1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
/*
* Copyright (c) 2019-2025 Valve Corporation
* Copyright (c) 2019-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sync/sync_submit.h"
#include "sync/sync_validation.h"
#include "sync/sync_image.h"
#include "sync/sync_reporting.h"
AcquiredImage::AcquiredImage(const PresentedImage& presented, ResourceUsageTag acq_tag)
: image(presented.image), generator(presented.range_gen), present_tag(presented.tag), acquire_tag(acq_tag) {}
bool AcquiredImage::Invalid() const { return vvl::StateObject::Invalid(image); }
SignalInfo::SignalInfo(const std::shared_ptr<const vvl::Semaphore>& semaphore_state, const QueueBatchContext::Ptr& batch,
const SyncExecScope& exec_scope, uint64_t timeline_value)
: semaphore_state(semaphore_state),
batch(batch),
first_scope({batch->GetQueueId(), exec_scope}),
timeline_value(timeline_value) {}
SignalInfo::SignalInfo(const std::shared_ptr<const vvl::Semaphore>& semaphore_state, uint64_t timeline_value)
: semaphore_state(semaphore_state), first_scope(kQueueIdInvalid, SyncExecScope{}), timeline_value(timeline_value) {}
SignalInfo::SignalInfo(const std::shared_ptr<const vvl::Semaphore>& semaphore_state, const PresentedImage& presented,
ResourceUsageTag acquire_tag)
: semaphore_state(semaphore_state),
batch(presented.batch),
first_scope(),
acquired_image(std::make_shared<AcquiredImage>(presented, acquire_tag)) {}
void SignalsUpdate::OnBinarySignal(const vvl::Semaphore& semaphore_state, const QueueBatchContext::Ptr& batch,
const VkSemaphoreSubmitInfo& submit_signal) {
const VkSemaphore semaphore = semaphore_state.VkHandle();
// Signal can't be registered in both lists at the same time.
assert(!vvl::Contains(binary_signal_requests, semaphore) || !vvl::Contains(binary_unsignal_requests, semaphore));
// Remove unsignal request (if any). It will be replaced by a signal request.
const bool found_unsignal_request = binary_unsignal_requests.erase(semaphore);
// Reject invalid signal
if (!found_unsignal_request) {
if (vvl::Contains(binary_signal_requests, semaphore) || vvl::Contains(sync_validator_.binary_signals_, semaphore)) {
return; // [core validation check]: binary semaphore signaled twice in a row
}
}
// Register signal
const VkQueueFlags queue_flags = batch->GetQueueSyncState()->GetQueueFlags();
const auto exec_scope = SyncExecScope::MakeSrc(queue_flags, submit_signal.stageMask, VK_PIPELINE_STAGE_2_HOST_BIT);
binary_signal_requests.emplace(semaphore, SignalInfo(semaphore_state.shared_from_this(), batch, exec_scope, 0));
}
bool SignalsUpdate::OnTimelineSignal(const vvl::Semaphore& semaphore_state, const std::shared_ptr<QueueBatchContext>& batch,
const VkSemaphoreSubmitInfo& submit_signal) {
const VkSemaphore semaphore = semaphore_state.VkHandle();
std::vector<SignalInfo>& signals = timeline_signals[semaphore];
// Reject invalid signal
if (!signals.empty() && submit_signal.value <= signals.back().timeline_value) {
return false; // [core validation check]: strictly increasing signal values
}
// Do not register signal for external semaphore - external wait-before-signals are skipped
// since there is no guarantee we can track the signal. Because of that it's possible that
// signals have no way to be released (resolving waits can be wait-before-signals and are skipped)
if (semaphore_state.Scope() != vvl::Semaphore::Scope::kInternal) {
return false;
}
// Register signal
const VkQueueFlags queue_flags = batch->GetQueueSyncState()->GetQueueFlags();
const auto exec_scope = SyncExecScope::MakeSrc(queue_flags, submit_signal.stageMask, VK_PIPELINE_STAGE_2_HOST_BIT);
signals.emplace_back(SignalInfo(semaphore_state.shared_from_this(), batch, exec_scope, submit_signal.value));
return true;
}
bool SignalsUpdate::RegisterSignals(const BatchContextPtr& batch, const vvl::span<const VkSemaphoreSubmitInfo>& submit_signals) {
bool registered_timeline_signal = false;
for (const auto& submit_signal : submit_signals) {
if (auto semaphore_state = sync_validator_.Get<vvl::Semaphore>(submit_signal.semaphore)) {
if (semaphore_state->type == VK_SEMAPHORE_TYPE_BINARY) {
OnBinarySignal(*semaphore_state, batch, submit_signal);
} else {
registered_timeline_signal |= OnTimelineSignal(*semaphore_state, batch, submit_signal);
}
}
}
return registered_timeline_signal;
}
std::optional<SignalInfo> SignalsUpdate::OnBinaryWait(VkSemaphore semaphore) {
// Signal can't be registered in both lists at the same time.
assert(!vvl::Contains(binary_signal_requests, semaphore) || !vvl::Contains(binary_unsignal_requests, semaphore));
if (vvl::Contains(binary_unsignal_requests, semaphore)) {
return {}; // [core validation check]: multi wait
}
// Get resolving signal
std::optional<SignalInfo> resolving_signal;
if (auto it = binary_signal_requests.find(semaphore); it != binary_signal_requests.end()) {
resolving_signal.emplace(std::move(it->second));
binary_signal_requests.erase(it);
} else if (auto* registry_signal = vvl::Find(sync_validator_.binary_signals_, semaphore)) {
resolving_signal.emplace(*registry_signal);
} else {
return {}; // [core validation check]: missing signal for binary wait
}
// Register unsignal request
binary_unsignal_requests.emplace(semaphore);
return resolving_signal;
}
std::optional<SignalInfo> SignalsUpdate::OnTimelineWait(VkSemaphore semaphore, uint64_t wait_value) {
std::optional<SignalInfo> resolving_signal;
// Search for the smallest signal value that resolves the wait.
// At first check registered signals (they have smaller values)
if (const std::vector<SignalInfo>* signals = vvl::Find(sync_validator_.timeline_signals_, semaphore)) {
for (auto& signal : *signals) {
if (wait_value <= signal.timeline_value) {
resolving_signal.emplace(signal);
break;
}
}
}
// then check the pending signals
if (!resolving_signal.has_value()) {
if (const std::vector<SignalInfo>* pending_signals = vvl::Find(timeline_signals, semaphore)) {
for (auto& signal : *pending_signals) {
if (wait_value <= signal.timeline_value) {
resolving_signal.emplace(signal);
break;
}
}
}
}
// Register request to remove older signals
if (resolving_signal.has_value()) {
RemoveTimelineSignalsRequest request;
request.semaphore = semaphore;
request.signal_threshold_value = resolving_signal->timeline_value;
request.queue = resolving_signal->first_scope.queue;
remove_timeline_signals_requests.emplace_back(request);
}
return resolving_signal; // empty result if it is a wait-before-signal
}
void syncval_state::SwapchainSubState::RecordPresentedImage(PresentedImage&& presented_image) {
// All presented images are stored within the swapchain until the are reaquired.
const uint32_t image_index = presented_image.image_index;
if (image_index >= presented.size()) presented.resize(image_index + 1);
// Use move semantics to avoid atomic operations on the contained shared_ptrs
presented[image_index] = std::move(presented_image);
}
// We move from the presented images array 1) so we don't copy shared_ptr, and 2) to mark it acquired
PresentedImage syncval_state::SwapchainSubState::MovePresentedImage(uint32_t image_index) {
if (presented.size() <= image_index) presented.resize(image_index + 1);
PresentedImage ret_val = std::move(presented[image_index]);
if (ret_val.Invalid()) {
// If this is the first time the image has been acquired, then it's valid to have no present record, so we create one
// Note: It's also possible this is an invalid acquire... but that's CoreChecks/Parameter validation's job to report
ret_val = PresentedImage(base.shared_from_this(), image_index);
}
return ret_val;
}
void syncval_state::SwapchainSubState::GetPresentBatches(std::vector<QueueBatchContext::Ptr>& batches) const {
for (const auto& presented_image : presented) {
if (presented_image.batch) {
batches.push_back(presented_image.batch);
}
}
}
class ApplySemaphoreBarrierAction {
public:
ApplySemaphoreBarrierAction(const SemaphoreScope& signal, const SemaphoreScope& wait) : signal_(signal), wait_(wait) {}
void operator()(ResourceAccessState* access) const { access->ApplySemaphore(signal_, wait_); }
private:
const SemaphoreScope& signal_;
const SemaphoreScope wait_;
};
class ApplyAcquireNextSemaphoreAction {
public:
ApplyAcquireNextSemaphoreAction(const SyncExecScope& wait_scope, ResourceUsageTag acquire_tag)
: barrier_(GetAcquireBarrier(wait_scope)), acq_tag_(acquire_tag) {}
void operator()(ResourceAccessState* access) const {
// Note that the present operations may or may not be present, given that the fence wait may have cleared them out.
// Also, if a subsequent present has happened, we *don't* want to protect that...
if (access->LastWriteTag() <= acq_tag_) {
access->ApplyBarriersImmediate(barrier_);
}
}
private:
static SyncBarrier GetAcquireBarrier(const SyncExecScope& wait_scope) {
SyncBarrier barrier;
barrier.src_exec_scope = getPresentSrcScope();
barrier.src_access_scope = getPresentValidAccesses();
barrier.dst_exec_scope = wait_scope;
return barrier;
}
// kPresentSrcScope/kPresentValidAccesses cannot be regular global variables, because they use global
// variables from another compilation unit (through syncStageAccessMaskByStageBit() call) for initialization,
// and initialization of globals between compilation units is undefined. Instead they get initialized
// on the first use (it's important to ensure this first use is also not initialization of some global!).
static const SyncExecScope& getPresentSrcScope() {
static const SyncExecScope kPresentSrcScope =
SyncExecScope(VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL, // mask_param (unused)
VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL, // exec_scope
getPresentValidAccesses()); // valid_accesses
return kPresentSrcScope;
}
static const SyncAccessFlags& getPresentValidAccesses() {
static const SyncAccessFlags kPresentValidAccesses = SYNC_PRESENT_ENGINE_BIT_SYNCVAL_PRESENT_ACQUIRE_READ_BIT_SYNCVAL |
SYNC_PRESENT_ENGINE_BIT_SYNCVAL_PRESENT_PRESENTED_BIT_SYNCVAL;
return kPresentValidAccesses;
}
private:
SyncBarrier barrier_;
ResourceUsageTag acq_tag_;
};
QueueBatchContext::QueueBatchContext(const SyncValidator& sync_state, const QueueSyncState& queue_state)
: CommandExecutionContext(sync_state, queue_state.GetQueueFlags()),
queue_state_(&queue_state),
tag_range_(0, 0),
current_access_context_(&access_context_),
batch_log_(),
queue_sync_tag_(sync_state.GetQueueIdLimit(), ResourceUsageTag(0)) {
sync_state_.stats.AddQueueBatchContext();
}
QueueBatchContext::QueueBatchContext(const SyncValidator& sync_state)
: CommandExecutionContext(sync_state, 0),
queue_state_(),
tag_range_(0, 0),
current_access_context_(&access_context_),
batch_log_(),
queue_sync_tag_(sync_state.GetQueueIdLimit(), ResourceUsageTag(0)) {
sync_state_.stats.AddQueueBatchContext();
}
QueueBatchContext::~QueueBatchContext() { sync_state_.stats.RemoveQueueBatchContext(); }
void QueueBatchContext::Trim() {
// Clean up unneeded access context contents and log information
access_context_.TrimAndClearFirstAccess();
ResourceUsageTagSet used_tags;
access_context_.AddReferencedTags(used_tags);
// Note: AccessContexts in the SyncEventsState are trimmed when created.
events_context_.AddReferencedTags(used_tags);
// Only conserve AccessLog references that are referenced by used_tags
batch_log_.Trim(used_tags);
}
void QueueBatchContext::ResolveSubmittedCommandBuffer(const AccessContext& recorded_context, ResourceUsageTag offset) {
GetCurrentAccessContext()->ResolveFromContext(QueueTagOffsetBarrierAction(GetQueueId(), offset), recorded_context);
}
VulkanTypedHandle QueueBatchContext::Handle() const { return queue_state_->Handle(); }
template <typename Predicate>
void QueueBatchContext::ApplyPredicatedWait(Predicate& predicate) {
access_context_.EraseIf([&predicate](ResourceAccessRangeMap::value_type& access) {
// Apply..Wait returns true if the waited access is empty...
return access.second.ApplyPredicatedWait<Predicate>(predicate);
});
}
void QueueBatchContext::ApplyTaggedWait(QueueId queue_id, ResourceUsageTag tag) {
const bool any_queue = (queue_id == kQueueAny);
if (any_queue) {
// This isn't just avoid an unneeded test, but to allow *all* queues to to be waited in a single pass
// (and it does avoid doing the same test for every access, as well as avoiding the need for the predicate
// to grok Queue/Device/Wait differences.
ResourceAccessState::WaitTagPredicate predicate{tag};
ApplyPredicatedWait(predicate);
} else {
ResourceAccessState::WaitQueueTagPredicate predicate{queue_id, tag};
ApplyPredicatedWait(predicate);
}
// SwapChain acquire QBC's have no queue, but also, events are always empty.
if (queue_state_ && (queue_id == GetQueueId() || any_queue)) {
events_context_.ApplyTaggedWait(queue_state_->GetQueueFlags(), tag);
}
}
void QueueBatchContext::ApplyAcquireWait(const AcquiredImage& acquired) {
ResourceAccessState::WaitAcquirePredicate predicate{acquired.present_tag, acquired.acquire_tag};
ApplyPredicatedWait(predicate);
}
void QueueBatchContext::OnResourceDestroyed(const ResourceAccessRange& resource_range) {
// Remove all accesses associated with the resource being destroyed
access_context_.EraseIf(
[&resource_range](ResourceAccessRangeMap::value_type& access) { return resource_range.includes(access.first); });
}
void QueueBatchContext::BeginRenderPassReplaySetup(ReplayState& replay, const SyncOpBeginRenderPass& begin_op) {
current_access_context_ = replay.ReplayStateRenderPassBegin(queue_state_->GetQueueFlags(), begin_op, access_context_);
}
void QueueBatchContext::NextSubpassReplaySetup(ReplayState& replay) {
current_access_context_ = replay.ReplayStateRenderPassNext();
}
void QueueBatchContext::EndRenderPassReplayCleanup(ReplayState& replay) {
replay.ReplayStateRenderPassEnd(access_context_);
current_access_context_ = &access_context_;
}
void QueueBatchContext::ResolvePresentSemaphoreWait(const SignalInfo& signal_info, const PresentedImages& presented_images) {
assert(signal_info.batch);
const AccessContext& from_context = signal_info.batch->access_context_;
const SemaphoreScope& signal_scope = signal_info.first_scope;
const QueueId queue_id = GetQueueId();
const auto queue_flags = queue_state_->GetQueueFlags();
SemaphoreScope wait_scope{queue_id, SyncExecScope::MakeDst(queue_flags, VK_PIPELINE_STAGE_2_PRESENT_ENGINE_BIT_SYNCVAL)};
// If signal queue == wait queue, signal is treated as a memory barrier with an access scope equal to the present accesses
SyncBarrier sem_barrier(signal_scope, wait_scope, SyncBarrier::AllAccess());
const BatchBarrierOp sem_same_queue_op(wait_scope.queue, sem_barrier);
// Need to import the rest of the same queue contents without modification
SyncBarrier noop_barrier;
const BatchBarrierOp noop_barrier_op(wait_scope.queue, noop_barrier);
// Otherwise apply semaphore rules apply
const ApplySemaphoreBarrierAction sem_not_same_queue_op(signal_scope, wait_scope);
const SemaphoreScope noop_semaphore_scope(queue_id, noop_barrier.dst_exec_scope);
const ApplySemaphoreBarrierAction noop_sem_op(signal_scope, noop_semaphore_scope);
// For each presented image
for (const auto& presented : presented_images) {
// Need a copy that can be used as the pseudo-iterator...
subresource_adapter::ImageRangeGenerator range_gen(presented.range_gen);
if (signal_scope.queue == wait_scope.queue) {
// If signal queue == wait queue, signal is treated as a memory barrier with an access scope equal to the
// valid accesses for the sync scope.
access_context_.ResolveFromContext(sem_same_queue_op, from_context, range_gen);
access_context_.ResolveFromContext(noop_barrier_op, from_context);
} else {
access_context_.ResolveFromContext(sem_not_same_queue_op, from_context, range_gen);
access_context_.ResolveFromContext(noop_sem_op, from_context);
}
}
}
void QueueBatchContext::ResolveSubmitSemaphoreWait(const SignalInfo& signal_info, VkPipelineStageFlags2 wait_mask) {
assert(signal_info.batch);
const SemaphoreScope& signal_scope = signal_info.first_scope;
const auto queue_flags = queue_state_->GetQueueFlags();
SemaphoreScope wait_scope{GetQueueId(), SyncExecScope::MakeDst(queue_flags, wait_mask)};
const AccessContext& from_context = signal_info.batch->access_context_;
if (signal_info.acquired_image) {
// Import the *presenting* batch, but replacing presenting with acquired.
ApplyAcquireNextSemaphoreAction apply_acq(wait_scope, signal_info.acquired_image->acquire_tag);
access_context_.ResolveFromContext(apply_acq, from_context, signal_info.acquired_image->generator);
// Grab the reset of the presenting QBC, with no effective barrier, won't overwrite the acquire, as the tag is newer
SyncBarrier noop_barrier;
const BatchBarrierOp noop_barrier_op(wait_scope.queue, noop_barrier);
access_context_.ResolveFromContext(noop_barrier_op, from_context);
} else {
if (signal_scope.queue == wait_scope.queue) {
// If signal queue == wait queue, signal is treated as a memory barrier with an access scope equal to the
// valid accesses for the sync scope.
SyncBarrier sem_barrier(signal_scope, wait_scope, SyncBarrier::AllAccess());
const BatchBarrierOp sem_barrier_op(wait_scope.queue, sem_barrier);
access_context_.ResolveFromContext(sem_barrier_op, from_context);
events_context_.ApplyBarrier(sem_barrier.src_exec_scope, sem_barrier.dst_exec_scope, ResourceUsageRecord::kMaxIndex);
} else {
ApplySemaphoreBarrierAction sem_op(signal_scope, wait_scope);
access_context_.ResolveFromContext(sem_op, signal_info.batch->access_context_);
}
}
}
void QueueBatchContext::ResolveLastBatch(const QueueBatchContext::ConstPtr& last_batch) {
// Copy in the event state from the previous batch (on this queue)
events_context_.DeepCopy(last_batch->events_context_);
// If there are no semaphores to the previous batch, make sure a "submit order" non-barriered import is done
access_context_.ResolveFromContext(last_batch->access_context_);
ImportTags(*last_batch);
}
void QueueBatchContext::ImportTags(const QueueBatchContext& from) {
batch_log_.Import(from.batch_log_);
// NOTE: Assumes that "from" has set its tag limit in its own queue_id slot
size_t q_limit = queue_sync_tag_.size();
assert(q_limit == from.queue_sync_tag_.size());
for (size_t q = 0; q < q_limit; q++) {
queue_sync_tag_[q] = std::max(queue_sync_tag_[q], from.queue_sync_tag_[q]);
}
}
std::vector<QueueBatchContext::ConstPtr> QueueBatchContext::ResolvePresentWaits(vvl::span<const VkSemaphore> wait_semaphores,
const PresentedImages& presented_images,
SignalsUpdate& signals_update) {
std::vector<ConstPtr> batches_resolved;
for (VkSemaphore semaphore : wait_semaphores) {
auto signal_info = signals_update.OnBinaryWait(semaphore);
if (!signal_info) {
continue; // Binary signal not found [core validation check]
}
ResolvePresentSemaphoreWait(*signal_info, presented_images);
ImportTags(*signal_info->batch);
batches_resolved.emplace_back(std::move(signal_info->batch));
}
return batches_resolved;
}
bool QueueBatchContext::DoQueuePresentValidate(const Location& loc, const PresentedImages& presented_images) {
bool skip = false;
// Tag the presented images so record doesn't have to know the tagging scheme
for (const PresentedImage& presented : presented_images) {
HazardResult hazard =
access_context_.DetectHazard(presented.range_gen, SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_PRESENTED_SYNCVAL);
if (hazard.IsHazard()) {
const VulkanTypedHandle swapchain_handle = vvl::StateObject::Handle(presented.swapchain_state.lock());
const VulkanTypedHandle image_handle = vvl::StateObject::Handle(presented.image);
LogObjectList objlist(queue_state_->Handle(), swapchain_handle, image_handle);
std::stringstream ss;
ss << "swapchain image " << presented.image_index << " (";
ss << sync_state_.FormatHandle(image_handle);
ss << " from " << sync_state_.FormatHandle(swapchain_handle) << ")";
const std::string resource_description = ss.str();
const std::string error = sync_state_.error_messages_.PresentError(hazard, *this, vvl::Func::vkQueuePresentKHR,
resource_description, presented.present_index);
skip |= sync_state_.SyncError(hazard.Hazard(), objlist, loc, error);
if (skip) {
break;
}
}
}
return skip;
}
void QueueBatchContext::DoPresentOperations(const PresentedImages& presented_images) {
// For present, tagging is internal to the presented image record.
for (const auto& presented : presented_images) {
// Update memory state
presented.UpdateMemoryAccess(SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_PRESENTED_SYNCVAL, presented.tag, access_context_);
}
}
void QueueBatchContext::LogPresentOperations(const PresentedImages& presented_images, uint64_t submit_index) {
if (tag_range_.size()) {
auto access_log = std::make_shared<AccessLog>();
BatchAccessLog::BatchRecord batch{queue_state_};
batch.submit_index = submit_index;
batch.base_tag = tag_range_.begin;
batch_log_.Insert(batch, tag_range_, access_log);
access_log->reserve(tag_range_.size());
assert(tag_range_.size() == presented_images.size());
for (const auto& presented : presented_images) {
access_log->emplace_back(PresentResourceRecord(static_cast<const PresentedImageRecord>(presented)));
}
}
}
void QueueBatchContext::DoAcquireOperation(const PresentedImage& presented) {
// Only one tag for acquire. The tag in presented is the present tag
presented.UpdateMemoryAccess(SYNC_PRESENT_ENGINE_SYNCVAL_PRESENT_ACQUIRE_READ_SYNCVAL, tag_range_.begin, access_context_);
}
void QueueBatchContext::LogAcquireOperation(const PresentedImage& presented, vvl::Func command) {
auto access_log = std::make_shared<AccessLog>();
BatchAccessLog::BatchRecord batch{queue_state_};
batch.base_tag = tag_range_.begin;
batch_log_.Insert(batch, tag_range_, access_log);
access_log->emplace_back(AcquireResourceRecord(presented, tag_range_.begin, command));
}
void QueueBatchContext::SetupAccessContext(const PresentedImage& presented) {
if (presented.batch) {
access_context_.ResolveFromContext(presented.batch->access_context_);
ImportTags(*presented.batch);
}
}
std::vector<QueueBatchContext::ConstPtr> QueueBatchContext::RegisterAsyncContexts(const std::vector<ConstPtr>& batches_resolved) {
// Gather async context information for hazard checks and conserve the QBC's for the async batches
auto skip_resolved_filter = [&batches_resolved](auto& batch) { return !vvl::Contains(batches_resolved, batch); };
std::vector<ConstPtr> async_batches = sync_state_.GetLastBatches(skip_resolved_filter);
std::vector<ConstPtr> async_pending_batches = sync_state_.GetLastPendingBatches(skip_resolved_filter);
if (!async_pending_batches.empty()) {
vvl::Append(async_batches, async_pending_batches);
}
for (const auto& async_batch : async_batches) {
const QueueId async_queue = async_batch->GetQueueId();
ResourceUsageTag sync_tag;
if (async_queue < queue_sync_tag_.size()) {
sync_tag = queue_sync_tag_[async_queue];
} else {
// If this isn't from a tracked queue, just check the batch itself
sync_tag = async_batch->tag_range_.begin;
}
// The start of the asynchronous access range for a given queue is one more than the highest tagged reference
access_context_.AddAsyncContext(async_batch->GetCurrentAccessContext(), sync_tag, async_batch->GetQueueId());
// We need to snapshot the async log information for async hazard reporting
batch_log_.Import(async_batch->batch_log_);
}
return async_batches;
}
QueueId QueueBatchContext::GetQueueId() const {
QueueId id = queue_state_ ? queue_state_->GetQueueId() : kQueueIdInvalid;
return id;
}
ResourceUsageTag QueueBatchContext::SetupBatchTags(uint32_t tag_count) {
tag_range_ = sync_state_.ReserveGlobalTagRange(tag_count);
access_context_.SetStartTag(tag_range_.begin);
// Needed for ImportSyncTags to pick up the "from" own sync tag.
const QueueId this_q = GetQueueId();
if (this_q < queue_sync_tag_.size()) {
// If this is a non-queued operation we'll get a "special" value like invalid
queue_sync_tag_[this_q] = tag_range_.end;
}
return tag_range_.begin;
}
std::vector<BatchContextConstPtr> QueueBatchContext::ResolveSubmitWaits(vvl::span<const VkSemaphoreSubmitInfo> wait_infos,
std::vector<VkSemaphoreSubmitInfo>& unresolved_waits,
SignalsUpdate& signals_update) {
std::vector<BatchContextConstPtr> resolved_batches;
for (const auto& wait_info : wait_infos) {
auto semaphore_state = sync_state_.Get<vvl::Semaphore>(wait_info.semaphore);
if (!semaphore_state) {
continue; // [core validation check]
}
// Binary semaphore wait:
// * There must be a single resovling signal. If no signal is found, it is a validation error.
// * The resolving signal must not depend on another not yet submitted timeline signal. That's
// not allowed by the specification. When this happens OnBinaryWait also reports that signal
// not found.
// Timeline semaphore wait:
// * No resolving signal is allowed. It is a wait-before-signal scenario.
// * A single resolving signal. The specification defines that exactly *one* signal resolves the wait.
// If there are multiple signals that meet the waiting criteria then implementation may choose
// any of them (which one is unspecified). This also means that a single timeline wait cannot
// synchronize accesses from multiple queues even if each queue has matching signal.
std::optional<SignalInfo> resolving_signal;
if (semaphore_state->type == VK_SEMAPHORE_TYPE_BINARY) {
resolving_signal = signals_update.OnBinaryWait(wait_info.semaphore);
if (!resolving_signal) {
// [core validation check]: binary signal not found or depends on not yet submitted timeline signal
continue;
}
} else {
// Special case when semaphore initial value satisfies the wait.
// There is no batch that signals initial value, nothing to resolve here.
if (wait_info.value <= semaphore_state->initial_value) {
continue;
}
resolving_signal = signals_update.OnTimelineWait(wait_info.semaphore, wait_info.value);
// Register wait-before-signal
if (!resolving_signal) {
if (semaphore_state->Scope() == vvl::Semaphore::Scope::kInternal) {
unresolved_waits.emplace_back(wait_info);
continue;
} else {
// Do not register wait-before-signal for external semaphore.
// We might not be able to track the signal. Just assume that wait is satified.
// TODO: current support for external semaphores ensures resources are not
// leaked. It is still possible to get false-positives. Improve how to silence
// validation when signal cannot be tracked properly.
continue;
}
}
}
if (resolving_signal->batch) {
ResolveSubmitSemaphoreWait(resolving_signal.value(), wait_info.stageMask);
ImportTags(*resolving_signal->batch);
resolved_batches.emplace_back(std::move(resolving_signal->batch));
}
}
return resolved_batches;
}
bool QueueBatchContext::ValidateSubmit(const std::vector<CommandBufferConstPtr>& command_buffers, uint64_t submit_index,
uint32_t batch_index, std::vector<std::string>& current_label_stack,
const ErrorObject& error_obj) {
bool skip = false;
BatchAccessLog::BatchRecord batch{queue_state_, submit_index, batch_index};
uint32_t tag_count = 0;
for (const auto& cb : command_buffers) {
if (!cb) continue;
tag_count += static_cast<uint32_t>(syncval_state::SubState(*cb).access_context.GetTagCount());
}
batch.base_tag = SetupBatchTags(tag_count);
for (size_t index = 0; index < command_buffers.size(); index++) {
const auto& cb = syncval_state::SubState(*command_buffers[index]);
// Validate and resolve command buffers that has tagged commands
const CommandBufferAccessContext& access_context = cb.access_context;
if (access_context.GetTagCount() > 0) {
skip |= ReplayState(*this, access_context, error_obj, uint32_t(index), batch.base_tag).ValidateFirstUse();
// The barriers have already been applied in ValidatFirstUse
batch_log_.Import(batch, access_context, current_label_stack);
ResolveSubmittedCommandBuffer(*access_context.GetCurrentAccessContext(), batch.base_tag);
batch.base_tag += access_context.GetTagCount();
}
// Apply debug label commands
vvl::CommandBuffer::ReplayLabelCommands(cb.base.GetLabelCommands(), current_label_stack);
batch.cb_index++;
}
return skip;
}
QueueBatchContext::PresentResourceRecord::Base_::Record QueueBatchContext::PresentResourceRecord::MakeRecord() const {
return std::make_unique<PresentResourceRecord>(presented_);
}
QueueBatchContext::AcquireResourceRecord::Base_::Record QueueBatchContext::AcquireResourceRecord::MakeRecord() const {
return std::make_unique<AcquireResourceRecord>(presented_, acquire_tag_, command_);
}
std::vector<QueueBatchContext::ConstPtr> SyncValidator::GetLastBatches(
std::function<bool(const QueueBatchContext::ConstPtr&)> filter) const {
std::vector<QueueBatchContext::ConstPtr> snapshot;
for (const auto& queue_sync_state : queue_sync_states_) {
auto batch = queue_sync_state->LastBatch();
if (batch && filter(batch)) {
snapshot.emplace_back(std::move(batch));
}
}
return snapshot;
}
std::vector<QueueBatchContext::Ptr> SyncValidator::GetLastBatches(std::function<bool(const QueueBatchContext::ConstPtr&)> filter) {
std::vector<QueueBatchContext::Ptr> snapshot;
for (const auto& queue_sync_state : queue_sync_states_) {
auto batch = queue_sync_state->LastBatch();
if (batch && filter(batch)) {
snapshot.emplace_back(std::move(batch));
}
}
return snapshot;
}
std::vector<QueueBatchContext::ConstPtr> SyncValidator::GetLastPendingBatches(
std::function<bool(const QueueBatchContext::ConstPtr&)> filter) const {
std::vector<QueueBatchContext::ConstPtr> snapshot;
for (const auto& queue_sync_state : queue_sync_states_) {
auto batch = queue_sync_state->PendingLastBatch();
if (batch && filter(batch)) {
snapshot.emplace_back(std::move(batch));
}
}
return snapshot;
}
void SyncValidator::ClearPending() const {
for (const auto& queue_state : queue_sync_states_) {
queue_state->ClearPending();
}
}
// Note that function is const, but updates mutable submit_index to allow Validate to create correct tagging for command invocation
// scope state.
// Given that queue submits are supposed to be externally synchronized for the same queue, this should safe without being
// atomic... but as the ops are per submit, the performance cost is negible for the peace of mind.
uint64_t QueueSyncState::ReserveSubmitId() const { return submit_index_.fetch_add(1); }
void QueueSyncState::SetPendingLastBatch(QueueBatchContext::Ptr&& last) const { pending_last_batch_ = std::move(last); }
// Since we're updating the QueueSync state, this is Record phase and the access log needs to point to the global one
// Batch Contexts saved during signalling have their AccessLog reset when the pending signals are signalled.
// NOTE: By design, QueueBatchContexts that are neither last, nor referenced by a signal are abandoned as unowned, since
// the contexts Resolve all history from previous all contexts when created
void QueueSyncState::ApplyPendingLastBatch() {
// Update the queue to point to the last batch from the submit
if (pending_last_batch_) {
// Clean up the events data in the previous last batch on queue, as only the subsequent batches have valid use for them
// and the QueueBatchContext::Setup calls have be copying them along from batch to batch during submit.
if (last_batch_) {
last_batch_->ResetEventsContext();
}
pending_last_batch_->Trim();
last_batch_ = std::move(pending_last_batch_);
}
}
void QueueSyncState::SetPendingUnresolvedBatches(std::vector<UnresolvedBatch>&& unresolved_batches) const {
pending_unresolved_batches_ = std::move(unresolved_batches);
update_unresolved_batches_ = true;
}
void QueueSyncState::ApplyPendingUnresolvedBatches() {
if (update_unresolved_batches_) {
unresolved_batches_ = std::move(pending_unresolved_batches_);
pending_unresolved_batches_.clear();
update_unresolved_batches_ = false;
}
}
void QueueSyncState::ClearPending() const {
pending_last_batch_ = nullptr;
if (update_unresolved_batches_) {
const_cast<std::vector<UnresolvedBatch>&>(unresolved_batches_) = std::move(pending_unresolved_batches_);
pending_unresolved_batches_.clear();
update_unresolved_batches_ = false;
}
}
void BatchAccessLog::Import(const BatchRecord& batch, const CommandBufferAccessContext& cb_access,
const std::vector<std::string>& initial_label_stack) {
ResourceUsageRange import_range = {batch.base_tag, batch.base_tag + cb_access.GetTagCount()};
log_map_.insert(std::make_pair(import_range, CBSubmitLog(batch, cb_access, initial_label_stack)));
}
void BatchAccessLog::Import(const BatchAccessLog& other) {
for (const auto& entry : other.log_map_) {
log_map_.insert(entry);
}
}
void BatchAccessLog::Insert(const BatchRecord& batch, const ResourceUsageRange& range,
std::shared_ptr<const CommandExecutionContext::AccessLog> log) {
log_map_.insert(std::make_pair(range, CBSubmitLog(batch, nullptr, std::move(log))));
}
// Trim: Remove any unreferenced AccessLog ranges from a BatchAccessLog
//
// In order to contain memory growth in the AccessLog information regarding prior submitted command buffers,
// the Trim call removes any AccessLog references that do not correspond to any tags in use. The set of referenced tag, used_tags,
// is generated by scanning the AccessContext and EventContext of the containing QueueBatchContext.
//
// Upon return the BatchAccessLog should only contain references to the AccessLog information needed by the
// containing parent QueueBatchContext.
//
// The algorithm used is another example of the "parallel iteration" pattern common within SyncVal. In this case we are
// traversing the ordered range_map containing the AccessLog references and the ordered set of tags in use.
//
// To efficiently perform the parallel iteration, optimizations within this function include:
// * when ranges are detected that have no tags referenced, all ranges between the last tag and the current tag are erased
// * when used tags prior to the current range are found, all tags up to the current range are skipped
// * when a tag is found within the current range, that range is skipped (and thus kept in the map), and further used tags
// within the range are skipped.
//
// Note that for each subcase, any "next steps" logic is designed to be handled within the subsequent iteration -- meaning that
// each subcase simply handles the specifics of the current update/skip/erase action needed, and leaves the iterators in a sensible
// state for the top of loop... intentionally eliding special case handling.
void BatchAccessLog::Trim(const ResourceUsageTagSet& used_tags) {
auto current_tag = used_tags.cbegin();
const auto end_tag = used_tags.cend();
auto current_map_range = log_map_.begin();
const auto end_map = log_map_.end();
while (current_map_range != end_map) {
if (current_tag == end_tag) {
// We're out of tags, the rest of the map isn't referenced, so erase it
current_map_range = log_map_.erase(current_map_range, end_map);
} else {
auto& range = current_map_range->first;
const ResourceUsageTag tag = *current_tag;
if (tag < range.begin) {
// Skip to the next tag potentially in range
// if this is end_tag, we'll handle that next iteration
current_tag = used_tags.lower_bound(range.begin);
} else if (tag >= range.end) {
// This tag is beyond the current range, delete all ranges between current_map_range,
// and the next that includes the tag. Next is not erased.
auto next_used = log_map_.lower_bound(ResourceUsageRange(tag, tag + 1));
current_map_range = log_map_.erase(current_map_range, next_used);
} else {
// Skip the rest of the tags in this range
// If this is end, the next iteration will handle
current_tag = used_tags.lower_bound(range.end);
// This is a range we will keep, advance to the next. Next iteration handles end condition
++current_map_range;
}
}
}
}
BatchAccessLog::AccessRecord BatchAccessLog::GetAccessRecord(ResourceUsageTag tag) const {
auto found_log = log_map_.find(tag);
if (found_log != log_map_.cend()) {
return found_log->second.GetAccessRecord(tag);
}
// tag not found
assert(false);
return AccessRecord();
}
std::string BatchAccessLog::CBSubmitLog::GetDebugRegionName(const ResourceUsageRecord& record) const {
const auto& label_commands = (*cbs_)[0]->GetLabelCommands();
return vvl::CommandBuffer::GetDebugRegionName(label_commands, record.label_command_index, initial_label_stack_);
}
BatchAccessLog::AccessRecord BatchAccessLog::CBSubmitLog::GetAccessRecord(ResourceUsageTag tag) const {
assert(tag >= batch_.base_tag);
const size_t index = tag - batch_.base_tag;
assert(log_);
assert(index < log_->size());
const ResourceUsageRecord* record = &(*log_)[index];
const auto debug_name_provider = (record->label_command_index == vvl::kU32Max) ? nullptr : this;
return AccessRecord{&batch_, record, debug_name_provider};
}
BatchAccessLog::CBSubmitLog::CBSubmitLog(const BatchRecord& batch,
std::shared_ptr<const CommandExecutionContext::CommandBufferSet> cbs,
std::shared_ptr<const CommandExecutionContext::AccessLog> log)
: batch_(batch), cbs_(cbs), log_(log) {}
BatchAccessLog::CBSubmitLog::CBSubmitLog(const BatchRecord& batch, const CommandBufferAccessContext& cb,
const std::vector<std::string>& initial_label_stack)
: batch_(batch), cbs_(cb.GetCBReferencesShared()), log_(cb.GetAccessLogShared()), initial_label_stack_(initial_label_stack) {}
PresentedImage::PresentedImage(SyncValidator& sync_state, QueueBatchContext::Ptr batch_, VkSwapchainKHR swapchain,
uint32_t image_index_, uint32_t present_index_, ResourceUsageTag tag_)
: PresentedImageRecord{tag_, image_index_, present_index_, sync_state.Get<vvl::Swapchain>(swapchain), {}},
batch(std::move(batch_)) {
SetImage(image_index_);
}
PresentedImage::PresentedImage(std::shared_ptr<vvl::Swapchain>&& swapchain, uint32_t at_index) : PresentedImage() {
swapchain_state = std::move(swapchain);
tag = kInvalidTag;
SetImage(at_index);
}
bool PresentedImage::Invalid() const { return vvl::StateObject::Invalid(image); }
// Export uses move semantics...
void PresentedImage::ExportToSwapchain(SyncValidator&) { // Include this argument to prove the const cast is safe
// If the swapchain is dead just ignore the present
auto swap_lock = swapchain_state.lock();
if (vvl::StateObject::Invalid(swap_lock)) return;
auto& sub_state = syncval_state::SubState(*swap_lock);
sub_state.RecordPresentedImage(std::move(*this));
}
void PresentedImage::SetImage(uint32_t at_index) {
image_index = at_index;
auto swap_lock = swapchain_state.lock();
if (vvl::StateObject::Invalid(swap_lock)) return;
image = std::static_pointer_cast<const vvl::Image>(swap_lock->GetSwapChainImageShared(image_index));
if (Invalid()) {
range_gen = ImageRangeGen();
} else {
// For valid images create the type/range_gen to used to scope the semaphore operations
const auto& sub_state = syncval_state::SubState(*image);
range_gen = sub_state.MakeImageRangeGen(image->full_range, false);
}
}
void PresentedImage::UpdateMemoryAccess(SyncAccessIndex usage, ResourceUsageTag tag, AccessContext& access_context) const {
// Intentional copy. The range_gen argument is not copied by the Update... call below
access_context.UpdateAccessState(range_gen, usage, SyncOrdering::kNonAttachment, ResourceUsageTagEx{tag});
}
|