File: buffer_positive.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (277 lines) | stat: -rw-r--r-- 12,744 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*
 * Copyright (c) 2015-2025 The Khronos Group Inc.
 * Copyright (c) 2015-2025 Valve Corporation
 * Copyright (c) 2015-2025 LunarG, Inc.
 * Copyright (c) 2015-2025 Google, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 */

#include "../framework/layer_validation_tests.h"
#include "../framework/pipeline_helper.h"
#include "../framework/sync_helper.h"

class PositiveBuffer : public VkLayerTest {};

TEST_F(PositiveBuffer, OwnershipTranfers) {
    TEST_DESCRIPTION("Valid buffer ownership transfers that shouldn't create errors");
    RETURN_IF_SKIP(Init());

    vkt::Queue *no_gfx_queue = m_device->QueueWithoutCapabilities(VK_QUEUE_GRAPHICS_BIT);
    if (!no_gfx_queue) {
        GTEST_SKIP() << "Required queue not present (non-graphics non-compute capable required)";
    }

    vkt::CommandPool no_gfx_pool(*m_device, no_gfx_queue->family_index, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT);
    vkt::CommandBuffer no_gfx_cb(*m_device, no_gfx_pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);

    vkt::Buffer buffer(*m_device, 256, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT);
    auto buffer_barrier = buffer.BufferMemoryBarrier(0, 0, 0, VK_WHOLE_SIZE);

    // Let gfx own it.
    buffer_barrier.srcQueueFamilyIndex = m_device->graphics_queue_node_index_;
    buffer_barrier.dstQueueFamilyIndex = m_device->graphics_queue_node_index_;
    ValidOwnershipTransferOp(m_errorMonitor, m_default_queue, m_command_buffer, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
                             VK_PIPELINE_STAGE_TRANSFER_BIT, &buffer_barrier, nullptr);

    // Transfer it to non-gfx
    buffer_barrier.dstQueueFamilyIndex = no_gfx_queue->family_index;
    ValidOwnershipTransfer(m_errorMonitor, m_default_queue, m_command_buffer, no_gfx_queue, no_gfx_cb,
                           VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &buffer_barrier, nullptr);

    // Transfer it to gfx
    buffer_barrier.srcQueueFamilyIndex = no_gfx_queue->family_index;
    buffer_barrier.dstQueueFamilyIndex = m_device->graphics_queue_node_index_;
    ValidOwnershipTransfer(m_errorMonitor, no_gfx_queue, no_gfx_cb, m_default_queue, m_command_buffer,
                           VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, &buffer_barrier, nullptr);
}

TEST_F(PositiveBuffer, TexelBufferAlignmentIn13) {
    TEST_DESCRIPTION("texelBufferAlignment is enabled by default in 1.3.");

    SetTargetApiVersion(VK_API_VERSION_1_3);
    RETURN_IF_SKIP(Init());

    const VkDeviceSize minTexelBufferOffsetAlignment = m_device->Physical().limits_.minTexelBufferOffsetAlignment;
    if (minTexelBufferOffsetAlignment == 1) {
        GTEST_SKIP() << "Test requires minTexelOffsetAlignment to not be equal to 1";
    }
    if (!BufferFormatAndFeaturesSupported(Gpu(), VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT)) {
        GTEST_SKIP() << "Test requires support for VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT";
    }

    VkPhysicalDeviceVulkan13Properties props_1_3 = vku::InitStructHelper();
    GetPhysicalDeviceProperties2(props_1_3);
    if (props_1_3.uniformTexelBufferOffsetAlignmentBytes < 4 || !props_1_3.uniformTexelBufferOffsetSingleTexelAlignment) {
        GTEST_SKIP() << "need uniformTexelBufferOffsetAlignmentBytes to be more than 4 with "
                        "uniformTexelBufferOffsetSingleTexelAlignment support";
    }

    // to prevent VUID-VkBufferViewCreateInfo-buffer-02751
    const uint32_t block_size = 4;  // VK_FORMAT_R8G8B8A8_UNORM
    vkt::Buffer buffer(*m_device, 1024, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT);

    VkBufferViewCreateInfo buff_view_ci = vku::InitStructHelper();
    buff_view_ci.format = VK_FORMAT_R8G8B8A8_UNORM;
    buff_view_ci.range = VK_WHOLE_SIZE;
    buff_view_ci.buffer = buffer;
    buff_view_ci.offset = minTexelBufferOffsetAlignment + block_size;
    vkt::BufferView buffer_view(*m_device, buff_view_ci);
}

// The two PerfGetBufferAddress tests are intended to be used locally to monitor performance of the internal address -> buffer map
TEST_F(PositiveBuffer, DISABLED_PerfGetBufferAddressWorstCase) {
    TEST_DESCRIPTION("Add elements to buffer_address_map, worst case scenario");

    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::bufferDeviceAddress);
    RETURN_IF_SKIP(Init());

    // Allocate common buffer memory, all buffers will be bound to it so that they have the same starting address
    VkMemoryAllocateFlagsInfo alloc_flags = vku::InitStructHelper();
    alloc_flags.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT;
    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper(&alloc_flags);
    alloc_info.allocationSize = 100 * 4096 * 4096;
    vkt::DeviceMemory buffer_memory(*m_device, alloc_info);

    // Create buffers. They have the same starting offset, but a growing size.
    // This is the worst case scenario for adding an element in the current buffer_address_map: inserted range will have to be split
    // for every range currently in the map.
    constexpr size_t N = 1400;
    std::vector<vkt::Buffer> buffers(N);
    VkBufferCreateInfo buffer_ci = vku::InitStructHelper();
    buffer_ci.size = 4096;
    buffer_ci.usage = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;

    VkDeviceAddress ref_address = 0;

    for (size_t i = 0; i < N; ++i) {
        vkt::Buffer &buffer = buffers[i];
        buffer_ci.size = (i + 1) * 4096;
        buffer.InitNoMemory(*m_device, buffer_ci);
        vk::BindBufferMemory(device(), buffer, buffer_memory, 0);
        VkDeviceAddress addr = buffer.Address();
        if (ref_address == 0) {
            ref_address = addr;
        }
        if (addr != ref_address) {
            GTEST_SKIP() << "At iteration " << i << ", retrieved buffer address (" << addr << ") != reference address ("
                         << ref_address << ")";
        }
    }
}

// The two PerfGetBufferAddress tests are intended to be used locally to monitor performance of the internal address -> buffer map
TEST_F(PositiveBuffer, DISABLED_PerfGetBufferAddressGoodCase) {
    TEST_DESCRIPTION("Add elements to buffer_address_map, good case scenario");

    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::bufferDeviceAddress);
    RETURN_IF_SKIP(Init());

    // Allocate common buffer memory, all buffers will be bound to it so that they have the same starting address
    VkMemoryAllocateFlagsInfo alloc_flags = vku::InitStructHelper();
    alloc_flags.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT;
    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper(&alloc_flags);
    alloc_info.allocationSize = 100 * 4096 * 4096;
    vkt::DeviceMemory buffer_memory(*m_device, alloc_info);

    // Create buffers. They have consecutive device address ranges, so no overlaps: no split will be needed when inserting, it
    // should be fast.
    constexpr size_t N = 1400;  // 100 * 4096;
    std::vector<vkt::Buffer> buffers(N);
    VkBufferCreateInfo buffer_ci = vku::InitStructHelper();
    buffer_ci.size = 4096;
    buffer_ci.usage = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;

    for (size_t i = 0; i < N; ++i) {
        vkt::Buffer &buffer = buffers[i];
        buffer.InitNoMemory(*m_device, buffer_ci);
        // Consecutive offsets
        vk::BindBufferMemory(device(), buffer, buffer_memory, i * buffer_ci.size);
        (void)buffer.Address();
    }
}

TEST_F(PositiveBuffer, IndexBuffer2Size) {
    TEST_DESCRIPTION("Valid vkCmdBindIndexBuffer2KHR");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_5_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::maintenance5);
    RETURN_IF_SKIP(Init());
    InitRenderTarget();

    const uint32_t buffer_size = 32;
    vkt::Buffer buffer(*m_device, buffer_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
    m_command_buffer.Begin();
    m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);

    vk::CmdBindIndexBuffer2KHR(m_command_buffer, buffer, 4, 8, VK_INDEX_TYPE_UINT32);

    vk::CmdBindIndexBuffer2KHR(m_command_buffer, buffer, 0, buffer_size, VK_INDEX_TYPE_UINT32);

    m_command_buffer.EndRenderPass();
    m_command_buffer.End();
}

TEST_F(PositiveBuffer, IndexBufferNull) {
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_6_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::maintenance6);
    RETURN_IF_SKIP(Init());
    InitRenderTarget();

    CreatePipelineHelper pipe(*this);
    pipe.CreateGraphicsPipeline();

    m_command_buffer.Begin();
    m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
    vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
    vk::CmdBindIndexBuffer(m_command_buffer, VK_NULL_HANDLE, 0, VK_INDEX_TYPE_UINT32);
    vk::CmdDrawIndexed(m_command_buffer, 0, 1, 0, 0, 0);
    m_command_buffer.EndRenderPass();
    m_command_buffer.End();
}

TEST_F(PositiveBuffer, BufferViewUsageBasic) {
    TEST_DESCRIPTION("VkBufferUsageFlags2CreateInfoKHR with good flags.");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_5_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::maintenance5);
    RETURN_IF_SKIP(Init());

    vkt::Buffer buffer(*m_device, 32, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT);

    VkBufferUsageFlags2CreateInfoKHR buffer_usage_flags = vku::InitStructHelper();
    buffer_usage_flags.usage = VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT;

    VkBufferViewCreateInfo buffer_view_ci = vku::InitStructHelper(&buffer_usage_flags);
    buffer_view_ci.format = VK_FORMAT_R8G8B8A8_UNORM;
    buffer_view_ci.range = VK_WHOLE_SIZE;
    buffer_view_ci.buffer = buffer;
    vkt::BufferView buffer_view(*m_device, buffer_view_ci);
}

TEST_F(PositiveBuffer, BufferUsageFlags2Subset) {
    TEST_DESCRIPTION("VkBufferUsageFlags2CreateInfoKHR that are a subset of the Buffer.");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_5_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::maintenance5);
    RETURN_IF_SKIP(Init());

    vkt::Buffer buffer(*m_device, 32, VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_2_STORAGE_TEXEL_BUFFER_BIT);

    VkBufferUsageFlags2CreateInfoKHR buffer_usage_flags = vku::InitStructHelper();
    buffer_usage_flags.usage = VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT;

    VkBufferViewCreateInfo buffer_view_ci = vku::InitStructHelper(&buffer_usage_flags);
    buffer_view_ci.format = VK_FORMAT_R8G8B8A8_UNORM;
    buffer_view_ci.range = VK_WHOLE_SIZE;
    buffer_view_ci.buffer = buffer;
    vkt::BufferView buffer_view(*m_device, buffer_view_ci);
}

TEST_F(PositiveBuffer, BufferUsageFlags2Ignore) {
    TEST_DESCRIPTION("Ignore old flags if using VkBufferUsageFlags2CreateInfoKHR.");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_5_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::maintenance5);
    RETURN_IF_SKIP(Init());

    VkBufferUsageFlags2CreateInfoKHR buffer_usage_flags = vku::InitStructHelper();
    buffer_usage_flags.usage = VK_BUFFER_USAGE_2_UNIFORM_TEXEL_BUFFER_BIT;

    VkBufferCreateInfo buffer_ci = vku::InitStructHelper(&buffer_usage_flags);
    buffer_ci.size = 32;
    buffer_ci.usage = VK_BUFFER_USAGE_PUSH_DESCRIPTORS_DESCRIPTOR_BUFFER_BIT_EXT;
    vkt::Buffer buffer(*m_device, buffer_ci, vkt::no_mem);

    buffer_ci.usage = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_VIDEO_DECODE_DST_BIT_KHR |
                      VK_BUFFER_USAGE_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT;
    vkt::Buffer buffer2(*m_device, buffer_ci, vkt::no_mem);
}

TEST_F(PositiveBuffer, BufferUsageFlags2Usage) {
    TEST_DESCRIPTION("Ignore old flags if using VkBufferUsageFlags2CreateInfoKHR, even if bad.");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_5_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::maintenance5);
    RETURN_IF_SKIP(Init());

    VkBufferUsageFlags2CreateInfoKHR buffer_usage_flags = vku::InitStructHelper();
    buffer_usage_flags.usage = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT;

    VkBufferCreateInfo buffer_ci = vku::InitStructHelper(&buffer_usage_flags);
    buffer_ci.size = 32;
    buffer_ci.usage = 0;
    vkt::Buffer buffer(*m_device, buffer_ci, vkt::no_mem);

    buffer_ci.usage = 0xBAD0000;
    vkt::Buffer buffer2(*m_device, buffer_ci, vkt::no_mem);
}