File: test_icd.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (1828 lines) | stat: -rw-r--r-- 94,245 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
/*
** Copyright (c) 2015-2018, 2023-2025 The Khronos Group Inc.
** Modifications Copyright (C) 2024 Advanced Micro Devices, Inc. All rights reserved.
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
**     http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/

#include <algorithm>
#include "test_icd.h"
#include "test_icd_helper.h"
#include <vulkan/utility/vk_format_utils.h>
#include <cstddef>
#include <vulkan/utility/vk_struct_helper.hpp>

namespace icd {

static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetPhysicalDeviceProcAddr(VkInstance instance, const char* funcName) {
    const auto& item = name_to_func_ptr_map.find(funcName);
    if (item != name_to_func_ptr_map.end()) {
        return reinterpret_cast<PFN_vkVoidFunction>(item->second);
    }
    // we should intercept all functions, so if we get here just return null
    return nullptr;
}

#if defined(__GNUC__) && __GNUC__ >= 4
#define EXPORT __attribute__((visibility("default")))
#elif defined(__SUNPRO_C) && (__SUNPRO_C >= 0x590)
#define EXPORT __attribute__((visibility("default")))
#else
#define EXPORT
#endif

void SetBoolArrayTrue(VkBool32* bool_array, uint32_t num_bools) {
    for (uint32_t i = 0; i < num_bools; ++i) {
        bool_array[i] = VK_TRUE;
    }
}

VkDeviceSize GetImageSizeFromCreateInfo(const VkImageCreateInfo* pCreateInfo) {
    VkDeviceSize size = pCreateInfo->extent.width;
    size *= pCreateInfo->extent.height;
    size *= pCreateInfo->extent.depth;
    size *= 32;  // A pixel size is 32 bytes, this accounts for the largest possible pixel size of any format
    size *= pCreateInfo->arrayLayers;
    size *= (pCreateInfo->mipLevels > 1 ? 2 : 1);
    size *= vkuFormatPlaneCount(pCreateInfo->format);
    return size;
}

// These are placeholders, should not be needed since we are using profiles over this
static VkPhysicalDeviceLimits SetLimits(VkPhysicalDeviceLimits* limits) {
    limits->maxImageDimension1D = 4096;
    limits->maxImageDimension2D = 4096;
    limits->maxImageDimension3D = 256;
    limits->maxImageDimensionCube = 4096;
    limits->maxImageArrayLayers = 256;
    limits->maxTexelBufferElements = 65536;
    limits->maxUniformBufferRange = 16384;
    limits->maxStorageBufferRange = 134217728;
    limits->maxPushConstantsSize = 128;
    limits->maxMemoryAllocationCount = 4096;
    limits->maxSamplerAllocationCount = 4000;
    limits->bufferImageGranularity = 1;
    limits->sparseAddressSpaceSize = 2147483648;
    limits->maxBoundDescriptorSets = 4;
    limits->maxPerStageDescriptorSamplers = 16;
    limits->maxPerStageDescriptorUniformBuffers = 12;
    limits->maxPerStageDescriptorStorageBuffers = 4;
    limits->maxPerStageDescriptorSampledImages = 16;
    limits->maxPerStageDescriptorStorageImages = 4;
    limits->maxPerStageDescriptorInputAttachments = 4;
    limits->maxPerStageResources = 128;
    limits->maxDescriptorSetSamplers = 96;
    limits->maxDescriptorSetUniformBuffers = 72;
    limits->maxDescriptorSetUniformBuffersDynamic = 8;
    limits->maxDescriptorSetStorageBuffers = 24;
    limits->maxDescriptorSetStorageBuffersDynamic = 4;
    limits->maxDescriptorSetSampledImages = 96;
    limits->maxDescriptorSetStorageImages = 24;
    limits->maxDescriptorSetInputAttachments = 4;
    limits->maxVertexInputAttributes = 16;
    limits->maxVertexInputBindings = 16;
    limits->maxVertexInputAttributeOffset = 2047;
    limits->maxVertexInputBindingStride = 2048;
    limits->maxVertexOutputComponents = 64;
    limits->maxTessellationGenerationLevel = 64;
    limits->maxTessellationPatchSize = 32;
    limits->maxTessellationControlPerVertexInputComponents = 64;
    limits->maxTessellationControlPerVertexOutputComponents = 64;
    limits->maxTessellationControlPerPatchOutputComponents = 120;
    limits->maxTessellationControlTotalOutputComponents = 2048;
    limits->maxTessellationEvaluationInputComponents = 64;
    limits->maxTessellationEvaluationOutputComponents = 64;
    limits->maxGeometryShaderInvocations = 32;
    limits->maxGeometryInputComponents = 64;
    limits->maxGeometryOutputComponents = 64;
    limits->maxGeometryOutputVertices = 256;
    limits->maxGeometryTotalOutputComponents = 1024;
    limits->maxFragmentInputComponents = 64;
    limits->maxFragmentOutputAttachments = 4;
    limits->maxFragmentDualSrcAttachments = 1;
    limits->maxFragmentCombinedOutputResources = 4;
    limits->maxComputeSharedMemorySize = 16384;
    limits->maxComputeWorkGroupCount[0] = 65535;
    limits->maxComputeWorkGroupCount[1] = 65535;
    limits->maxComputeWorkGroupCount[2] = 65535;
    limits->maxComputeWorkGroupInvocations = 128;
    limits->maxComputeWorkGroupSize[0] = 128;
    limits->maxComputeWorkGroupSize[1] = 128;
    limits->maxComputeWorkGroupSize[2] = 64;
    limits->subPixelPrecisionBits = 4;
    limits->subTexelPrecisionBits = 4;
    limits->mipmapPrecisionBits = 4;
    limits->maxDrawIndexedIndexValue = UINT32_MAX;
    limits->maxDrawIndirectCount = UINT16_MAX;
    limits->maxSamplerLodBias = 2.0f;
    limits->maxSamplerAnisotropy = 16;
    limits->maxViewports = 16;
    limits->maxViewportDimensions[0] = 4096;
    limits->maxViewportDimensions[1] = 4096;
    limits->viewportBoundsRange[0] = -8192;
    limits->viewportBoundsRange[1] = 8191;
    limits->viewportSubPixelBits = 0;
    limits->minMemoryMapAlignment = 64;
    limits->minTexelBufferOffsetAlignment = 16;
    limits->minUniformBufferOffsetAlignment = 16;
    limits->minStorageBufferOffsetAlignment = 16;
    limits->minTexelOffset = -8;
    limits->maxTexelOffset = 7;
    limits->minTexelGatherOffset = -8;
    limits->maxTexelGatherOffset = 7;
    limits->minInterpolationOffset = 0.0f;
    limits->maxInterpolationOffset = 0.5f;
    limits->subPixelInterpolationOffsetBits = 4;
    limits->maxFramebufferWidth = 4096;
    limits->maxFramebufferHeight = 4096;
    limits->maxFramebufferLayers = 256;
    limits->framebufferColorSampleCounts = 0x7F;
    limits->framebufferDepthSampleCounts = 0x7F;
    limits->framebufferStencilSampleCounts = 0x7F;
    limits->framebufferNoAttachmentsSampleCounts = 0x7F;
    limits->maxColorAttachments = 4;
    limits->sampledImageColorSampleCounts = 0x7F;
    limits->sampledImageIntegerSampleCounts = 0x7F;
    limits->sampledImageDepthSampleCounts = 0x7F;
    limits->sampledImageStencilSampleCounts = 0x7F;
    limits->storageImageSampleCounts = 0x7F;
    limits->maxSampleMaskWords = 1;
    limits->timestampComputeAndGraphics = VK_TRUE;
    limits->timestampPeriod = 1;
    limits->maxClipDistances = 8;
    limits->maxCullDistances = 8;
    limits->maxCombinedClipAndCullDistances = 8;
    limits->discreteQueuePriorities = 2;
    limits->pointSizeRange[0] = 1.0f;
    limits->pointSizeRange[1] = 64.0f;
    limits->lineWidthRange[0] = 1.0f;
    limits->lineWidthRange[1] = 8.0f;
    limits->pointSizeGranularity = 1.0f;
    limits->lineWidthGranularity = 1.0f;
    limits->strictLines = VK_TRUE;
    limits->standardSampleLocations = VK_TRUE;
    limits->optimalBufferCopyOffsetAlignment = 1;
    limits->optimalBufferCopyRowPitchAlignment = 1;
    limits->nonCoherentAtomSize = 256;

    return *limits;
}

}  // namespace icd

extern "C" {

EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char* pName) {
    if (!icd::negotiate_loader_icd_interface_called) {
        icd::loader_interface_version = 1;
    }
    return icd::GetInstanceProcAddr(instance, pName);
}

EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(VkInstance instance, const char* pName) {
    return icd::GetPhysicalDeviceProcAddr(instance, pName);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion) {
    icd::negotiate_loader_icd_interface_called = true;
    icd::loader_interface_version = *pSupportedVersion;
    if (*pSupportedVersion > icd::SUPPORTED_LOADER_ICD_INTERFACE_VERSION) {
        *pSupportedVersion = icd::SUPPORTED_LOADER_ICD_INTERFACE_VERSION;
    }
    return VK_SUCCESS;
}

EXPORT VKAPI_ATTR void VKAPI_CALL vkDestroySurfaceKHR(VkInstance instance, VkSurfaceKHR surface,
                                                      const VkAllocationCallbacks* pAllocator) {
    icd::DestroySurfaceKHR(instance, surface, pAllocator);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice physicalDevice,
                                                                           uint32_t queueFamilyIndex, VkSurfaceKHR surface,
                                                                           VkBool32* pSupported) {
    return icd::GetPhysicalDeviceSurfaceSupportKHR(physicalDevice, queueFamilyIndex, surface, pSupported);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice physicalDevice,
                                                                                VkSurfaceKHR surface,
                                                                                VkSurfaceCapabilitiesKHR* pSurfaceCapabilities) {
    return icd::GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, pSurfaceCapabilities);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
                                                                           uint32_t* pSurfaceFormatCount,
                                                                           VkSurfaceFormatKHR* pSurfaceFormats) {
    return icd::GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, pSurfaceFormatCount, pSurfaceFormats);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice physicalDevice,
                                                                                VkSurfaceKHR surface, uint32_t* pPresentModeCount,
                                                                                VkPresentModeKHR* pPresentModes) {
    return icd::GetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, pPresentModeCount, pPresentModes);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateDisplayPlaneSurfaceKHR(VkInstance instance,
                                                                     const VkDisplaySurfaceCreateInfoKHR* pCreateInfo,
                                                                     const VkAllocationCallbacks* pAllocator,
                                                                     VkSurfaceKHR* pSurface) {
    return icd::CreateDisplayPlaneSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}

#ifdef VK_USE_PLATFORM_XLIB_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateXlibSurfaceKHR(VkInstance instance, const VkXlibSurfaceCreateInfoKHR* pCreateInfo,
                                                             const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateXlibSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_XLIB_KHR */

#ifdef VK_USE_PLATFORM_XCB_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateXcbSurfaceKHR(VkInstance instance, const VkXcbSurfaceCreateInfoKHR* pCreateInfo,
                                                            const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateXcbSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_XCB_KHR */

#ifdef VK_USE_PLATFORM_WAYLAND_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateWaylandSurfaceKHR(VkInstance instance,
                                                                const VkWaylandSurfaceCreateInfoKHR* pCreateInfo,
                                                                const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateWaylandSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_WAYLAND_KHR */

#ifdef VK_USE_PLATFORM_ANDROID_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateAndroidSurfaceKHR(VkInstance instance,
                                                                const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
                                                                const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateAndroidSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_ANDROID_KHR */

#ifdef VK_USE_PLATFORM_WIN32_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateWin32SurfaceKHR(VkInstance instance, const VkWin32SurfaceCreateInfoKHR* pCreateInfo,
                                                              const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateWin32SurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_WIN32_KHR */

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetDeviceGroupSurfacePresentModesKHR(VkDevice device, VkSurfaceKHR surface,
                                                                             VkDeviceGroupPresentModeFlagsKHR* pModes) {
    return icd::GetDeviceGroupSurfacePresentModesKHR(device, surface, pModes);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
                                                                              uint32_t* pRectCount, VkRect2D* pRects) {
    return icd::GetPhysicalDevicePresentRectanglesKHR(physicalDevice, surface, pRectCount, pRects);
}

#ifdef VK_USE_PLATFORM_VI_NN

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateViSurfaceNN(VkInstance instance, const VkViSurfaceCreateInfoNN* pCreateInfo,
                                                          const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateViSurfaceNN(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_VI_NN */

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceCapabilities2EXT(VkPhysicalDevice physicalDevice,
                                                                                 VkSurfaceKHR surface,
                                                                                 VkSurfaceCapabilities2EXT* pSurfaceCapabilities) {
    return icd::GetPhysicalDeviceSurfaceCapabilities2EXT(physicalDevice, surface, pSurfaceCapabilities);
}

#ifdef VK_USE_PLATFORM_IOS_MVK

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateIOSSurfaceMVK(VkInstance instance, const VkIOSSurfaceCreateInfoMVK* pCreateInfo,
                                                            const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateIOSSurfaceMVK(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_IOS_MVK */

#ifdef VK_USE_PLATFORM_MACOS_MVK

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateMacOSSurfaceMVK(VkInstance instance, const VkMacOSSurfaceCreateInfoMVK* pCreateInfo,
                                                              const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) {
    return icd::CreateMacOSSurfaceMVK(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_MACOS_MVK */

}  // end extern "C"

namespace icd {

static VKAPI_ATTR VkResult VKAPI_CALL CreateInstance(const VkInstanceCreateInfo* pCreateInfo,
                                                     const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) {
    // TODO: If loader ver <=4 ICD must fail with VK_ERROR_INCOMPATIBLE_DRIVER for all vkCreateInstance calls with
    //  apiVersion set to > Vulkan 1.0 because the loader is still at interface version <= 4. Otherwise, the
    //  ICD should behave as normal.
    if (loader_interface_version <= 4) {
        return VK_ERROR_INCOMPATIBLE_DRIVER;
    }
    *pInstance = (VkInstance)CreateDispObjHandle();
    for (auto& physical_device : physical_device_map[*pInstance]) physical_device = (VkPhysicalDevice)CreateDispObjHandle();
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL DestroyInstance(VkInstance instance, const VkAllocationCallbacks* pAllocator) {
    if (instance) {
        for (const auto physical_device : physical_device_map.at(instance)) {
            display_map.erase(physical_device);
            DestroyDispObjHandle((void*)physical_device);
        }
        physical_device_map.erase(instance);
        DestroyDispObjHandle((void*)instance);
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumeratePhysicalDevices(VkInstance instance, uint32_t* pPhysicalDeviceCount,
                                                               VkPhysicalDevice* pPhysicalDevices) {
    VkResult result_code = VK_SUCCESS;
    if (pPhysicalDevices) {
        const auto return_count = (std::min)(*pPhysicalDeviceCount, icd_physical_device_count);
        for (uint32_t i = 0; i < return_count; ++i) pPhysicalDevices[i] = physical_device_map.at(instance)[i];
        if (return_count < icd_physical_device_count) result_code = VK_INCOMPLETE;
        *pPhysicalDeviceCount = return_count;
    } else {
        *pPhysicalDeviceCount = icd_physical_device_count;
    }
    return result_code;
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) {
    uint32_t num_bools = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
    VkBool32* bool_array = &pFeatures->robustBufferAccess;
    SetBoolArrayTrue(bool_array, num_bools);
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format,
                                                                    VkFormatProperties* pFormatProperties) {
    if (VK_FORMAT_UNDEFINED == format) {
        *pFormatProperties = {0x0, 0x0, 0x0};
    } else {
        // Default to a color format, skip DS bit
        *pFormatProperties = {0x00FFFDFF, 0x00FFFDFF, 0x00FFFDFF};
        switch (format) {
            case VK_FORMAT_D16_UNORM:
            case VK_FORMAT_X8_D24_UNORM_PACK32:
            case VK_FORMAT_D32_SFLOAT:
            case VK_FORMAT_S8_UINT:
            case VK_FORMAT_D16_UNORM_S8_UINT:
            case VK_FORMAT_D24_UNORM_S8_UINT:
            case VK_FORMAT_D32_SFLOAT_S8_UINT:
                // Don't set color bits for DS formats
                *pFormatProperties = {0x00FFFE7F, 0x00FFFE7F, 0x00FFFE7F};
                break;
            case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
            case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
            case VK_FORMAT_G8_B8R8_2PLANE_422_UNORM:
            case VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16:
            case VK_FORMAT_G8_B8R8_2PLANE_444_UNORM:
                // Set decode/encode bits for these formats
                *pFormatProperties = {0x1EFFFDFF, 0x1EFFFDFF, 0x00FFFDFF};
                break;
            default:
                break;
        }
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format,
                                                                             VkImageType type, VkImageTiling tiling,
                                                                             VkImageUsageFlags usage, VkImageCreateFlags flags,
                                                                             VkImageFormatProperties* pImageFormatProperties) {
    // A hardcoded unsupported format
    if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) {
        return VK_ERROR_FORMAT_NOT_SUPPORTED;
    }

    // TODO: Just hard-coding some values for now
    // TODO: If tiling is linear, limit the mips, levels, & sample count
    if (VK_IMAGE_TILING_LINEAR == tiling) {
        *pImageFormatProperties = {{4096, 4096, 256}, 1, 1, VK_SAMPLE_COUNT_1_BIT, 4294967296};
    } else {
        // We hard-code support for all sample counts except 64 bits.
        *pImageFormatProperties = {{4096, 4096, 256}, 12, 256, 0x7F & ~VK_SAMPLE_COUNT_64_BIT, 4294967296};
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
                                                              VkPhysicalDeviceProperties* pProperties) {
    pProperties->apiVersion = VK_HEADER_VERSION_COMPLETE;
    pProperties->driverVersion = 1;
    pProperties->vendorID = 0xba5eba11;
    pProperties->deviceID = 0xf005ba11;
    pProperties->deviceType = VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU;
    // Keep to match with other MockICD
    strcpy(pProperties->deviceName, "Vulkan Mock Device");
    pProperties->pipelineCacheUUID[0] = 18;
    pProperties->limits = SetLimits(&pProperties->limits);
    pProperties->sparseProperties = {VK_TRUE, VK_TRUE, VK_TRUE, VK_TRUE, VK_TRUE};
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,
                                                                         uint32_t* pQueueFamilyPropertyCount,
                                                                         VkQueueFamilyProperties* pQueueFamilyProperties) {
    if (pQueueFamilyProperties) {
        std::vector<VkQueueFamilyProperties2> props2(*pQueueFamilyPropertyCount,
                                                     {VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2, nullptr, {}});
        GetPhysicalDeviceQueueFamilyProperties2(physicalDevice, pQueueFamilyPropertyCount, props2.data());
        for (uint32_t i = 0; i < *pQueueFamilyPropertyCount; ++i) {
            pQueueFamilyProperties[i] = props2[i].queueFamilyProperties;
        }
    } else {
        GetPhysicalDeviceQueueFamilyProperties2(physicalDevice, pQueueFamilyPropertyCount, nullptr);
    }
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
                                                                    VkPhysicalDeviceMemoryProperties* pMemoryProperties) {
    pMemoryProperties->memoryTypeCount = 6;
    // Host visible Coherent
    pMemoryProperties->memoryTypes[0].propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    pMemoryProperties->memoryTypes[0].heapIndex = 0;
    // Host visible Cached
    pMemoryProperties->memoryTypes[1].propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
    pMemoryProperties->memoryTypes[1].heapIndex = 0;
    // Device local and Host visible
    pMemoryProperties->memoryTypes[2].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                                                      VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    pMemoryProperties->memoryTypes[2].heapIndex = 1;
    // Device local lazily
    pMemoryProperties->memoryTypes[3].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
    pMemoryProperties->memoryTypes[3].heapIndex = 1;
    // Device local protected
    pMemoryProperties->memoryTypes[4].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_PROTECTED_BIT;
    pMemoryProperties->memoryTypes[4].heapIndex = 1;
    // Device local only
    pMemoryProperties->memoryTypes[5].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
    pMemoryProperties->memoryTypes[5].heapIndex = 1;
    pMemoryProperties->memoryHeapCount = 2;
    pMemoryProperties->memoryHeaps[0].flags = VK_MEMORY_HEAP_MULTI_INSTANCE_BIT;
    pMemoryProperties->memoryHeaps[0].size = 8000000000;
    pMemoryProperties->memoryHeaps[1].flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT;
    pMemoryProperties->memoryHeaps[1].size = 8000000000;
}

static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetInstanceProcAddr(VkInstance instance, const char* pName) {
    if (!negotiate_loader_icd_interface_called) {
        loader_interface_version = 0;
    }
    const auto& item = name_to_func_ptr_map.find(pName);
    if (item != name_to_func_ptr_map.end()) {
        return reinterpret_cast<PFN_vkVoidFunction>(item->second);
    }
    printf("WARNING - Failed to find %s\n", pName);
    // Mock should intercept all functions so if we get here just return null
    return nullptr;
}

static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetDeviceProcAddr(VkDevice device, const char* pName) {
    return GetInstanceProcAddr(nullptr, pName);
}

static VKAPI_ATTR VkResult VKAPI_CALL CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo,
                                                   const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) {
    *pDevice = (VkDevice)CreateDispObjHandle();
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL DestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator) {
    unique_lock_t lock(global_lock);
    // First destroy sub-device objects
    // Destroy Queues
    for (auto queue_family_map_pair : queue_map[device]) {
        for (auto index_queue_pair : queue_map[device][queue_family_map_pair.first]) {
            DestroyDispObjHandle((void*)index_queue_pair.second);
        }
    }

    for (auto& cp : command_pool_map[device]) {
        for (auto& cb : command_pool_buffer_map[cp]) {
            DestroyDispObjHandle((void*)cb);
        }
        command_pool_buffer_map.erase(cp);
    }
    command_pool_map[device].clear();

    queue_map.erase(device);
    buffer_map.erase(device);
    image_memory_size_map.erase(device);
    DestroyDispObjHandle((void*)device);
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumerateInstanceExtensionProperties(const char* pLayerName, uint32_t* pPropertyCount,
                                                                           VkExtensionProperties* pProperties) {
    // If requesting number of extensions, return that
    if (!pLayerName) {
        if (!pProperties) {
            *pPropertyCount = (uint32_t)instance_extension_map.size();
        } else {
            uint32_t i = 0;
            for (const auto& name_ver_pair : instance_extension_map) {
                if (i == *pPropertyCount) {
                    break;
                }
                std::strncpy(pProperties[i].extensionName, name_ver_pair.first.c_str(), sizeof(pProperties[i].extensionName) - 1);
                pProperties[i].extensionName[sizeof(pProperties[i].extensionName) - 1] = '\0';
                pProperties[i].specVersion = name_ver_pair.second;
                ++i;
            }
            if (i != instance_extension_map.size()) {
                return VK_INCOMPLETE;
            }
        }
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char* pLayerName,
                                                                         uint32_t* pPropertyCount,
                                                                         VkExtensionProperties* pProperties) {
    // If requesting number of extensions, return that
    if (!pLayerName) {
        if (!pProperties) {
            *pPropertyCount = (uint32_t)device_extension_map.size();
        } else {
            uint32_t i = 0;
            for (const auto& name_ver_pair : device_extension_map) {
                if (i == *pPropertyCount) {
                    break;
                }
                std::strncpy(pProperties[i].extensionName, name_ver_pair.first.c_str(), sizeof(pProperties[i].extensionName) - 1);
                pProperties[i].extensionName[sizeof(pProperties[i].extensionName) - 1] = '\0';
                pProperties[i].specVersion = name_ver_pair.second;
                ++i;
            }
            if (i != device_extension_map.size()) {
                return VK_INCOMPLETE;
            }
        }
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumerateInstanceLayerProperties(uint32_t* pPropertyCount, VkLayerProperties* pProperties) {
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount,
                                                                     VkLayerProperties* pProperties) {
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL GetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue* pQueue) {
    unique_lock_t lock(global_lock);
    auto queue = queue_map[device][queueFamilyIndex][queueIndex];
    if (queue) {
        *pQueue = queue;
    } else {
        *pQueue = queue_map[device][queueFamilyIndex][queueIndex] = (VkQueue)CreateDispObjHandle();
    }
    return;
}

static VKAPI_ATTR VkResult VKAPI_CALL QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits,
                                                  VkFence fence) {
    // Special way to cause DEVICE_LOST
    // Picked VkExportFenceCreateInfo because needed some struct that wouldn't get cleared by validation Safe Struct
    // ... TODO - It would be MUCH nicer to have a layer or other setting control when this occured
    // For now this is used to allow Validation Layers test reacting to device losts
    if (submitCount > 0 && pSubmits) {
        auto pNext = reinterpret_cast<const VkBaseInStructure*>(pSubmits[0].pNext);
        if (pNext && pNext->sType == VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO && pNext->pNext == nullptr) {
            return VK_ERROR_DEVICE_LOST;
        }
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL AllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo,
                                                     const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory) {
    unique_lock_t lock(global_lock);
    allocated_memory_size_map[(VkDeviceMemory)global_unique_handle] = pAllocateInfo->allocationSize;
    *pMemory = (VkDeviceMemory)global_unique_handle++;
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL FreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator) {
    UnmapMemory(device, memory);
    unique_lock_t lock(global_lock);
    allocated_memory_size_map.erase(memory);
}

static VKAPI_ATTR VkResult VKAPI_CALL MapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
                                                VkMemoryMapFlags flags, void** ppData) {
    unique_lock_t lock(global_lock);
    if (VK_WHOLE_SIZE == size) {
        if (allocated_memory_size_map.count(memory) != 0)
            size = allocated_memory_size_map[memory] - offset;
        else
            size = 0x10000;
    }

    // https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/8776
    // things like shaderGroupBaseAlignment can be as big as 64, since these values are dynamically set in the Profile JSON, we need
    // to create the large alignment possible to satisfy them all
    static const size_t memory_alignment = 64;
#if defined(_WIN32)
    void* map_addr = _aligned_malloc((size_t)size, memory_alignment);
#else
    void* map_addr = aligned_alloc(memory_alignment, (size_t)size);
#endif
    mapped_memory_map[memory].push_back(map_addr);
    *ppData = map_addr;
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL UnmapMemory(VkDevice device, VkDeviceMemory memory) {
    unique_lock_t lock(global_lock);
    for (auto map_addr : mapped_memory_map[memory]) {
#if defined(_WIN32)
        _aligned_free(map_addr);
#else
        free(map_addr);
#endif
    }
    mapped_memory_map.erase(memory);
}

static VKAPI_ATTR void VKAPI_CALL GetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
                                                              VkMemoryRequirements* pMemoryRequirements) {
    pMemoryRequirements->size = 4096;
    pMemoryRequirements->alignment = 1;
    pMemoryRequirements->memoryTypeBits = 0xFFFF;
    // Return a better size based on the buffer size from the create info.
    unique_lock_t lock(global_lock);
    auto d_iter = buffer_map.find(device);
    if (d_iter != buffer_map.end()) {
        auto iter = d_iter->second.find(buffer);
        if (iter != d_iter->second.end()) {
            pMemoryRequirements->size = ((iter->second.size + 4095) / 4096) * 4096;
        }
    }
}

static VKAPI_ATTR void VKAPI_CALL GetImageMemoryRequirements(VkDevice device, VkImage image,
                                                             VkMemoryRequirements* pMemoryRequirements) {
    pMemoryRequirements->size = 0;
    pMemoryRequirements->alignment = 1;

    unique_lock_t lock(global_lock);
    auto d_iter = image_memory_size_map.find(device);
    if (d_iter != image_memory_size_map.end()) {
        auto iter = d_iter->second.find(image);
        if (iter != d_iter->second.end()) {
            pMemoryRequirements->size = iter->second;
        }
    }
    // Here we hard-code that the memory type at index 3 doesn't support this image.
    pMemoryRequirements->memoryTypeBits = 0xFFFF & ~(0x1 << 3);
}

static VKAPI_ATTR void VKAPI_CALL GetImageSparseMemoryRequirements(VkDevice device, VkImage image,
                                                                   uint32_t* pSparseMemoryRequirementCount,
                                                                   VkSparseImageMemoryRequirements* pSparseMemoryRequirements) {
    if (!pSparseMemoryRequirements) {
        *pSparseMemoryRequirementCount = 1;
    } else {
        // arbitrary
        pSparseMemoryRequirements->imageMipTailFirstLod = 0;
        pSparseMemoryRequirements->imageMipTailSize = 8;
        pSparseMemoryRequirements->imageMipTailOffset = 0;
        pSparseMemoryRequirements->imageMipTailStride = 4;
        pSparseMemoryRequirements->formatProperties.imageGranularity = {4, 4, 4};
        pSparseMemoryRequirements->formatProperties.flags = VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT;
        // Would need to track the VkImage to know format for better value here
        pSparseMemoryRequirements->formatProperties.aspectMask =
            VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_METADATA_BIT;
    }
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format,
                                                                               VkImageType type, VkSampleCountFlagBits samples,
                                                                               VkImageUsageFlags usage, VkImageTiling tiling,
                                                                               uint32_t* pPropertyCount,
                                                                               VkSparseImageFormatProperties* pProperties) {
    if (!pProperties) {
        *pPropertyCount = 1;
    } else {
        // arbitrary
        pProperties->imageGranularity = {4, 4, 4};
        pProperties->flags = VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT;
        switch (format) {
            case VK_FORMAT_D16_UNORM:
            case VK_FORMAT_D32_SFLOAT:
                pProperties->aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
                break;
            case VK_FORMAT_S8_UINT:
                pProperties->aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
                break;
            case VK_FORMAT_X8_D24_UNORM_PACK32:
            case VK_FORMAT_D16_UNORM_S8_UINT:
            case VK_FORMAT_D24_UNORM_S8_UINT:
            case VK_FORMAT_D32_SFLOAT_S8_UINT:
                pProperties->aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
                break;
            default:
                pProperties->aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
                break;
        }
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL CreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo,
                                                   const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) {
    unique_lock_t lock(global_lock);
    *pBuffer = (VkBuffer)global_unique_handle++;
    buffer_map[device][*pBuffer] = {pCreateInfo->size, current_available_address};
    current_available_address += pCreateInfo->size;
    // Always align to next 64-bit pointer
    const uint64_t alignment = current_available_address % 64;
    if (alignment != 0) {
        current_available_address += (64 - alignment);
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL DestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator) {
    unique_lock_t lock(global_lock);
    buffer_map[device].erase(buffer);
}

static VKAPI_ATTR VkResult VKAPI_CALL CreateImage(VkDevice device, const VkImageCreateInfo* pCreateInfo,
                                                  const VkAllocationCallbacks* pAllocator, VkImage* pImage) {
    unique_lock_t lock(global_lock);
    *pImage = (VkImage)global_unique_handle++;
    image_memory_size_map[device][*pImage] = GetImageSizeFromCreateInfo(pCreateInfo);
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL DestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks* pAllocator) {
    unique_lock_t lock(global_lock);
    image_memory_size_map[device].erase(image);
}

static VKAPI_ATTR void VKAPI_CALL GetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource* pSubresource,
                                                            VkSubresourceLayout* pLayout) {
    // Need safe values. Callers are computing memory offsets from pLayout, with no return code to flag failure.
    *pLayout = VkSubresourceLayout();  // Default constructor zero values.
}

static VKAPI_ATTR void VKAPI_CALL GetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D* pGranularity) {
    pGranularity->width = 1;
    pGranularity->height = 1;
}

static VKAPI_ATTR VkResult VKAPI_CALL CreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo* pCreateInfo,
                                                        const VkAllocationCallbacks* pAllocator, VkCommandPool* pCommandPool) {
    unique_lock_t lock(global_lock);
    *pCommandPool = (VkCommandPool)global_unique_handle++;
    command_pool_map[device].insert(*pCommandPool);
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL DestroyCommandPool(VkDevice device, VkCommandPool commandPool,
                                                     const VkAllocationCallbacks* pAllocator) {
    // destroy command buffers for this pool
    unique_lock_t lock(global_lock);
    auto it = command_pool_buffer_map.find(commandPool);
    if (it != command_pool_buffer_map.end()) {
        for (auto& cb : it->second) {
            DestroyDispObjHandle((void*)cb);
        }
        command_pool_buffer_map.erase(it);
    }
    command_pool_map[device].erase(commandPool);
}

static VKAPI_ATTR VkResult VKAPI_CALL AllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo* pAllocateInfo,
                                                             VkCommandBuffer* pCommandBuffers) {
    unique_lock_t lock(global_lock);
    for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; ++i) {
        pCommandBuffers[i] = (VkCommandBuffer)CreateDispObjHandle();
        command_pool_buffer_map[pAllocateInfo->commandPool].push_back(pCommandBuffers[i]);
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL FreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount,
                                                     const VkCommandBuffer* pCommandBuffers) {
    unique_lock_t lock(global_lock);
    for (auto i = 0u; i < commandBufferCount; ++i) {
        if (!pCommandBuffers[i]) {
            continue;
        }

        for (auto& pair : command_pool_buffer_map) {
            auto& cbs = pair.second;
            auto it = std::find(cbs.begin(), cbs.end(), pCommandBuffers[i]);
            if (it != cbs.end()) {
                cbs.erase(it);
            }
        }

        DestroyDispObjHandle((void*)pCommandBuffers[i]);
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumerateInstanceVersion(uint32_t* pApiVersion) {
    *pApiVersion = VK_HEADER_VERSION_COMPLETE;
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL GetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2* pInfo,
                                                              VkMemoryRequirements2* pMemoryRequirements) {
    GetImageMemoryRequirements(device, pInfo->image, &pMemoryRequirements->memoryRequirements);
}

static VKAPI_ATTR void VKAPI_CALL GetBufferMemoryRequirements2(VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo,
                                                               VkMemoryRequirements2* pMemoryRequirements) {
    GetBufferMemoryRequirements(device, pInfo->buffer, &pMemoryRequirements->memoryRequirements);
}

static VKAPI_ATTR void VKAPI_CALL GetImageSparseMemoryRequirements2(VkDevice device,
                                                                    const VkImageSparseMemoryRequirementsInfo2* pInfo,
                                                                    uint32_t* pSparseMemoryRequirementCount,
                                                                    VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) {
    if (pSparseMemoryRequirementCount && pSparseMemoryRequirements) {
        GetImageSparseMemoryRequirements(device, pInfo->image, pSparseMemoryRequirementCount,
                                         &pSparseMemoryRequirements->memoryRequirements);
    } else {
        GetImageSparseMemoryRequirements(device, pInfo->image, pSparseMemoryRequirementCount, nullptr);
    }
}

static VKAPI_ATTR void VKAPI_CALL GetDeviceQueue2(VkDevice device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue) {
    GetDeviceQueue(device, pQueueInfo->queueFamilyIndex, pQueueInfo->queueIndex, pQueue);
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceExternalBufferProperties(
    VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo,
    VkExternalBufferProperties* pExternalBufferProperties) {
    constexpr VkExternalMemoryHandleTypeFlags supported_flags = 0x1FF;
    if (pExternalBufferInfo->handleType & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) {
        // Can't have dedicated memory with AHB
        pExternalBufferProperties->externalMemoryProperties.externalMemoryFeatures =
            VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT | VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT;
        pExternalBufferProperties->externalMemoryProperties.exportFromImportedHandleTypes = pExternalBufferInfo->handleType;
        pExternalBufferProperties->externalMemoryProperties.compatibleHandleTypes = pExternalBufferInfo->handleType;
    } else if (pExternalBufferInfo->handleType & supported_flags) {
        pExternalBufferProperties->externalMemoryProperties.externalMemoryFeatures = 0x7;
        pExternalBufferProperties->externalMemoryProperties.exportFromImportedHandleTypes = supported_flags;
        pExternalBufferProperties->externalMemoryProperties.compatibleHandleTypes = supported_flags;
    } else {
        pExternalBufferProperties->externalMemoryProperties.externalMemoryFeatures = 0;
        pExternalBufferProperties->externalMemoryProperties.exportFromImportedHandleTypes = 0;
        // According to spec, handle type is always compatible with itself. Even if export/import
        // not supported, it's important to properly implement self-compatibility property since
        // application's control flow can rely on this.
        pExternalBufferProperties->externalMemoryProperties.compatibleHandleTypes = pExternalBufferInfo->handleType;
    }
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceExternalFenceProperties(
    VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo,
    VkExternalFenceProperties* pExternalFenceProperties) {
    // Hard-code support for all handle types and features
    pExternalFenceProperties->exportFromImportedHandleTypes = 0xF;
    pExternalFenceProperties->compatibleHandleTypes = 0xF;
    pExternalFenceProperties->externalFenceFeatures = 0x3;
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceExternalSemaphoreProperties(
    VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
    VkExternalSemaphoreProperties* pExternalSemaphoreProperties) {
    // Hard code support for all handle types and features
    pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0x1F;
    pExternalSemaphoreProperties->compatibleHandleTypes = 0x1F;
    pExternalSemaphoreProperties->externalSemaphoreFeatures = 0x3;
}

static VKAPI_ATTR void VKAPI_CALL GetDescriptorSetLayoutSupport(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
                                                                VkDescriptorSetLayoutSupport* pSupport) {
    if (pSupport) {
        pSupport->supported = VK_TRUE;
    }
}

static VKAPI_ATTR VkDeviceAddress VKAPI_CALL GetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo* pInfo) {
    VkDeviceAddress address = 0;
    auto d_iter = buffer_map.find(device);
    if (d_iter != buffer_map.end()) {
        auto iter = d_iter->second.find(pInfo->buffer);
        if (iter != d_iter->second.end()) {
            address = iter->second.address;
        }
    }
    return address;
}

static VKAPI_ATTR void VKAPI_CALL GetDeviceBufferMemoryRequirements(VkDevice device, const VkDeviceBufferMemoryRequirements* pInfo,
                                                                    VkMemoryRequirements2* pMemoryRequirements) {
    pMemoryRequirements->memoryRequirements.alignment = 1;
    pMemoryRequirements->memoryRequirements.memoryTypeBits = 0xFFFF;

    // Return a size based on the buffer size from the create info.
    pMemoryRequirements->memoryRequirements.size = ((pInfo->pCreateInfo->size + 4095) / 4096) * 4096;
}

static VKAPI_ATTR void VKAPI_CALL GetDeviceImageMemoryRequirements(VkDevice device, const VkDeviceImageMemoryRequirements* pInfo,
                                                                   VkMemoryRequirements2* pMemoryRequirements) {
    pMemoryRequirements->memoryRequirements.size = GetImageSizeFromCreateInfo(pInfo->pCreateInfo);
    pMemoryRequirements->memoryRequirements.alignment = 1;
    // Here we hard-code that the memory type at index 3 doesn't support this image.
    pMemoryRequirements->memoryRequirements.memoryTypeBits = 0xFFFF & ~(0x1 << 3);
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex,
                                                                         VkSurfaceKHR surface, VkBool32* pSupported) {
    // Currently say that all surface/queue combos are supported
    *pSupported = VK_TRUE;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
                                                                              VkSurfaceCapabilitiesKHR* pSurfaceCapabilities) {
    // In general just say max supported is available for requested surface
    pSurfaceCapabilities->minImageCount = 1;
    pSurfaceCapabilities->maxImageCount = 0;
    pSurfaceCapabilities->currentExtent.width = 0xFFFFFFFF;
    pSurfaceCapabilities->currentExtent.height = 0xFFFFFFFF;
    pSurfaceCapabilities->minImageExtent.width = 1;
    pSurfaceCapabilities->minImageExtent.height = 1;
    pSurfaceCapabilities->maxImageExtent.width = 0xFFFF;
    pSurfaceCapabilities->maxImageExtent.height = 0xFFFF;
    pSurfaceCapabilities->maxImageArrayLayers = 128;
    pSurfaceCapabilities->supportedTransforms =
        VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR | VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR | VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
        VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR | VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
        VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR | VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
        VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR | VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
    pSurfaceCapabilities->currentTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
    pSurfaceCapabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR | VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR |
                                                    VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR | VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
    pSurfaceCapabilities->supportedUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
                                                VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
                                                VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT |
                                                VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
                                                                         uint32_t* pSurfaceFormatCount,
                                                                         VkSurfaceFormatKHR* pSurfaceFormats) {
    // Currently always say that RGBA8 & BGRA8 are supported
    if (!pSurfaceFormats) {
        *pSurfaceFormatCount = 2;
    } else {
        if (*pSurfaceFormatCount >= 2) {
            pSurfaceFormats[1].format = VK_FORMAT_R8G8B8A8_UNORM;
            pSurfaceFormats[1].colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
        }
        if (*pSurfaceFormatCount >= 1) {
            pSurfaceFormats[0].format = VK_FORMAT_B8G8R8A8_UNORM;
            pSurfaceFormats[0].colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
        }
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
                                                                              uint32_t* pPresentModeCount,
                                                                              VkPresentModeKHR* pPresentModes) {
    // Currently always say that all present modes are supported
    if (!pPresentModes) {
        *pPresentModeCount = 6;
    } else {
        if (*pPresentModeCount >= 6) pPresentModes[5] = VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR;
        if (*pPresentModeCount >= 5) pPresentModes[4] = VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR;
        if (*pPresentModeCount >= 4) pPresentModes[3] = VK_PRESENT_MODE_FIFO_RELAXED_KHR;
        if (*pPresentModeCount >= 3) pPresentModes[2] = VK_PRESENT_MODE_FIFO_KHR;
        if (*pPresentModeCount >= 2) pPresentModes[1] = VK_PRESENT_MODE_MAILBOX_KHR;
        if (*pPresentModeCount >= 1) pPresentModes[0] = VK_PRESENT_MODE_IMMEDIATE_KHR;
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL CreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR* pCreateInfo,
                                                         const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain) {
    unique_lock_t lock(global_lock);
    *pSwapchain = (VkSwapchainKHR)global_unique_handle++;
    for (uint32_t i = 0; i < icd_swapchain_image_count; ++i) {
        swapchain_image_map[*pSwapchain][i] = (VkImage)global_unique_handle++;
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL DestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain,
                                                      const VkAllocationCallbacks* pAllocator) {
    unique_lock_t lock(global_lock);
    swapchain_image_map.clear();
}

static VKAPI_ATTR VkResult VKAPI_CALL GetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain,
                                                            uint32_t* pSwapchainImageCount, VkImage* pSwapchainImages) {
    if (!pSwapchainImages) {
        *pSwapchainImageCount = icd_swapchain_image_count;
    } else if (swapchain_image_map.empty()) {
        return VK_INCOMPLETE;
    } else {
        unique_lock_t lock(global_lock);
        for (uint32_t img_i = 0; img_i < (std::min)(*pSwapchainImageCount, icd_swapchain_image_count); ++img_i) {
            pSwapchainImages[img_i] = swapchain_image_map.at(swapchain)[img_i];
        }

        if (*pSwapchainImageCount < icd_swapchain_image_count) {
            return VK_INCOMPLETE;
        } else if (*pSwapchainImageCount > icd_swapchain_image_count) {
            *pSwapchainImageCount = icd_swapchain_image_count;
        }
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL AcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout,
                                                          VkSemaphore semaphore, VkFence fence, uint32_t* pImageIndex) {
    *pImageIndex = 0;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL AcquireNextImage2KHR(VkDevice device, const VkAcquireNextImageInfoKHR* pAcquireInfo,
                                                           uint32_t* pImageIndex) {
    *pImageIndex = 0;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceDisplayPropertiesKHR(VkPhysicalDevice physicalDevice,
                                                                            uint32_t* pPropertyCount,
                                                                            VkDisplayPropertiesKHR* pProperties) {
    if (!pProperties) {
        *pPropertyCount = 1;
    } else {
        unique_lock_t lock(global_lock);
        pProperties[0].display = (VkDisplayKHR)global_unique_handle++;
        display_map[physicalDevice].insert(pProperties[0].display);
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceVideoCapabilitiesKHR(VkPhysicalDevice physicalDevice,
                                                                            const VkVideoProfileInfoKHR* pVideoProfile,
                                                                            VkVideoCapabilitiesKHR* pCapabilities) {
    return VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceVideoFormatPropertiesKHR(
    VkPhysicalDevice physicalDevice, const VkPhysicalDeviceVideoFormatInfoKHR* pVideoFormatInfo,
    uint32_t* pVideoFormatPropertyCount, VkVideoFormatPropertiesKHR* pVideoFormatProperties) {
    return VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR;
}

static VKAPI_ATTR VkResult VKAPI_CALL
GetVideoSessionMemoryRequirementsKHR(VkDevice device, VkVideoSessionKHR videoSession, uint32_t* pMemoryRequirementsCount,
                                     VkVideoSessionMemoryRequirementsKHR* pMemoryRequirements) {
    if (!pMemoryRequirements) {
        *pMemoryRequirementsCount = 1;
    } else {
        // arbitrary
        pMemoryRequirements[0].memoryBindIndex = 0;
        pMemoryRequirements[0].memoryRequirements.size = 4096;
        pMemoryRequirements[0].memoryRequirements.alignment = 1;
        pMemoryRequirements[0].memoryRequirements.memoryTypeBits = 0xFFFF;
    }
    return VK_SUCCESS;
}

// VK_KHRONOS_PROFILES_UNKNOWN_FEATURE_VALUES in profiles can be used and future extensions can be put in here for testing
static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
                                                             VkPhysicalDeviceFeatures2* pFeatures) {
    GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
    uint32_t num_bools = 0;  // Count number of VkBool32s in extension structs
    VkBool32* feat_bools = nullptr;
    auto vk_1_1_features = vku::FindStructInPNextChain<VkPhysicalDeviceVulkan11Features>(pFeatures->pNext);
    if (vk_1_1_features) {
        vk_1_1_features->protectedMemory = VK_TRUE;
    }
    auto vk_1_3_features = vku::FindStructInPNextChain<VkPhysicalDeviceVulkan13Features>(pFeatures->pNext);
    if (vk_1_3_features) {
        vk_1_3_features->synchronization2 = VK_TRUE;
    }
    auto prot_features = vku::FindStructInPNextChain<VkPhysicalDeviceProtectedMemoryFeatures>(pFeatures->pNext);
    if (prot_features) {
        prot_features->protectedMemory = VK_TRUE;
    }
    auto sync2_features = vku::FindStructInPNextChain<VkPhysicalDeviceSynchronization2FeaturesKHR>(pFeatures->pNext);
    if (sync2_features) {
        sync2_features->synchronization2 = VK_TRUE;
    }
    auto video_maintenance1_features = vku::FindStructInPNextChain<VkPhysicalDeviceVideoMaintenance1FeaturesKHR>(pFeatures->pNext);
    if (video_maintenance1_features) {
        video_maintenance1_features->videoMaintenance1 = VK_TRUE;
    }
    auto video_maintenance2_features = vku::FindStructInPNextChain<VkPhysicalDeviceVideoMaintenance2FeaturesKHR>(pFeatures->pNext);
    if (video_maintenance2_features) {
        video_maintenance2_features->videoMaintenance2 = VK_TRUE;
    }
    auto device_generated_commands_features =
        vku::FindStructInPNextChain<VkPhysicalDeviceDeviceGeneratedCommandsFeaturesEXT>(pFeatures->pNext);
    if (device_generated_commands_features) {
        device_generated_commands_features->deviceGeneratedCommands = VK_TRUE;
        device_generated_commands_features->dynamicGeneratedPipelineLayout = VK_TRUE;
    }
    const auto* desc_idx_features = vku::FindStructInPNextChain<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>(pFeatures->pNext);
    if (desc_idx_features) {
        const auto bool_size = sizeof(VkPhysicalDeviceDescriptorIndexingFeaturesEXT) -
                               offsetof(VkPhysicalDeviceDescriptorIndexingFeaturesEXT, shaderInputAttachmentArrayDynamicIndexing);
        num_bools = bool_size / sizeof(VkBool32);
        feat_bools = (VkBool32*)&desc_idx_features->shaderInputAttachmentArrayDynamicIndexing;
        SetBoolArrayTrue(feat_bools, num_bools);
    }
    const auto* blendop_features = vku::FindStructInPNextChain<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(pFeatures->pNext);
    if (blendop_features) {
        const auto bool_size = sizeof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT) -
                               offsetof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT, advancedBlendCoherentOperations);
        num_bools = bool_size / sizeof(VkBool32);
        feat_bools = (VkBool32*)&blendop_features->advancedBlendCoherentOperations;
        SetBoolArrayTrue(feat_bools, num_bools);
    }
    const auto* host_image_copy_features = vku::FindStructInPNextChain<VkPhysicalDeviceHostImageCopyFeaturesEXT>(pFeatures->pNext);
    if (host_image_copy_features) {
        feat_bools = (VkBool32*)&host_image_copy_features->hostImageCopy;
        SetBoolArrayTrue(feat_bools, 1);
    }
}

// VK_KHRONOS_PROFILES_UNKNOWN_FEATURE_VALUES in profiles can be used and future extensions can be put in here for testing
static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
                                                               VkPhysicalDeviceProperties2* pProperties) {
    // The only value that need to be set are those the Profile layer can't set
    // see https://github.com/KhronosGroup/Vulkan-Profiles/issues/352
    // All values set are arbitrary
    GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);

    auto* props_11 = vku::FindStructInPNextChain<VkPhysicalDeviceVulkan11Properties>(pProperties->pNext);
    if (props_11) {
        props_11->protectedNoFault = VK_FALSE;
    }

    auto* props_12 = vku::FindStructInPNextChain<VkPhysicalDeviceVulkan12Properties>(pProperties->pNext);
    if (props_12) {
        props_12->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
        props_12->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
    }

    auto* props_13 = vku::FindStructInPNextChain<VkPhysicalDeviceVulkan13Properties>(pProperties->pNext);
    if (props_13) {
        props_13->storageTexelBufferOffsetSingleTexelAlignment = VK_TRUE;
        props_13->uniformTexelBufferOffsetSingleTexelAlignment = VK_TRUE;
        props_13->storageTexelBufferOffsetAlignmentBytes = 16;
        props_13->uniformTexelBufferOffsetAlignmentBytes = 16;
    }

    auto* protected_memory_props = vku::FindStructInPNextChain<VkPhysicalDeviceProtectedMemoryProperties>(pProperties->pNext);
    if (protected_memory_props) {
        protected_memory_props->protectedNoFault = VK_FALSE;
    }

    auto* float_controls_props = vku::FindStructInPNextChain<VkPhysicalDeviceFloatControlsProperties>(pProperties->pNext);
    if (float_controls_props) {
        float_controls_props->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
        float_controls_props->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
    }

    auto* conservative_raster_props =
        vku::FindStructInPNextChain<VkPhysicalDeviceConservativeRasterizationPropertiesEXT>(pProperties->pNext);
    if (conservative_raster_props) {
        conservative_raster_props->primitiveOverestimationSize = 0.00195313f;
        conservative_raster_props->conservativePointAndLineRasterization = VK_TRUE;
        conservative_raster_props->degenerateTrianglesRasterized = VK_TRUE;
        conservative_raster_props->degenerateLinesRasterized = VK_TRUE;
    }

    auto* rt_pipeline_props = vku::FindStructInPNextChain<VkPhysicalDeviceRayTracingPipelinePropertiesKHR>(pProperties->pNext);
    if (rt_pipeline_props) {
        rt_pipeline_props->shaderGroupHandleSize = 32;
        rt_pipeline_props->shaderGroupBaseAlignment = 64;
        rt_pipeline_props->shaderGroupHandleCaptureReplaySize = 32;
    }

    auto* rt_pipeline_nv_props = vku::FindStructInPNextChain<VkPhysicalDeviceRayTracingPropertiesNV>(pProperties->pNext);
    if (rt_pipeline_nv_props) {
        rt_pipeline_nv_props->shaderGroupHandleSize = 32;
        rt_pipeline_nv_props->shaderGroupBaseAlignment = 64;
    }

    auto* texel_buffer_props = vku::FindStructInPNextChain<VkPhysicalDeviceTexelBufferAlignmentProperties>(pProperties->pNext);
    if (texel_buffer_props) {
        texel_buffer_props->storageTexelBufferOffsetSingleTexelAlignment = VK_TRUE;
        texel_buffer_props->uniformTexelBufferOffsetSingleTexelAlignment = VK_TRUE;
        texel_buffer_props->storageTexelBufferOffsetAlignmentBytes = 16;
        texel_buffer_props->uniformTexelBufferOffsetAlignmentBytes = 16;
    }

    auto* descriptor_buffer_props = vku::FindStructInPNextChain<VkPhysicalDeviceDescriptorBufferPropertiesEXT>(pProperties->pNext);
    if (descriptor_buffer_props) {
        descriptor_buffer_props->combinedImageSamplerDescriptorSingleArray = VK_TRUE;
        descriptor_buffer_props->bufferlessPushDescriptors = VK_TRUE;
        descriptor_buffer_props->allowSamplerImageViewPostSubmitCreation = VK_TRUE;
        descriptor_buffer_props->descriptorBufferOffsetAlignment = 4;
    }

    auto* mesh_shader_props = vku::FindStructInPNextChain<VkPhysicalDeviceMeshShaderPropertiesEXT>(pProperties->pNext);
    if (mesh_shader_props) {
        mesh_shader_props->meshOutputPerVertexGranularity = 32;
        mesh_shader_props->meshOutputPerPrimitiveGranularity = 32;
        mesh_shader_props->prefersLocalInvocationVertexOutput = VK_TRUE;
        mesh_shader_props->prefersLocalInvocationPrimitiveOutput = VK_TRUE;
        mesh_shader_props->prefersCompactVertexOutput = VK_TRUE;
        mesh_shader_props->prefersCompactPrimitiveOutput = VK_TRUE;
    }

    auto* fragment_density_map2_props =
        vku::FindStructInPNextChain<VkPhysicalDeviceFragmentDensityMap2PropertiesEXT>(pProperties->pNext);
    if (fragment_density_map2_props) {
        fragment_density_map2_props->subsampledLoads = VK_FALSE;
        fragment_density_map2_props->subsampledCoarseReconstructionEarlyAccess = VK_FALSE;
        fragment_density_map2_props->maxSubsampledArrayLayers = 2;
        fragment_density_map2_props->maxDescriptorSetSubsampledSamplers = 1;
    }

    auto* device_generated_commands_props =
        vku::FindStructInPNextChain<VkPhysicalDeviceDeviceGeneratedCommandsPropertiesEXT>(pProperties->pNext);
    if (device_generated_commands_props) {
        device_generated_commands_props->maxIndirectPipelineCount = 4096;
        device_generated_commands_props->maxIndirectShaderObjectCount = 4096;
        device_generated_commands_props->maxIndirectSequenceCount = 4096;
        device_generated_commands_props->maxIndirectCommandsTokenCount = 16;
        device_generated_commands_props->maxIndirectCommandsTokenOffset = 2048;
        device_generated_commands_props->maxIndirectCommandsIndirectStride = 2048;
        device_generated_commands_props->supportedIndirectCommandsInputModes =
            VK_INDIRECT_COMMANDS_INPUT_MODE_VULKAN_INDEX_BUFFER_EXT;
        device_generated_commands_props->supportedIndirectCommandsShaderStages =
            VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT;
        device_generated_commands_props->supportedIndirectCommandsShaderStagesPipelineBinding =
            VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT;
        device_generated_commands_props->supportedIndirectCommandsShaderStagesShaderBinding =
            VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT;
        device_generated_commands_props->deviceGeneratedCommandsTransformFeedback = VK_TRUE;
        device_generated_commands_props->deviceGeneratedCommandsMultiDrawIndirectCount = VK_TRUE;
    }

    auto* coop_vec_nv_props = vku::FindStructInPNextChain<VkPhysicalDeviceCooperativeVectorPropertiesNV>(pProperties->pNext);
    if (coop_vec_nv_props) {
        coop_vec_nv_props->cooperativeVectorTrainingFloat16Accumulation = VK_TRUE;
        coop_vec_nv_props->cooperativeVectorTrainingFloat32Accumulation = VK_TRUE;
    }

    const uint32_t num_copy_layouts = 5;
    const VkImageLayout HostCopyLayouts[]{
        VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,        VK_IMAGE_LAYOUT_GENERAL,
        VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL,
        VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
    };

    auto* host_image_copy_props = vku::FindStructInPNextChain<VkPhysicalDeviceHostImageCopyPropertiesEXT>(pProperties->pNext);
    if (host_image_copy_props) {
        if (host_image_copy_props->pCopyDstLayouts == nullptr)
            host_image_copy_props->copyDstLayoutCount = num_copy_layouts;
        else {
            uint32_t num_layouts = (std::min)(host_image_copy_props->copyDstLayoutCount, num_copy_layouts);
            for (uint32_t i = 0; i < num_layouts; i++) {
                host_image_copy_props->pCopyDstLayouts[i] = HostCopyLayouts[i];
            }
        }
        if (host_image_copy_props->pCopySrcLayouts == nullptr)
            host_image_copy_props->copySrcLayoutCount = num_copy_layouts;
        else {
            uint32_t num_layouts = (std::min)(host_image_copy_props->copySrcLayoutCount, num_copy_layouts);
            for (uint32_t i = 0; i < num_layouts; i++) {
                host_image_copy_props->pCopySrcLayouts[i] = HostCopyLayouts[i];
            }
        }
    }

    auto* driver_properties = vku::FindStructInPNextChain<VkPhysicalDeviceDriverProperties>(pProperties->pNext);
    if (driver_properties) {
        std::strncpy(driver_properties->driverName, "Vulkan Mock Device", VK_MAX_DRIVER_NAME_SIZE);
#if defined(GIT_BRANCH_NAME) && defined(GIT_TAG_INFO)
        std::strncpy(driver_properties->driverInfo, "Branch: " GIT_BRANCH_NAME " Tag Info: " GIT_TAG_INFO, VK_MAX_DRIVER_INFO_SIZE);
#else
        std::strncpy(driver_properties->driverInfo, "Branch: --unknown-- Tag Info: --unknown--", VK_MAX_DRIVER_INFO_SIZE);
#endif
    }
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format,
                                                                     VkFormatProperties2* pFormatProperties) {
    GetPhysicalDeviceFormatProperties(physicalDevice, format, &pFormatProperties->formatProperties);
    VkFormatProperties3KHR* props_3 = vku::FindStructInPNextChain<VkFormatProperties3KHR>(pFormatProperties->pNext);
    if (props_3) {
        props_3->linearTilingFeatures = pFormatProperties->formatProperties.linearTilingFeatures;
        props_3->optimalTilingFeatures = pFormatProperties->formatProperties.optimalTilingFeatures;
        props_3->bufferFeatures = pFormatProperties->formatProperties.bufferFeatures;
        props_3->optimalTilingFeatures |= VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT;

        switch (format) {
            case VK_FORMAT_R32_SINT:
                props_3->linearTilingFeatures |= VK_FORMAT_FEATURE_2_VIDEO_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHR;
                props_3->optimalTilingFeatures |= VK_FORMAT_FEATURE_2_VIDEO_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHR;
                break;
            case VK_FORMAT_R8_UNORM:
                props_3->linearTilingFeatures |= VK_FORMAT_FEATURE_2_VIDEO_ENCODE_EMPHASIS_MAP_BIT_KHR;
                props_3->optimalTilingFeatures |= VK_FORMAT_FEATURE_2_VIDEO_ENCODE_EMPHASIS_MAP_BIT_KHR;
                break;
            default:
                break;
        }
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL
GetPhysicalDeviceImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
                                        VkImageFormatProperties2* pImageFormatProperties) {
    auto* external_image_prop = vku::FindStructInPNextChain<VkExternalImageFormatProperties>(pImageFormatProperties->pNext);
    auto* external_image_format = vku::FindStructInPNextChain<VkPhysicalDeviceExternalImageFormatInfo>(pImageFormatInfo->pNext);
    if (external_image_prop && external_image_format) {
        external_image_prop->externalMemoryProperties.externalMemoryFeatures =
            VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT | VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT;
        external_image_prop->externalMemoryProperties.compatibleHandleTypes = external_image_format->handleType;
    }

    GetPhysicalDeviceImageFormatProperties(physicalDevice, pImageFormatInfo->format, pImageFormatInfo->type,
                                           pImageFormatInfo->tiling, pImageFormatInfo->usage, pImageFormatInfo->flags,
                                           &pImageFormatProperties->imageFormatProperties);
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,
                                                                          uint32_t* pQueueFamilyPropertyCount,
                                                                          VkQueueFamilyProperties2* pQueueFamilyProperties) {
    if (pQueueFamilyProperties) {
        if (*pQueueFamilyPropertyCount >= 1) {
            auto props = &pQueueFamilyProperties[0].queueFamilyProperties;
            props->queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT |
                                VK_QUEUE_PROTECTED_BIT;
            props->queueCount = 1;
            props->timestampValidBits = 16;
            props->minImageTransferGranularity = {1, 1, 1};
        }
        if (*pQueueFamilyPropertyCount >= 2) {
            auto props = &pQueueFamilyProperties[1].queueFamilyProperties;
            props->queueFlags = VK_QUEUE_TRANSFER_BIT | VK_QUEUE_PROTECTED_BIT | VK_QUEUE_VIDEO_DECODE_BIT_KHR;
            props->queueCount = 1;
            props->timestampValidBits = 16;
            props->minImageTransferGranularity = {1, 1, 1};

            auto status_query_props =
                vku::FindStructInPNextChain<VkQueueFamilyQueryResultStatusPropertiesKHR>(pQueueFamilyProperties[1].pNext);
            if (status_query_props) {
                status_query_props->queryResultStatusSupport = VK_TRUE;
            }
            auto video_props = vku::FindStructInPNextChain<VkQueueFamilyVideoPropertiesKHR>(pQueueFamilyProperties[1].pNext);
            if (video_props) {
                video_props->videoCodecOperations =
                    VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR | VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR |
                    VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR | VK_VIDEO_CODEC_OPERATION_DECODE_VP9_BIT_KHR;
            }
        }
        if (*pQueueFamilyPropertyCount >= 3) {
            auto props = &pQueueFamilyProperties[2].queueFamilyProperties;
            props->queueFlags = VK_QUEUE_TRANSFER_BIT | VK_QUEUE_PROTECTED_BIT | VK_QUEUE_VIDEO_ENCODE_BIT_KHR;
            props->queueCount = 1;
            props->timestampValidBits = 16;
            props->minImageTransferGranularity = {1, 1, 1};

            auto status_query_props =
                vku::FindStructInPNextChain<VkQueueFamilyQueryResultStatusPropertiesKHR>(pQueueFamilyProperties[2].pNext);
            if (status_query_props) {
                status_query_props->queryResultStatusSupport = VK_TRUE;
            }
            auto video_props = vku::FindStructInPNextChain<VkQueueFamilyVideoPropertiesKHR>(pQueueFamilyProperties[2].pNext);
            if (video_props) {
                video_props->videoCodecOperations = VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR |
                                                    VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR |
                                                    VK_VIDEO_CODEC_OPERATION_ENCODE_AV1_BIT_KHR;
            }
        }
        if (*pQueueFamilyPropertyCount > 3) {
            *pQueueFamilyPropertyCount = 3;
        }
    } else {
        *pQueueFamilyPropertyCount = 3;
    }
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,
                                                                     VkPhysicalDeviceMemoryProperties2* pMemoryProperties) {
    GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties);
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceSparseImageFormatProperties2(
    VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo, uint32_t* pPropertyCount,
    VkSparseImageFormatProperties2* pProperties) {
    if (pPropertyCount && pProperties) {
        GetPhysicalDeviceSparseImageFormatProperties(physicalDevice, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples,
                                                     pFormatInfo->usage, pFormatInfo->tiling, pPropertyCount,
                                                     &pProperties->properties);
    } else {
        GetPhysicalDeviceSparseImageFormatProperties(physicalDevice, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples,
                                                     pFormatInfo->usage, pFormatInfo->tiling, pPropertyCount, nullptr);
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumeratePhysicalDeviceGroups(
    VkInstance instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) {
    if (!pPhysicalDeviceGroupProperties) {
        *pPhysicalDeviceGroupCount = 1;
    } else {
        // arbitrary
        pPhysicalDeviceGroupProperties->physicalDeviceCount = 1;
        pPhysicalDeviceGroupProperties->physicalDevices[0] = physical_device_map.at(instance)[0];
        pPhysicalDeviceGroupProperties->subsetAllocation = VK_FALSE;
    }
    return VK_SUCCESS;
}

#ifdef VK_USE_PLATFORM_WIN32_KHR

static VKAPI_ATTR VkResult VKAPI_CALL
GetMemoryWin32HandlePropertiesKHR(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, HANDLE handle,
                                  VkMemoryWin32HandlePropertiesKHR* pMemoryWin32HandleProperties) {
    pMemoryWin32HandleProperties->memoryTypeBits = 0xFFFF;
    return VK_SUCCESS;
}
#endif /* VK_USE_PLATFORM_WIN32_KHR */

static VKAPI_ATTR VkResult VKAPI_CALL GetMemoryFdKHR(VkDevice device, const VkMemoryGetFdInfoKHR* pGetFdInfo, int* pFd) {
    *pFd = 1;
    return VK_SUCCESS;
}

#ifdef VK_USE_PLATFORM_WIN32_KHR

static VKAPI_ATTR VkResult VKAPI_CALL GetFenceWin32HandleKHR(VkDevice device,
                                                             const VkFenceGetWin32HandleInfoKHR* pGetWin32HandleInfo,
                                                             HANDLE* pHandle) {
    *pHandle = (HANDLE)0x12345678;
    return VK_SUCCESS;
}
#endif /* VK_USE_PLATFORM_WIN32_KHR */

static VKAPI_ATTR VkResult VKAPI_CALL GetFenceFdKHR(VkDevice device, const VkFenceGetFdInfoKHR* pGetFdInfo, int* pFd) {
    *pFd = 0x42;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL EnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR(
    VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, uint32_t* pCounterCount, VkPerformanceCounterKHR* pCounters,
    VkPerformanceCounterDescriptionKHR* pCounterDescriptions) {
    if (!pCounters) {
        *pCounterCount = 3;
    } else {
        if (*pCounterCount == 0) {
            return VK_INCOMPLETE;
        }
        // arbitrary
        pCounters[0].unit = VK_PERFORMANCE_COUNTER_UNIT_GENERIC_KHR;
        pCounters[0].scope = VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_BUFFER_KHR;
        pCounters[0].storage = VK_PERFORMANCE_COUNTER_STORAGE_INT32_KHR;
        pCounters[0].uuid[0] = 0x01;
        if (*pCounterCount == 1) {
            return VK_INCOMPLETE;
        }
        pCounters[1].unit = VK_PERFORMANCE_COUNTER_UNIT_GENERIC_KHR;
        pCounters[1].scope = VK_PERFORMANCE_COUNTER_SCOPE_RENDER_PASS_KHR;
        pCounters[1].storage = VK_PERFORMANCE_COUNTER_STORAGE_INT32_KHR;
        pCounters[1].uuid[0] = 0x02;
        if (*pCounterCount == 2) {
            return VK_INCOMPLETE;
        }
        pCounters[2].unit = VK_PERFORMANCE_COUNTER_UNIT_GENERIC_KHR;
        pCounters[2].scope = VK_PERFORMANCE_COUNTER_SCOPE_COMMAND_KHR;
        pCounters[2].storage = VK_PERFORMANCE_COUNTER_STORAGE_INT32_KHR;
        pCounters[2].uuid[0] = 0x03;
        *pCounterCount = 3;
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceQueueFamilyPerformanceQueryPassesKHR(
    VkPhysicalDevice physicalDevice, const VkQueryPoolPerformanceCreateInfoKHR* pPerformanceQueryCreateInfo, uint32_t* pNumPasses) {
    if (pNumPasses) {
        // arbitrary
        *pNumPasses = 1;
    }
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceCapabilities2KHR(VkPhysicalDevice physicalDevice,
                                                                               const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
                                                                               VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
    GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, pSurfaceInfo->surface, &pSurfaceCapabilities->surfaceCapabilities);

    if (auto* present_mode_compatibility =
            vku::FindStructInPNextChain<VkSurfacePresentModeCompatibilityKHR>(pSurfaceCapabilities->pNext)) {
        if (!present_mode_compatibility->pPresentModes) {
            present_mode_compatibility->presentModeCount = 3;
        } else {
            // arbitrary
            present_mode_compatibility->pPresentModes[0] = VK_PRESENT_MODE_IMMEDIATE_KHR;
            present_mode_compatibility->pPresentModes[1] = VK_PRESENT_MODE_FIFO_KHR;
            present_mode_compatibility->pPresentModes[2] = VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR;
        }
    }
    if (auto* shared_present_capabilities =
            vku::FindStructInPNextChain<VkSharedPresentSurfaceCapabilitiesKHR>(pSurfaceCapabilities->pNext)) {
        // "VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT must be included in the set but implementations may support additional usages."
        shared_present_capabilities->sharedPresentSupportedUsageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
    }
    if (auto* wait2_capabilities = vku::FindStructInPNextChain<VkSurfaceCapabilitiesPresentWait2KHR>(pSurfaceCapabilities->pNext)) {
        wait2_capabilities->presentWait2Supported = VK_TRUE;
    }
    if (auto* id2_capabilities = vku::FindStructInPNextChain<VkSurfaceCapabilitiesPresentId2KHR>(pSurfaceCapabilities->pNext)) {
        id2_capabilities->presentId2Supported = VK_TRUE;
    }

    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceCapabilities2EXT(VkPhysicalDevice physicalDevice,
                                                                               VkSurfaceKHR surface,
                                                                               VkSurfaceCapabilities2EXT* pSurfaceCapabilities) {
    VkSurfaceCapabilitiesKHR surface_capabilities_khr;
    GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &surface_capabilities_khr);
    pSurfaceCapabilities->minImageCount = surface_capabilities_khr.minImageCount;
    pSurfaceCapabilities->maxImageCount = surface_capabilities_khr.maxImageCount;
    pSurfaceCapabilities->currentExtent = surface_capabilities_khr.currentExtent;
    pSurfaceCapabilities->minImageExtent = surface_capabilities_khr.minImageExtent;
    pSurfaceCapabilities->maxImageExtent = surface_capabilities_khr.maxImageExtent;
    pSurfaceCapabilities->maxImageArrayLayers = surface_capabilities_khr.maxImageArrayLayers;
    pSurfaceCapabilities->supportedTransforms = surface_capabilities_khr.supportedTransforms;
    pSurfaceCapabilities->currentTransform = surface_capabilities_khr.currentTransform;
    pSurfaceCapabilities->supportedCompositeAlpha = surface_capabilities_khr.supportedCompositeAlpha;
    pSurfaceCapabilities->supportedUsageFlags = surface_capabilities_khr.supportedUsageFlags;
    pSurfaceCapabilities->supportedSurfaceCounters = VK_SURFACE_COUNTER_VBLANK_BIT_EXT;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceSurfaceFormats2KHR(VkPhysicalDevice physicalDevice,
                                                                          const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
                                                                          uint32_t* pSurfaceFormatCount,
                                                                          VkSurfaceFormat2KHR* pSurfaceFormats) {
    // Currently always say that RGBA8 & BGRA8 are supported
    if (!pSurfaceFormats) {
        *pSurfaceFormatCount = 2;
    } else {
        if (*pSurfaceFormatCount >= 2) {
            pSurfaceFormats[1].pNext = nullptr;
            pSurfaceFormats[1].surfaceFormat.format = VK_FORMAT_R8G8B8A8_UNORM;
            pSurfaceFormats[1].surfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
        }
        if (*pSurfaceFormatCount >= 1) {
            pSurfaceFormats[1].pNext = nullptr;
            pSurfaceFormats[0].surfaceFormat.format = VK_FORMAT_B8G8R8A8_UNORM;
            pSurfaceFormats[0].surfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
        }
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL
GetPhysicalDeviceFragmentShadingRatesKHR(VkPhysicalDevice physicalDevice, uint32_t* pFragmentShadingRateCount,
                                         VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates) {
    if (!pFragmentShadingRates) {
        *pFragmentShadingRateCount = 1;
    } else {
        // arbitrary
        pFragmentShadingRates->sampleCounts = VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT;
        pFragmentShadingRates->fragmentSize = {8, 8};
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL MapMemory2(VkDevice device, const VkMemoryMapInfo* pMemoryMapInfo, void** ppData) {
    return MapMemory(device, pMemoryMapInfo->memory, pMemoryMapInfo->offset, pMemoryMapInfo->size, pMemoryMapInfo->flags, ppData);
}

static VKAPI_ATTR VkResult VKAPI_CALL UnmapMemory2(VkDevice device, const VkMemoryUnmapInfo* pMemoryUnmapInfo) {
    UnmapMemory(device, pMemoryUnmapInfo->memory);
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceCooperativeMatrixPropertiesKHR(
    VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkCooperativeMatrixPropertiesKHR* pProperties) {
    if (!pProperties) {
        *pPropertyCount = 4;
    } else {
        // arbitrary
        pProperties[0].MSize = 16;
        pProperties[0].NSize = 16;
        pProperties[0].KSize = 16;
        pProperties[0].AType = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].BType = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].CType = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].ResultType = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].saturatingAccumulation = VK_FALSE;
        pProperties[0].scope = VK_SCOPE_SUBGROUP_KHR;

        pProperties[1] = pProperties[0];
        pProperties[1].scope = VK_SCOPE_DEVICE_KHR;

        pProperties[2] = pProperties[0];
        pProperties[2].AType = VK_COMPONENT_TYPE_BFLOAT16_KHR;
        pProperties[2].BType = VK_COMPONENT_TYPE_BFLOAT16_KHR;
        pProperties[2].CType = VK_COMPONENT_TYPE_BFLOAT16_KHR;
        pProperties[2].ResultType = VK_COMPONENT_TYPE_BFLOAT16_KHR;

        pProperties[3] = pProperties[0];
        pProperties[3].AType = VK_COMPONENT_TYPE_FLOAT8_E4M3_EXT;
        pProperties[3].BType = VK_COMPONENT_TYPE_FLOAT8_E4M3_EXT;
        pProperties[3].CType = VK_COMPONENT_TYPE_FLOAT8_E4M3_EXT;
        pProperties[3].ResultType = VK_COMPONENT_TYPE_FLOAT8_E4M3_EXT;
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceCooperativeVectorPropertiesNV(VkPhysicalDevice physicalDevice,
                                                                                     uint32_t* pPropertyCount,
                                                                                     VkCooperativeVectorPropertiesNV* pProperties) {
    if (!pProperties) {
        *pPropertyCount = 5;
    } else {
        // arbitrary
        pProperties[0].inputType = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].inputInterpretation = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].matrixInterpretation = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].biasInterpretation = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].resultType = VK_COMPONENT_TYPE_UINT32_KHR;
        pProperties[0].transpose = VK_FALSE;

        pProperties[1].inputType = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[1].inputInterpretation = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[1].matrixInterpretation = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[1].biasInterpretation = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[1].resultType = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[1].transpose = VK_FALSE;

        pProperties[2].inputType = VK_COMPONENT_TYPE_FLOAT32_KHR;
        pProperties[2].inputInterpretation = VK_COMPONENT_TYPE_FLOAT32_KHR;
        pProperties[2].matrixInterpretation = VK_COMPONENT_TYPE_FLOAT32_KHR;
        pProperties[2].biasInterpretation = VK_COMPONENT_TYPE_FLOAT32_KHR;
        pProperties[2].resultType = VK_COMPONENT_TYPE_FLOAT32_KHR;
        pProperties[2].transpose = VK_FALSE;

        pProperties[3].inputType = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[3].inputInterpretation = VK_COMPONENT_TYPE_FLOAT_E4M3_NV;
        pProperties[3].matrixInterpretation = VK_COMPONENT_TYPE_FLOAT_E4M3_NV;
        pProperties[3].biasInterpretation = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[3].resultType = VK_COMPONENT_TYPE_FLOAT16_KHR;
        pProperties[3].transpose = VK_FALSE;

        pProperties[4].inputType = VK_COMPONENT_TYPE_SINT8_KHR;
        pProperties[4].inputInterpretation = VK_COMPONENT_TYPE_SINT8_KHR;
        pProperties[4].matrixInterpretation = VK_COMPONENT_TYPE_SINT8_KHR;
        pProperties[4].biasInterpretation = VK_COMPONENT_TYPE_SINT32_KHR;
        pProperties[4].resultType = VK_COMPONENT_TYPE_SINT32_KHR;
        pProperties[4].transpose = VK_FALSE;
    }
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPhysicalDeviceCalibrateableTimeDomainsKHR(VkPhysicalDevice physicalDevice,
                                                                                   uint32_t* pTimeDomainCount,
                                                                                   VkTimeDomainKHR* pTimeDomains) {
    if (!pTimeDomains) {
        *pTimeDomainCount = 1;
    } else {
        // arbitrary
        *pTimeDomains = VK_TIME_DOMAIN_DEVICE_KHR;
    }
    return VK_SUCCESS;
}

#ifdef VK_USE_PLATFORM_ANDROID_KHR

static VKAPI_ATTR VkResult VKAPI_CALL GetAndroidHardwareBufferPropertiesANDROID(
    VkDevice device, const struct AHardwareBuffer* buffer, VkAndroidHardwareBufferPropertiesANDROID* pProperties) {
    pProperties->allocationSize = 65536;
    pProperties->memoryTypeBits = 1 << 5;  // DEVICE_LOCAL only type

    auto* format_prop = vku::FindStructInPNextChain<VkAndroidHardwareBufferFormatPropertiesANDROID>(pProperties->pNext);
    if (format_prop) {
        // Likley using this format
        format_prop->format = VK_FORMAT_R8G8B8A8_UNORM;
        format_prop->externalFormat = 37;
    }

    auto* format_resolve_prop =
        vku::FindStructInPNextChain<VkAndroidHardwareBufferFormatResolvePropertiesANDROID>(pProperties->pNext);
    if (format_resolve_prop) {
        format_resolve_prop->colorAttachmentFormat = VK_FORMAT_R8G8B8A8_UNORM;
    }
    return VK_SUCCESS;
}

#endif /* VK_USE_PLATFORM_ANDROID_KHR */

static VKAPI_ATTR void VKAPI_CALL GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,
                                                                            VkSampleCountFlagBits samples,
                                                                            VkMultisamplePropertiesEXT* pMultisampleProperties) {
    if (pMultisampleProperties) {
        // arbitrary
        pMultisampleProperties->maxSampleLocationGridSize = {32, 32};
    }
}

static VKAPI_ATTR void VKAPI_CALL GetAccelerationStructureMemoryRequirementsNV(
    VkDevice device, const VkAccelerationStructureMemoryRequirementsInfoNV* pInfo, VkMemoryRequirements2KHR* pMemoryRequirements) {
    // arbitrary
    pMemoryRequirements->memoryRequirements.size = 4096;
    pMemoryRequirements->memoryRequirements.alignment = 1;
    pMemoryRequirements->memoryRequirements.memoryTypeBits = 0xFFFF;
}

static VKAPI_ATTR VkResult VKAPI_CALL
GetMemoryHostPointerPropertiesEXT(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, const void* pHostPointer,
                                  VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties) {
    pMemoryHostPointerProperties->memoryTypeBits = 1 << 5;  // DEVICE_LOCAL only type
    return VK_SUCCESS;
}

static VKAPI_ATTR void VKAPI_CALL GetDescriptorSetLayoutSizeEXT(VkDevice device, VkDescriptorSetLayout layout,
                                                                VkDeviceSize* pLayoutSizeInBytes) {
    // Need to give something non-zero
    *pLayoutSizeInBytes = 4;
}

static VKAPI_ATTR void VKAPI_CALL GetShaderModuleIdentifierEXT(VkDevice device, VkShaderModule shaderModule,
                                                               VkShaderModuleIdentifierEXT* pIdentifier) {
    if (pIdentifier) {
        // arbitrary
        pIdentifier->identifierSize = 1;
        pIdentifier->identifier[0] = 0x01;
    }
}

static VKAPI_ATTR VkDeviceAddress VKAPI_CALL
GetAccelerationStructureDeviceAddressKHR(VkDevice device, const VkAccelerationStructureDeviceAddressInfoKHR* pInfo) {
    return VkDeviceAddress(pInfo->accelerationStructure) << 8u;
}

static VKAPI_ATTR void VKAPI_CALL GetAccelerationStructureBuildSizesKHR(
    VkDevice device, VkAccelerationStructureBuildTypeKHR buildType, const VkAccelerationStructureBuildGeometryInfoKHR* pBuildInfo,
    const uint32_t* pMaxPrimitiveCounts, VkAccelerationStructureBuildSizesInfoKHR* pSizeInfo) {
    // arbitrary
    pSizeInfo->accelerationStructureSize = 4;
    pSizeInfo->updateScratchSize = 4;
    pSizeInfo->buildScratchSize = 4;
}

static VKAPI_ATTR VkResult VKAPI_CALL RegisterDisplayEventEXT(VkDevice device, VkDisplayKHR display,
                                                              const VkDisplayEventInfoEXT* pDisplayEventInfo,
                                                              const VkAllocationCallbacks* pAllocator, VkFence* pFence) {
    unique_lock_t lock(global_lock);
    *pFence = (VkFence)global_unique_handle++;
    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL CreatePipelineBinariesKHR(VkDevice device, const VkPipelineBinaryCreateInfoKHR* pCreateInfo,
                                                                const VkAllocationCallbacks* pAllocator,
                                                                VkPipelineBinaryHandlesInfoKHR* pBinaries) {
    unique_lock_t lock(global_lock);

    pBinaries->pipelineBinaryCount = 1;

    if (pBinaries->pPipelineBinaries != nullptr) {
        pBinaries->pPipelineBinaries[0] = (VkPipelineBinaryKHR)global_unique_handle++;
    }

    return VK_SUCCESS;
}

static VKAPI_ATTR VkResult VKAPI_CALL GetPipelineBinaryDataKHR(VkDevice device, const VkPipelineBinaryDataInfoKHR* pInfo,
                                                               VkPipelineBinaryKeyKHR* pPipelineBinaryKey,
                                                               size_t* pPipelineBinaryDataSize, void* pPipelineBinaryData) {
    *pPipelineBinaryDataSize = 1;

    if (pPipelineBinaryData != nullptr) {
        *reinterpret_cast<uint8_t*>(pPipelineBinaryData) = 0x01;
    }

    return VK_SUCCESS;
}

}  // namespace icd