File: memory_positive.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (657 lines) | stat: -rw-r--r-- 27,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*
 * Copyright (c) 2023-2025 The Khronos Group Inc.
 * Copyright (c) 2023-2025 Valve Corporation
 * Copyright (c) 2023-2025 LunarG, Inc.
 * Copyright (c) 2023-2025 Collabora, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 */

#include <thread>
#include "../framework/layer_validation_tests.h"

#ifndef VK_USE_PLATFORM_WIN32_KHR
#include <sys/mman.h>
#endif

class PositiveMemory : public VkLayerTest {};

TEST_F(PositiveMemory, MapMemory2) {
    TEST_DESCRIPTION("Validate vkMapMemory2 and vkUnmapMemory2");

    AddRequiredExtensions(VK_KHR_MAP_MEMORY_2_EXTENSION_NAME);

    RETURN_IF_SKIP(Init());

    /* Vulkan doesn't have any requirements on what allocationSize can be
     * other than that it must be non-zero.  Pick 64KB because that should
     * work out to an even number of pages on basically any GPU.
     */
    const VkDeviceSize allocation_size = 64 << 10;

    VkMemoryAllocateInfo memory_info = vku::InitStructHelper();
    memory_info.allocationSize = allocation_size;

    bool pass = m_device->Physical().SetMemoryType(vvl::kU32Max, &memory_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
    ASSERT_TRUE(pass);

    vkt::DeviceMemory memory(*m_device, memory_info);

    VkMemoryMapInfo map_info = vku::InitStructHelper();
    map_info.memory = memory;
    map_info.offset = 0;
    map_info.size = memory_info.allocationSize;

    VkMemoryUnmapInfoKHR unmap_info = vku::InitStructHelper();
    unmap_info.memory = memory;

    uint32_t *pData = nullptr;
    VkResult err = vk::MapMemory2KHR(device(), &map_info, (void **)&pData);
    ASSERT_EQ(VK_SUCCESS, err);
    ASSERT_TRUE(pData != nullptr);

    err = vk::UnmapMemory2KHR(device(), &unmap_info);
    ASSERT_EQ(VK_SUCCESS, err);

    map_info.size = VK_WHOLE_SIZE;

    pData = nullptr;
    err = vk::MapMemory2KHR(device(), &map_info, (void **)&pData);
    ASSERT_EQ(VK_SUCCESS, err);
    ASSERT_TRUE(pData != nullptr);

    err = vk::UnmapMemory2KHR(device(), &unmap_info);
    ASSERT_EQ(VK_SUCCESS, err);
}

#ifndef VK_USE_PLATFORM_WIN32_KHR
TEST_F(PositiveMemory, MapMemoryPlaced) {
    TEST_DESCRIPTION("Validate placed memory maps");
    AddRequiredExtensions(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
    AddRequiredExtensions(VK_KHR_MAP_MEMORY_2_EXTENSION_NAME);
    AddRequiredExtensions(VK_EXT_MAP_MEMORY_PLACED_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::memoryMapPlaced);
    AddRequiredFeature(vkt::Feature::memoryUnmapReserve);
    RETURN_IF_SKIP(Init());

    VkPhysicalDeviceMapMemoryPlacedPropertiesEXT map_placed_props = vku::InitStructHelper();
    GetPhysicalDeviceProperties2(map_placed_props);

    /* Vulkan doesn't have any requirements on what allocationSize can be
     * other than that it must be non-zero.  Pick 64KB because that should
     * work out to an even number of pages on basically any GPU.
     */
    const VkDeviceSize allocation_size = map_placed_props.minPlacedMemoryMapAlignment * 16;

    VkMemoryAllocateInfo memory_info = vku::InitStructHelper();
    memory_info.allocationSize = allocation_size;

    bool pass = m_device->Physical().SetMemoryType(vvl::kU32Max, &memory_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
    ASSERT_TRUE(pass);

    vkt::DeviceMemory memory(*m_device, memory_info);

    /* Reserve one more page in case we need to deal with any alignment weirdness. */
    size_t reservation_size = allocation_size + map_placed_props.minPlacedMemoryMapAlignment;
    void *reservation = mmap(NULL, reservation_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    ASSERT_TRUE(reservation != MAP_FAILED);

    /* Align up to minPlacedMemoryMapAlignment */
    uintptr_t align_1 = map_placed_props.minPlacedMemoryMapAlignment - 1;
    void *addr = reinterpret_cast<void *>((reinterpret_cast<uintptr_t>(reservation) + align_1) & ~align_1);

    VkMemoryMapInfo map_info = vku::InitStructHelper();
    map_info.memory = memory;
    map_info.flags = VK_MEMORY_MAP_PLACED_BIT_EXT;
    map_info.offset = 0;
    map_info.size = VK_WHOLE_SIZE;

    VkMemoryMapPlacedInfoEXT placed_info = vku::InitStructHelper();
    placed_info.pPlacedAddress = addr;
    map_info.pNext = &placed_info;

    void *pData;
    VkResult res = vk::MapMemory2KHR(device(), &map_info, &pData);
    ASSERT_EQ(VK_SUCCESS, res);

    if (IsPlatformMockICD()) {
        return;  // currently can only validate the output with real driver
    }

    ASSERT_EQ(pData, addr);

    /* Write some data and make sure we don't fault */
    memset(pData, 0x5c, allocation_size);

    VkMemoryUnmapInfo unmap_info = vku::InitStructHelper();
    unmap_info.memory = memory;
    unmap_info.flags = VK_MEMORY_UNMAP_RESERVE_BIT_EXT;

    res = vk::UnmapMemory2KHR(device(), &unmap_info);
    ASSERT_EQ(VK_SUCCESS, res);

    /* Test mapping with the whole size but not VK_WHOLE_SIZE */
    map_info.size = allocation_size;
    res = vk::MapMemory2KHR(device(), &map_info, &pData);
    ASSERT_EQ(VK_SUCCESS, res);

    res = vk::UnmapMemory2KHR(device(), &unmap_info);
    ASSERT_EQ(VK_SUCCESS, res);

    map_info.flags = 0;
    vk::MapMemory2KHR(device(), &map_info, &pData);

    /* We unmapped with RESERVE above so this should be different */
    ASSERT_NE(pData, addr);

    ASSERT_EQ(static_cast<uint8_t *>(pData)[0], 0x5c);

    unmap_info.flags = 0;
    res = vk::UnmapMemory2KHR(device(), &unmap_info);
    ASSERT_EQ(VK_SUCCESS, res);
}
#endif

TEST_F(PositiveMemory, GetMemoryRequirements2) {
    TEST_DESCRIPTION(
        "Get memory requirements with VK_KHR_get_memory_requirements2 instead of core entry points and verify layers do not emit "
        "errors when objects are bound and used");

    AddRequiredExtensions(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());
    vkt::Buffer buffer(
        *m_device, vkt::Buffer::CreateInfo(1024, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT), vkt::no_mem);

    VkBufferMemoryRequirementsInfo2 buffer_info = vku::InitStructHelper();
    buffer_info.buffer = buffer;
    VkMemoryRequirements2 buffer_reqs = vku::InitStructHelper();
    vk::GetBufferMemoryRequirements2KHR(device(), &buffer_info, &buffer_reqs);

    vkt::DeviceMemory buffer_memory(*m_device,
                                    vkt::DeviceMemory::GetResourceAllocInfo(*m_device, buffer_reqs.memoryRequirements, 0));
    vk::BindBufferMemory(device(), buffer, buffer_memory, 0);

    auto image_ci = vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
    vkt::Image image(*m_device, image_ci, vkt::no_mem);

    VkImageMemoryRequirementsInfo2 image_info = vku::InitStructHelper();
    image_info.image = image;
    VkMemoryRequirements2 image_reqs = vku::InitStructHelper();
    vk::GetImageMemoryRequirements2KHR(device(), &image_info, &image_reqs);

    vkt::DeviceMemory image_memory(*m_device, vkt::DeviceMemory::GetResourceAllocInfo(*m_device, image_reqs.memoryRequirements, 0));
    vk::BindImageMemory(device(), image, image_memory, 0);

    // Now execute arbitrary commands that use the test buffer and image
    m_command_buffer.Begin();

    // Fill buffer with 0
    vk::CmdFillBuffer(m_command_buffer, buffer, 0, VK_WHOLE_SIZE, 0);

    // Transition and clear image
    const VkImageSubresourceRange subresource_range = image.SubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT);
    const auto barrier = image.ImageMemoryBarrier(0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
                                                  VK_IMAGE_LAYOUT_GENERAL, subresource_range);
    vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr,
                           0, nullptr, 1, &barrier);
    const VkClearColorValue color = {};
    vk::CmdClearColorImage(m_command_buffer, image, VK_IMAGE_LAYOUT_GENERAL, &color, 1, &subresource_range);

    // Submit and verify no validation errors
    m_command_buffer.End();
    m_default_queue->SubmitAndWait(m_command_buffer);
}

TEST_F(PositiveMemory, BindMemory2) {
    TEST_DESCRIPTION(
        "Bind memory with VK_KHR_bind_memory2 instead of core entry points and verify layers do not emit errors when objects are "
        "used");

    AddRequiredExtensions(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());

    vkt::Buffer buffer(*m_device, vkt::Buffer::CreateInfo(1024, VK_BUFFER_USAGE_TRANSFER_DST_BIT), vkt::no_mem);

    vkt::DeviceMemory buffer_memory(*m_device, vkt::DeviceMemory::GetResourceAllocInfo(*m_device, buffer.MemoryRequirements(), 0));

    VkBindBufferMemoryInfo buffer_bind_info = {VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR, nullptr, buffer, buffer_memory, 0};
    vk::BindBufferMemory2KHR(device(), 1, &buffer_bind_info);

    auto image_ci = vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
    vkt::Image image(*m_device, image_ci, vkt::no_mem);

    vkt::DeviceMemory image_memory(*m_device, vkt::DeviceMemory::GetResourceAllocInfo(*m_device, image.MemoryRequirements(), 0));

    VkBindImageMemoryInfo image_bind_info = {VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR, nullptr, image, image_memory, 0};
    vk::BindImageMemory2KHR(device(), 1, &image_bind_info);

    // Now execute arbitrary commands that use the test buffer and image
    m_command_buffer.Begin();

    // Fill buffer with 0
    vk::CmdFillBuffer(m_command_buffer, buffer, 0, VK_WHOLE_SIZE, 0);

    // Transition and clear image
    const VkImageSubresourceRange subresource_range = image.SubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT);
    const auto barrier = image.ImageMemoryBarrier(0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
                                                  VK_IMAGE_LAYOUT_GENERAL, subresource_range);
    vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr,
                           0, nullptr, 1, &barrier);
    const VkClearColorValue color = {};
    vk::CmdClearColorImage(m_command_buffer, image, VK_IMAGE_LAYOUT_GENERAL, &color, 1, &subresource_range);

    // Submit and verify no validation errors
    m_command_buffer.End();
    m_default_queue->SubmitAndWait(m_command_buffer);
}

TEST_F(PositiveMemory, NonCoherentMapping) {
    TEST_DESCRIPTION(
        "Ensure that validations handling of non-coherent memory mapping while using VK_WHOLE_SIZE does not cause access "
        "violations");
    VkResult err;
    uint8_t *pData;
    RETURN_IF_SKIP(Init());

    VkMemoryRequirements mem_reqs;
    mem_reqs.memoryTypeBits = 0xFFFFFFFF;
    const VkDeviceSize atom_size = m_device->Physical().limits_.nonCoherentAtomSize;
    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper();
    alloc_info.memoryTypeIndex = 0;

    static const VkDeviceSize allocation_size = 32 * atom_size;
    alloc_info.allocationSize = allocation_size;

    // Find a memory configurations WITHOUT a COHERENT bit, otherwise exit
    bool pass = m_device->Physical().SetMemoryType(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
                                                   VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
    if (!pass) {
        pass = m_device->Physical().SetMemoryType(mem_reqs.memoryTypeBits, &alloc_info,
                                                  VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
                                                  VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
        if (!pass) {
            pass = m_device->Physical().SetMemoryType(
                mem_reqs.memoryTypeBits, &alloc_info,
                VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
                VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
            if (!pass) {
                GTEST_SKIP() << "Couldn't find a memory type wihtout a COHERENT bit";
            }
        }
    }

    vkt::DeviceMemory mem(*m_device, alloc_info);

    // Map/Flush/Invalidate using WHOLE_SIZE and zero offsets and entire mapped range
    err = vk::MapMemory(device(), mem, 0, VK_WHOLE_SIZE, 0, (void **)&pData);
    ASSERT_EQ(VK_SUCCESS, err);
    VkMappedMemoryRange mmr = vku::InitStructHelper();
    mmr.memory = mem;
    mmr.offset = 0;
    mmr.size = VK_WHOLE_SIZE;
    err = vk::FlushMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    err = vk::InvalidateMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    vk::UnmapMemory(device(), mem);

    // Map/Flush/Invalidate using WHOLE_SIZE and an offset and entire mapped range
    err = vk::MapMemory(device(), mem, 5 * atom_size, VK_WHOLE_SIZE, 0, (void **)&pData);
    ASSERT_EQ(VK_SUCCESS, err);
    mmr.memory = mem;
    mmr.offset = 6 * atom_size;
    mmr.size = VK_WHOLE_SIZE;
    err = vk::FlushMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    err = vk::InvalidateMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    vk::UnmapMemory(device(), mem);

    // Map with offset and size
    // Flush/Invalidate subrange of mapped area with offset and size
    err = vk::MapMemory(device(), mem, 3 * atom_size, 9 * atom_size, 0, (void **)&pData);
    ASSERT_EQ(VK_SUCCESS, err);
    mmr.memory = mem;
    mmr.offset = 4 * atom_size;
    mmr.size = 2 * atom_size;
    err = vk::FlushMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    err = vk::InvalidateMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    vk::UnmapMemory(device(), mem);

    // Map without offset and flush WHOLE_SIZE with two separate offsets
    err = vk::MapMemory(device(), mem, 0, VK_WHOLE_SIZE, 0, (void **)&pData);
    ASSERT_EQ(VK_SUCCESS, err);
    mmr.memory = mem;
    mmr.offset = allocation_size - (4 * atom_size);
    mmr.size = VK_WHOLE_SIZE;
    err = vk::FlushMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    mmr.offset = allocation_size - (6 * atom_size);
    mmr.size = VK_WHOLE_SIZE;
    err = vk::FlushMappedMemoryRanges(device(), 1, &mmr);
    ASSERT_EQ(VK_SUCCESS, err);
    vk::UnmapMemory(device(), mem);
}

TEST_F(PositiveMemory, MappingWithMultiInstanceHeapFlag) {
    TEST_DESCRIPTION("Test mapping memory that uses memory heap with VK_MEMORY_HEAP_MULTI_INSTANCE_BIT");

    AddRequiredExtensions(VK_KHR_DEVICE_GROUP_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());
    VkPhysicalDeviceMemoryProperties memory_info;
    vk::GetPhysicalDeviceMemoryProperties(Gpu(), &memory_info);

    uint32_t memory_index = std::numeric_limits<uint32_t>::max();
    for (uint32_t i = 0; i < memory_info.memoryTypeCount; ++i) {
        if ((memory_info.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) {
            if (memory_info.memoryHeaps[memory_info.memoryTypes[i].heapIndex].flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT) {
                memory_index = i;
                break;
            }
        }
    }

    if (memory_index == std::numeric_limits<uint32_t>::max()) {
        GTEST_SKIP() << "Did not host visible memory from memory heap with VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit";
    }

    VkMemoryAllocateInfo mem_alloc = vku::InitStructHelper();
    mem_alloc.allocationSize = 64;
    mem_alloc.memoryTypeIndex = memory_index;

    vkt::DeviceMemory memory(*m_device, mem_alloc);

    uint32_t *pData;
    vk::MapMemory(device(), memory, 0, VK_WHOLE_SIZE, 0, (void **)&pData);
    vk::UnmapMemory(device(), memory);
}

TEST_F(PositiveMemory, BindImageMemoryMultiThreaded) {
    RETURN_IF_SKIP(Init());

    if (!IsPlatformMockICD()) {
        GTEST_SKIP() << "This test can crash drivers with threading issues";
    }

    auto image_ci = vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);

    // Create an image object, allocate memory, bind memory, and destroy the object
    auto worker_thread = [&]() {
        for (uint32_t i = 0; i < 1000; ++i) {
            vkt::Image image(*m_device, image_ci, vkt::no_mem);

            VkMemoryRequirements mem_reqs;
            vk::GetImageMemoryRequirements(device(), image, &mem_reqs);

            VkMemoryAllocateInfo mem_alloc = vku::InitStructHelper();
            mem_alloc.memoryTypeIndex = 0;
            mem_alloc.allocationSize = mem_reqs.size;
            const bool pass = m_device->Physical().SetMemoryType(mem_reqs.memoryTypeBits, &mem_alloc, 0);
            ASSERT_TRUE(pass);

            vkt::DeviceMemory mem(*m_device, mem_alloc);

            ASSERT_EQ(VK_SUCCESS, vk::BindImageMemory(device(), image, mem, 0));
        }
    };

    constexpr int worker_count = 32;
    std::vector<std::thread> workers;
    workers.reserve(worker_count);
    for (int i = 0; i < worker_count; ++i) {
        workers.emplace_back(worker_thread);
    }
    for (auto &worker : workers) {
        worker.join();
    }
}

TEST_F(PositiveMemory, DeviceBufferMemoryRequirements) {
    TEST_DESCRIPTION("Test vkGetDeviceBufferMemoryRequirements");

    SetTargetApiVersion(VK_API_VERSION_1_3);

    RETURN_IF_SKIP(Init());

    VkBufferCreateInfo buffer_create_info = vku::InitStructHelper();
    buffer_create_info.size = 1024;
    buffer_create_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
    vkt::Buffer buffer(*m_device, buffer_create_info, vkt::no_mem);

    VkDeviceBufferMemoryRequirements info = vku::InitStructHelper();
    info.pCreateInfo = &buffer_create_info;
    VkMemoryRequirements2 memory_reqs2 = vku::InitStructHelper();
    vk::GetDeviceBufferMemoryRequirements(device(), &info, &memory_reqs2);

    VkMemoryAllocateInfo memory_info = vku::InitStructHelper();
    memory_info.allocationSize = memory_reqs2.memoryRequirements.size;

    const bool pass = m_device->Physical().SetMemoryType(memory_reqs2.memoryRequirements.memoryTypeBits, &memory_info, 0);
    ASSERT_TRUE(pass);

    vkt::DeviceMemory buffer_memory(*m_device, memory_info);

    VkResult err = vk::BindBufferMemory(device(), buffer, buffer_memory, 0);
    ASSERT_EQ(VK_SUCCESS, err);
}

TEST_F(PositiveMemory, DeviceImageMemoryRequirements) {
    TEST_DESCRIPTION("Test vkGetDeviceImageMemoryRequirements");

    SetTargetApiVersion(VK_API_VERSION_1_3);

    RETURN_IF_SKIP(Init());

    VkImageCreateInfo image_create_info =
        vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
    vkt::Image image(*m_device, image_create_info, vkt::no_mem);

    VkDeviceImageMemoryRequirements info = vku::InitStructHelper();
    info.pCreateInfo = &image_create_info;
    VkMemoryRequirements2 mem_reqs = vku::InitStructHelper();
    vk::GetDeviceImageMemoryRequirements(device(), &info, &mem_reqs);

    VkMemoryAllocateInfo mem_alloc = vku::InitStructHelper();
    mem_alloc.memoryTypeIndex = 0;
    mem_alloc.allocationSize = mem_reqs.memoryRequirements.size;
    const bool pass = m_device->Physical().SetMemoryType(mem_reqs.memoryRequirements.memoryTypeBits, &mem_alloc, 0);
    ASSERT_TRUE(pass);

    vkt::DeviceMemory mem(*m_device, mem_alloc);

    VkResult err = vk::BindImageMemory(device(), image, mem, 0);
    ASSERT_EQ(VK_SUCCESS, err);
}

#ifdef VK_USE_PLATFORM_WIN32_KHR
TEST_F(PositiveMemory, BindMemoryDX11Handle) {
    TEST_DESCRIPTION("Bind memory imported from DX11 resource. Allocation size should be ignored.");
    AddRequiredExtensions(VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());
    // Mock ICD allows to use fake DX11 handles instead of using DX11 API directly.
    if (!IsPlatformMockICD()) {
        GTEST_SKIP() << "This test only runs on the mock ICD";
    }

    VkExternalMemoryImageCreateInfo external_info = vku::InitStructHelper();
    external_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT;
    auto image_ci = vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
    image_ci.pNext = &external_info;
    vkt::Image image(*m_device, image_ci, vkt::no_mem);

    VkMemoryRequirements mem_reqs{};
    vk::GetImageMemoryRequirements(device(), image, &mem_reqs);

    VkImportMemoryWin32HandleInfoKHR memory_import = vku::InitStructHelper();
    memory_import.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT;
    memory_import.handle = (HANDLE)0x12345678;  // Use arbitrary non-zero value as DX11 resource handle

    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper(&memory_import);  // Set zero allocation size
    m_device->Physical().SetMemoryType(mem_reqs.memoryTypeBits, &alloc_info, 0);
    vkt::DeviceMemory memory(*m_device, alloc_info);
    // This should not trigger VUs that take into accout allocation size (e.g. 01049/01046)
    vk::BindImageMemory(device(), image, memory, 0);
}

TEST_F(PositiveMemory, BindMemoryDX12Handle) {
    TEST_DESCRIPTION("Bind memory imported from DX12 resource. Allocation size should be ignored.");
    AddRequiredExtensions(VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());
    // Mock ICD allows to use fake DX12 handles instead of using DX12 API directly.
    if (!IsPlatformMockICD()) {
        GTEST_SKIP() << "This test only runs on the mock ICD";
    }

    VkExternalMemoryImageCreateInfo external_info = vku::InitStructHelper();
    external_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT;
    auto image_ci = vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
    image_ci.pNext = &external_info;
    vkt::Image image(*m_device, image_ci, vkt::no_mem);

    VkMemoryRequirements mem_reqs{};
    vk::GetImageMemoryRequirements(device(), image, &mem_reqs);

    VkImportMemoryWin32HandleInfoKHR memory_import = vku::InitStructHelper();
    memory_import.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT;
    memory_import.handle = (HANDLE)0x12345678;  // Use arbitrary non-zero value as DX12 resource handle

    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper(&memory_import);  // Set zero allocation size
    m_device->Physical().SetMemoryType(mem_reqs.memoryTypeBits, &alloc_info, 0);
    vkt::DeviceMemory memory(*m_device, alloc_info);
    // This should not trigger VUs that take into accout allocation size (e.g. 01049/01046)
    vk::BindImageMemory(device(), image, memory, 0);
}
#endif  // VK_USE_PLATFORM_WIN32_KHR

TEST_F(PositiveMemory, BindMemoryStatusBuffer) {
    TEST_DESCRIPTION("Use VkBindMemoryStatus when binding buffer to memory.");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredFeature(vkt::Feature::maintenance6);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_6_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());
    if (IsPlatformMockICD()) {
        GTEST_SKIP() << "Test not supported by MockICD, skipping";
    }

    VkBufferCreateInfo buffer_ci = vku::InitStructHelper();
    buffer_ci.size = 32u;
    buffer_ci.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;

    vkt::Buffer buffer;
    buffer.InitNoMemory(*m_device, buffer_ci);

    VkMemoryRequirements mem_reqs;
    vk::GetBufferMemoryRequirements(device(), buffer, &mem_reqs);
    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper();
    alloc_info.allocationSize = mem_reqs.size;
    vkt::DeviceMemory memory(*m_device, alloc_info);

    VkResult result = VK_RESULT_MAX_ENUM;

    VkBindMemoryStatus bind_memory_status = vku::InitStructHelper();
    bind_memory_status.pResult = &result;

    VkBindBufferMemoryInfo bind_info = vku::InitStructHelper(&bind_memory_status);
    bind_info.buffer = buffer;
    bind_info.memory = memory;
    bind_info.memoryOffset = 0u;
    vk::BindBufferMemory2(device(), 1u, &bind_info);

    ASSERT_NE(result, VK_RESULT_MAX_ENUM);
}

TEST_F(PositiveMemory, BindMemoryStatusImage) {
    TEST_DESCRIPTION("Use VkBindMemoryStatus when binding image to memory.");
    SetTargetApiVersion(VK_API_VERSION_1_1);
    AddRequiredFeature(vkt::Feature::maintenance6);
    AddRequiredExtensions(VK_KHR_MAINTENANCE_6_EXTENSION_NAME);
    RETURN_IF_SKIP(Init());
    if (IsPlatformMockICD()) {
        GTEST_SKIP() << "Test not supported by MockICD, skipping";
    }

    auto image_ci = vkt::Image::ImageCreateInfo2D(32, 32, 1, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
    vkt::Image image(*m_device, image_ci, vkt::no_mem);

    vkt::DeviceMemory memory(*m_device, vkt::DeviceMemory::GetResourceAllocInfo(*m_device, image.MemoryRequirements(), 0));

    VkResult result = VK_RESULT_MAX_ENUM;

    VkBindMemoryStatus bind_memory_status = vku::InitStructHelper();
    bind_memory_status.pResult = &result;

    VkBindImageMemoryInfo bind_info = vku::InitStructHelper(&bind_memory_status);
    bind_info.image = image;
    bind_info.memory = memory;
    bind_info.memoryOffset = 0u;
    vk::BindImageMemory2(device(), 1u, &bind_info);

    ASSERT_NE(result, VK_RESULT_MAX_ENUM);
}

TEST_F(PositiveMemory, MapMemoryCoherentAtomSize) {
    RETURN_IF_SKIP(Init());
    if (IsPlatformMockICD()) {
        GTEST_SKIP() << "Test not supported by MockICD, MapMemory will fail ASAN";
    }

    const VkDeviceSize atom_size = m_device->Physical().limits_.nonCoherentAtomSize;
    if (atom_size == 1) {
        // Some platforms have an atomsize of 1 which makes the test meaningless
        GTEST_SKIP() << "nonCoherentAtomSize is 1";
    }

    VkBufferCreateInfo buffer_ci = vku::InitStructHelper();
    buffer_ci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
    buffer_ci.size = 256;
    vkt::Buffer buffer(*m_device, buffer_ci, vkt::no_mem);

    VkMemoryRequirements mem_reqs;
    vk::GetBufferMemoryRequirements(device(), buffer, &mem_reqs);
    VkMemoryAllocateInfo alloc_info = vku::InitStructHelper();
    alloc_info.memoryTypeIndex = 0;

    alloc_info.allocationSize = (atom_size * 4) + 1;
    bool pass = m_device->Physical().SetMemoryType(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
    if (!pass) {
        GTEST_SKIP() << "Failed to set memory type";
    }
    vkt::DeviceMemory mem(*m_device, alloc_info);

    uint8_t *pData;
    ASSERT_EQ(VK_SUCCESS, vk::MapMemory(device(), mem, 0, VK_WHOLE_SIZE, 0, (void **)&pData));
    // Offset is atom size, but total memory range is not atom size
    VkMappedMemoryRange mem_range = vku::InitStructHelper();
    mem_range.memory = mem;
    mem_range.offset = atom_size;
    mem_range.size = VK_WHOLE_SIZE;
    vk::FlushMappedMemoryRanges(device(), 1, &mem_range);
    vk::UnmapMemory(device(), mem);
}

TEST_F(PositiveMemory, ZeroInitializeDeviceMemory) {
    SetTargetApiVersion(VK_API_VERSION_1_3);
    AddRequiredExtensions(VK_EXT_ZERO_INITIALIZE_DEVICE_MEMORY_EXTENSION_NAME);
    AddRequiredFeature(vkt::Feature::zeroInitializeDeviceMemory);
    RETURN_IF_SKIP(Init());

    VkImageCreateInfo image_ci =
        vkt::Image::ImageCreateInfo2D(4, 4, 1, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
    image_ci.initialLayout = VK_IMAGE_LAYOUT_ZERO_INITIALIZED_EXT;
    vkt::Image image(*m_device, image_ci, vkt::no_mem);

    auto alloc_info = vkt::DeviceMemory::GetResourceAllocInfo(*m_device, image.MemoryRequirements(), 0);

    VkMemoryAllocateFlagsInfo alloc_flags = vku::InitStructHelper();
    alloc_flags.flags = VK_MEMORY_ALLOCATE_ZERO_INITIALIZE_BIT_EXT;
    alloc_info.pNext = &alloc_flags;

    vkt::DeviceMemory memory(*m_device, alloc_info);
    vk::BindImageMemory(device(), image, memory, 0);
}