func::vkCmdWaitEvents2KHR:
            case vvl::Func::vkCmdWaitEvents2:
                // Needs a barrier or is in second execution scope
                vuid_stem = "-missingbarrier-wait";
                message = wait;
                break;
            default:
                // The only other valid last command that wasn't one.
                assert(sync_event->last_command == vvl::Func::Empty);
                break;
        }
        if (vuid_stem) {
            assert(nullptr != message);
            const Location loc(command_);
            std::string vuid("SYNC-");
            vuid.append(CmdName()).append(vuid_stem);
            skip |=
                sync_state.LogError(vuid.c_str(), event_->Handle(), loc, message, sync_state.FormatHandle(event_->Handle()).c_str(),
                                    CmdName(), vvl::String(sync_event->last_command));
        }
    }

    return skip;
}

ResourceUsageTag SyncOpSetEvent::Record(CommandBufferAccessContext *cb_context) {
    const auto tag = cb_context->NextCommandTag(command_);
    auto *events_context = cb_context->GetCurrentEventsContext();
    const QueueId queue_id = cb_context->GetQueueId();
    assert(recorded_context_);
    if (recorded_context_ && events_context) {
        DoRecord(queue_id, tag, recorded_context_, events_context);
    }
    return tag;
}

void SyncOpSetEvent::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag exec_tag) const {
    // Create a copy of the current context, and merge in the state snapshot at record set event time
    // Note: we mustn't change the recorded context copy, as a given CB could be submitted more than once (in generaL)
    if (!exec_context.ValidForSyncOps()) return;
    SyncEventsContext *events_context = exec_context.GetCurrentEventsContext();
    AccessContext *access_context = exec_context.GetCurrentAccessContext();
    const QueueId queue_id = exec_context.GetQueueId();

    // Note: merged_context is a copy of the access_context, combined with the recorded context
    auto merged_context = std::make_shared<AccessContext>(*access_context);
    merged_context->ResolveFromContext(QueueTagOffsetBarrierAction(queue_id, exec_tag), *recorded_context_);
    merged_context->TrimAndClearFirstAccess();  // Ensure the copy is minimal and normalized
    DoRecord(queue_id, exec_tag, merged_context, events_context);
}

void SyncOpSetEvent::DoRecord(QueueId queue_id, ResourceUsageTag tag, const std::shared_ptr<const AccessContext> &access_context,
                              SyncEventsContext *events_context) const {
    auto *sync_event = events_context->GetFromShared(event_);
    if (!sync_event) return;  // Core, Lifetimes, or Param check needs to catch invalid events.

    // NOTE: We're going to simply record the sync scope here, as anything else would be implementation defined/undefined
    //       and we're issuing errors re: missing barriers between event commands, which if the user fixes would fix
    //       any issues caused by naive scope setting here.

    // What happens with two SetEvent is that one cannot know what group of operations will be waited for.
    // Given:
    //     Stuff1; SetEvent; Stuff2; SetEvent; WaitEvents;
    // WaitEvents cannot know which of Stuff1, Stuff2, or both has completed execution.

    if (!sync_event->HasBarrier(src_exec_scope_.mask_param, src_exec_scope_.exec_scope)) {
        sync_event->unsynchronized_set = sync_event->last_command;
        sync_event->ResetFirstScope();
    } else if (!sync_event->first_scope) {
        // We only set the scope if there isn't one
        sync_event->scope = src_exec_scope_;

        // Save the shared_ptr to copy of the access_context present at set time (sent us by the caller)
        sync_event->first_scope = access_context;
        sync_event->unsynchronized_set = vvl::Func::Empty;
        sync_event->first_scope_tag = tag;
    }
    // TODO: Store dep_info_ shared ptr in sync_state for WaitEvents2 validation
    sync_event->last_command = command_;
    sync_event->last_command_tag = tag;
    sync_event->barriers = 0U;
}

SyncOpBeginRenderPass::SyncOpBeginRenderPass(vvl::Func command, const SyncValidator &sync_state,
                                             const VkRenderPassBeginInfo *pRenderPassBegin,
                                             const VkSubpassBeginInfo *pSubpassBeginInfo)
    : SyncOpBase(command), rp_context_(nullptr) {
    if (pRenderPassBegin) {
        rp_state_ = sync_state.Get<vvl::RenderPass>(pRenderPassBegin->renderPass);
        renderpass_begin_info_ = vku::safe_VkRenderPassBeginInfo(pRenderPassBegin);
        auto fb_state = sync_state.Get<vvl::Framebuffer>(pRenderPassBegin->framebuffer);
        if (fb_state) {
            shared_attachments_ = sync_state.device_state->GetAttachmentViews(*renderpass_begin_info_.ptr(), *fb_state);
            // TODO: Revisit this when all attachment validation is through SyncOps to see if we can discard the plain pointer copy
            // Note that this a safe to presist as long as shared_attachments is not cleared
            attachments_.reserve(shared_attachments_.size());
            for (const auto &attachment : shared_attachments_) {
                attachments_.emplace_back(attachment.get());
            }
        }
        if (pSubpassBeginInfo) {
            subpass_begin_info_ = vku::safe_VkSubpassBeginInfo(pSubpassBeginInfo);
        }
    }
}

bool SyncOpBeginRenderPass::Validate(const CommandBufferAccessContext &cb_context) const {
    // Check if any of the layout transitions are hazardous.... but we don't have the renderpass context to work with, so we
    bool skip = false;

    assert(rp_state_.get());
    if (nullptr == rp_state_.get()) return skip;
    auto &rp_state = *rp_state_.get();

    const uint32_t subpass = 0;

    // Construct the state we can use to validate against... (since validation is const and RecordCmdBeginRenderPass
    // hasn't happened yet)
    const std::vector<AccessContext> empty_context_vector;
    AccessContext temp_context(subpass, cb_context.GetQueueFlags(), rp_state.subpass_dependencies, empty_context_vector,
                               cb_context.GetCurrentAccessContext());

    // Validate attachment operations
    if (attachments_.empty()) return skip;
    const auto &render_area = renderpass_begin_info_.renderArea;

    // Since the isn't a valid RenderPassAccessContext until Record, needs to create the view/generator list... we could limit this
    // by predicating on whether subpass 0 uses the attachment if it is too expensive to create the full list redundantly here.
    // More broadly we could look at thread specific state shared between Validate and Record as is done for other heavyweight
    // operations (though it's currently a messy approach)
    AttachmentViewGenVector view_gens = RenderPassAccessContext::CreateAttachmentViewGen(render_area, attachments_);
    skip |= RenderPassAccessContext::ValidateLayoutTransitions(cb_context, temp_context, rp_state, render_area, subpass, view_gens,
                                                               command_);

    // Validate load operations if there were no layout transition hazards
    if (!skip) {
        RenderPassAccessContext::RecordLayoutTransitions(rp_state, subpass, view_gens, kInvalidTag, temp_context);
        skip |= RenderPassAccessContext::ValidateLoadOperation(cb_context, temp_context, rp_state, render_area, subpass, view_gens,
                                                               command_);
    }

    return skip;
}

ResourceUsageTag SyncOpBeginRenderPass::Record(CommandBufferAccessContext *cb_context) {
    assert(rp_state_.get());
    if (nullptr == rp_state_.get()) return cb_context->NextCommandTag(command_);
    const ResourceUsageTag begin_tag =
        cb_context->RecordBeginRenderPass(command_, *rp_state_.get(), renderpass_begin_info_.renderArea, attachments_);

    // Note: this state update must be after RecordBeginRenderPass as there is no current render pass until that function runs
    rp_context_ = cb_context->GetCurrentRenderPassContext();

    return begin_tag;
}

bool SyncOpBeginRenderPass::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    CommandExecutionContext &exec_context = replay.GetExecutionContext();
    // this operation is not allowed in secondary command buffers
    assert(exec_context.Handle().type == kVulkanObjectTypeQueue);
    auto &batch_context = static_cast<QueueBatchContext &>(exec_context);
    batch_context.BeginRenderPassReplaySetup(replay, *this);

    // Only the layout transitions happen at the replay tag, loadOp's happen at a subsequent tag
    ResourceUsageRange first_use_range = {recorded_tag, recorded_tag + 1};
    return replay.DetectFirstUseHazard(first_use_range);
}

void SyncOpBeginRenderPass::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag exec_tag) const {
    // All the needed replay state changes (for the layout transition, and context update) have to happen in ReplayValidate
}

SyncOpNextSubpass::SyncOpNextSubpass(vvl::Func command, const SyncValidator &sync_state,
                                     const VkSubpassBeginInfo *pSubpassBeginInfo, const VkSubpassEndInfo *pSubpassEndInfo)
    : SyncOpBase(command) {
    if (pSubpassBeginInfo) {
        subpass_begin_info_.initialize(pSubpassBeginInfo);
    }
    if (pSubpassEndInfo) {
        subpass_end_info_.initialize(pSubpassEndInfo);
    }
}

bool SyncOpNextSubpass::Validate(const CommandBufferAccessContext &cb_context) const {
    bool skip = false;
    const auto *renderpass_context = cb_context.GetCurrentRenderPassContext();
    if (!renderpass_context) return skip;

    skip |= renderpass_context->ValidateNextSubpass(cb_context, command_);
    return skip;
}

ResourceUsageTag SyncOpNextSubpass::Record(CommandBufferAccessContext *cb_context) {
    return cb_context->RecordNextSubpass(command_);
}

bool SyncOpNextSubpass::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    // Any store/resolve operations happen before the NextSubpass tag so we can advance to the next subpass state
    CommandExecutionContext &exec_context = replay.GetExecutionContext();
    // this operation is not allowed in secondary command buffers
    assert(exec_context.Handle().type == kVulkanObjectTypeQueue);
    auto &batch_context = static_cast<QueueBatchContext &>(exec_context);
    batch_context.NextSubpassReplaySetup(replay);

    // Only the layout transitions happen at the replay tag, loadOp's happen at a subsequent tag
    ResourceUsageRange first_use_range = {recorded_tag, recorded_tag + 1};
    return replay.DetectFirstUseHazard(first_use_range);
}

void SyncOpNextSubpass::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag exec_tag) const {
    // All the needed replay state changes (for the layout transition, and context update) have to happen in ReplayValidate
}
SyncOpEndRenderPass::SyncOpEndRenderPass(vvl::Func command, const SyncValidator &sync_state,
                                         const VkSubpassEndInfo *pSubpassEndInfo)
    : SyncOpBase(command) {
    if (pSubpassEndInfo) {
        subpass_end_info_.initialize(pSubpassEndInfo);
    }
}

bool SyncOpEndRenderPass::Validate(const CommandBufferAccessContext &cb_context) const {
    bool skip = false;
    const auto *renderpass_context = cb_context.GetCurrentRenderPassContext();

    if (!renderpass_context) return skip;
    skip |= renderpass_context->ValidateEndRenderPass(cb_context, command_);
    return skip;
}

ResourceUsageTag SyncOpEndRenderPass::Record(CommandBufferAccessContext *cb_context) {
    return cb_context->RecordEndRenderPass(command_);
}

bool SyncOpEndRenderPass::ReplayValidate(ReplayState &replay, ResourceUsageTag recorded_tag) const {
    // Any store/resolve operations happen before the EndRenderPass tag so we can ignore them
    // Only the layout transitions happen at the replay tag
    ResourceUsageRange first_use_range = {recorded_tag, recorded_tag + 1};
    bool skip = false;
    skip |= replay.DetectFirstUseHazard(first_use_range);

    // We can cleanup here as the recorded tag represents the final layout transition (which is the last operation or the RP)
    CommandExecutionContext &exec_context = replay.GetExecutionContext();
    // this operation is not allowed in secondary command buffers
    assert(exec_context.Handle().type == kVulkanObjectTypeQueue);
    auto &batch_context = static_cast<QueueBatchContext &>(exec_context);
    batch_context.EndRenderPassReplayCleanup(replay);

    return skip;
}

void SyncOpEndRenderPass::ReplayRecord(CommandExecutionContext &exec_context, ResourceUsageTag exec_tag) const {}

ReplayState::ReplayState(CommandExecutionContext &exec_context, const CommandBufferAccessContext &recorded_context,
                         const ErrorObject &error_obj, uint32_t index, ResourceUsageTag base_tag)
    : exec_context_(exec_context), recorded_context_(recorded_context), error_obj_(error_obj), index_(index), base_tag_(base_tag) {}

AccessContext *ReplayState::ReplayStateRenderPassBegin(VkQueueFlags queue_flags, const SyncOpBeginRenderPass &begin_op,
                                                       const AccessContext &external_context) {
    return rp_replay_.Begin(queue_flags, begin_op, external_context);
}

AccessContext *ReplayState::ReplayStateRenderPassNext() { return rp_replay_.Next(); }

void ReplayState::ReplayStateRenderPassEnd(AccessContext &external_context) { rp_replay_.End(external_context); }

const AccessContext *ReplayState::GetRecordedAccessContext() const {
    if (rp_replay_) {
        return rp_replay_.replay_context;
    }
    return recorded_context_.GetCurrentAccessContext();
}

bool ReplayState::DetectFirstUseHazard(const ResourceUsageRange &first_use_range) const {
    bool skip = false;
    if (first_use_range.non_empty()) {
        // We're allowing for the Replay(Validate|Record) to modify the exec_context (e.g. for Renderpass operations), so
        // we need to fetch the current access context each time
        const AccessContext *access_context = GetRecordedAccessContext();

        const HazardResult hazard = access_context->DetectFirstUseHazard(exec_context_.GetQueueId(), first_use_range,
                                                                         *exec_context_.GetCurrentAccessContext());
        if (hazard.IsHazard()) {
            const SyncValidator &sync_state = exec_context_.GetSyncState();
            LogObjectList objlist(exec_context_.Handle(), recorded_context_.Handle());
            const std::string error = sync_state.error_messages_.FirstUseError(hazard, exec_context_, recorded_context_, index_);
            skip |= sync_state.SyncError(hazard.Hazard(), objlist, error_obj_.location, error);
        }
    }
    return skip;
}

bool ReplayState::ValidateFirstUse() {
    if (!exec_context_.ValidForSyncOps()) return false;

    bool skip = false;
    ResourceUsageRange first_use_range = {0, 0};

    for (const auto &sync_op : recorded_context_.GetSyncOps()) {
        // Set the range to cover all accesses until the next sync_op, and validate
        first_use_range.end = sync_op.tag;
        skip |= DetectFirstUseHazard(first_use_range);

        // Call to replay validate support for syncop with non-trivial replay
        skip |= sync_op.sync_op->ReplayValidate(*this, sync_op.tag);

        // Record the barrier into the proxy context.
        sync_op.sync_op->ReplayRecord(exec_context_, base_tag_ + sync_op.tag);
        first_use_range.begin = sync_op.tag + 1;
    }

    // and anything after the last syncop
    first_use_range.end = ResourceUsageRecord::kMaxIndex;
    skip |= DetectFirstUseHazard(first_use_range);

    return skip;
}
AccessContext *ReplayState::RenderPassReplayState::Begin(VkQueueFlags queue_flags, const SyncOpBeginRenderPass &begin_op_,
                                                         const AccessContext &external_context) {
    Reset();

    begin_op = &begin_op_;
    subpass = 0;

    const RenderPassAccessContext *rp_context = begin_op->GetRenderPassAccessContext();
    assert(rp_context);
    replay_context = &rp_context->GetContexts()[0];

    InitSubpassContexts(queue_flags, *rp_context->GetRenderPassState(), &external_context, subpass_contexts);

    // Replace the Async contexts with the the async context of the "external" context
    // For replay we don't care about async subpasses, just async queue batches
    for (auto &context : subpass_contexts) {
        context.ClearAsyncContexts();
        context.ImportAsyncContexts(external_context);
    }

    return &subpass_contexts[0];
}

AccessContext *ReplayState::RenderPassReplayState::Next() {
    subpass++;

    const RenderPassAccessContext *rp_context = begin_op->GetRenderPassAccessContext();

    replay_context = &rp_context->GetContexts()[subpass];
    return &subpass_contexts[subpass];
}

void ReplayState::RenderPassReplayState::End(AccessContext &external_context) {
    external_context.ResolveChildContexts(subpass_contexts);
    Reset();
}

void SyncEventsContext::ApplyBarrier(const SyncExecScope &src, const SyncExecScope &dst, ResourceUsageTag tag) {
    const bool all_commands_bit = 0 != (src.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
    for (auto &event_pair : map_) {
        assert(event_pair.second);  // Shouldn't be storing empty
        auto &sync_event = *event_pair.second;
        // Events don't happen at a stage, so we need to check and store the unexpanded ALL_COMMANDS if set for inter-event-calls
        // But only if occuring before the tag
        if (((sync_event.barriers & src.exec_scope) || all_commands_bit) && (sync_event.last_command_tag <= tag)) {
            sync_event.barriers |= dst.exec_scope;
            sync_event.barriers |= dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
        }
    }
}

void SyncEventsContext::ApplyTaggedWait(VkQueueFlags queue_flags, ResourceUsageTag tag) {
    const SyncExecScope src_scope =
        SyncExecScope::MakeSrc(queue_flags, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_2_HOST_BIT);
    const SyncExecScope dst_scope = SyncExecScope::MakeDst(queue_flags, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT);
    ApplyBarrier(src_scope, dst_scope, tag);
}

SyncEventsContext &SyncEventsContext::DeepCopy(const SyncEventsContext &from) {
    // We need a deep copy of the const context to update during validation phase
    for (const auto &event : from.map_) {
        map_.emplace(event.first, std::make_shared<SyncEventState>(*event.second));
    }
    return *this;
}

void SyncEventsContext::AddReferencedTags(ResourceUsageTagSet &referenced) const {
    for (const auto &event : map_) {
        const std::shared_ptr<const SyncEventState> &event_state = event.second;
        if (event_state) {
            event_state->AddReferencedTags(referenced);
        }
    }
}

SyncEventState::SyncEventState(const SyncEventState::EventPointer &event_state) : SyncEventState() {
    event = event_state;
    destroyed = (event.get() == nullptr) || event_state->Destroyed();
}

void SyncEventState::ResetFirstScope() {
    first_scope.reset();
    scope = SyncExecScope();
    first_scope_tag = 0;
}

// Keep the "ignore this event" logic in same place for ValidateWait and RecordWait to use
SyncEventState::IgnoreReason SyncEventState::IsIgnoredByWait(vvl::Func command, VkPipelineStageFlags2 srcStageMask) const {
    IgnoreReason reason = NotIgnored;

    if ((vvl::Func::vkCmdWaitEvents2KHR == command || vvl::Func::vkCmdWaitEvents2 == command) &&
        (vvl::Func::vkCmdSetEvent == last_command)) {
        reason = SetVsWait2;
    } else if ((last_command == vvl::Func::vkCmdResetEvent || last_command == vvl::Func::vkCmdResetEvent2KHR) &&
               !HasBarrier(0U, 0U)) {
        reason = (last_command == vvl::Func::vkCmdResetEvent) ? ResetWaitRace : Reset2WaitRace;
    } else if (unsynchronized_set != vvl::Func::Empty) {
        reason = SetRace;
    } else if (first_scope) {
        const VkPipelineStageFlags2 missing_bits = scope.mask_param & ~srcStageMask;
        // Note it is the "not missing bits" path that is the only "NotIgnored" path
        if (missing_bits) reason = MissingStageBits;
    } else {
        reason = MissingSetEvent;
    }

    return reason;
}

bool SyncEventState::HasBarrier(VkPipelineStageFlags2 stageMask, VkPipelineStageFlags2 exec_scope_arg) const {
    return (last_command == vvl::Func::Empty) || (stageMask & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) || (barriers & exec_scope_arg) ||
           (barriers & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
}

void SyncEventState::AddReferencedTags(ResourceUsageTagSet &referenced) const {
    if (first_scope) {
        first_scope->AddReferencedTags(referenced);
    }
}