File: sparse_image_positive.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (370 lines) | stat: -rw-r--r-- 15,953 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*
 * Copyright (c) 2023-2025 The Khronos Group Inc.
 * Copyright (c) 2023-2025 Valve Corporation
 * Copyright (c) 2023-2025 LunarG, Inc.
 * Copyright (c) 2023-2025 Collabora, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 */

#include "../framework/layer_validation_tests.h"
#include "../framework/pipeline_helper.h"
#include "../framework/descriptor_helper.h"

class PositiveSparseImage : public VkLayerTest {};

TEST_F(PositiveSparseImage, MultipleBinds) {
    TEST_DESCRIPTION("Bind 2 memory ranges to one image using vkQueueBindSparse, destroy the image and then free the memory");

    AddRequiredFeature(vkt::Feature::sparseBinding);
    RETURN_IF_SKIP(Init());

    auto index = m_device->graphics_queue_node_index_;
    if (!(m_device->Physical().queue_properties_[index].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT)) {
        GTEST_SKIP() << "Graphics queue does not have sparse binding bit";
    }

    VkImageCreateInfo image_create_info = vku::InitStructHelper();
    image_create_info.imageType = VK_IMAGE_TYPE_2D;
    image_create_info.format = VK_FORMAT_B8G8R8A8_UNORM;
    image_create_info.extent.width = 64;
    image_create_info.extent.height = 64;
    image_create_info.extent.depth = 1;
    image_create_info.mipLevels = 1;
    image_create_info.arrayLayers = 1;
    image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
    image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
    image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
    image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
    vkt::Image image(*m_device, image_create_info, vkt::no_mem);

    VkMemoryRequirements memory_reqs;
    vk::GetImageMemoryRequirements(device(), image, &memory_reqs);
    // Find an image big enough to allow sparse mapping of 2 memory regions
    // Increase the image size until it is at least twice the
    // size of the required alignment, to ensure we can bind both
    // allocated memory blocks to the image on aligned offsets.
    while (memory_reqs.size < (memory_reqs.alignment * 2)) {
        image.destroy();
        image_create_info.extent.width *= 2;
        image_create_info.extent.height *= 2;
        image.InitNoMemory(*m_device, image_create_info);
        vk::GetImageMemoryRequirements(device(), image, &memory_reqs);
    }
    // Allocate 2 memory regions of minimum alignment size, bind one at 0, the other
    // at the end of the first
    VkMemoryAllocateInfo memory_info = vku::InitStructHelper();
    memory_info.allocationSize = memory_reqs.alignment;
    bool pass = m_device->Physical().SetMemoryType(memory_reqs.memoryTypeBits, &memory_info, 0);
    ASSERT_TRUE(pass);
    vkt::DeviceMemory memory_one(*m_device, memory_info);
    vkt::DeviceMemory memory_two(*m_device, memory_info);

    std::array<VkSparseMemoryBind, 2> binds = {};
    binds[0].memory = memory_one;
    binds[0].memoryOffset = 0;
    binds[0].resourceOffset = 0;
    binds[0].size = memory_info.allocationSize;
    binds[1].memory = memory_two;
    binds[1].memoryOffset = 0;
    binds[1].resourceOffset = memory_info.allocationSize;
    binds[1].size = memory_info.allocationSize;

    VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo;
    opaqueBindInfo.image = image;
    opaqueBindInfo.bindCount = size32(binds);
    opaqueBindInfo.pBinds = binds.data();

    VkBindSparseInfo bindSparseInfo = vku::InitStructHelper();
    bindSparseInfo.imageOpaqueBindCount = 1;
    bindSparseInfo.pImageOpaqueBinds = &opaqueBindInfo;

    vk::QueueBindSparse(m_default_queue->handle(), 1, &bindSparseInfo, VK_NULL_HANDLE);

    // Wait for operations to finish before destroying anything
    m_default_queue->Wait();
}

TEST_F(PositiveSparseImage, BindFreeMemory) {
    TEST_DESCRIPTION("Test using a sparse image after freeing memory that was bound to it.");

    AddRequiredFeature(vkt::Feature::sparseBinding);
    AddRequiredFeature(vkt::Feature::sparseResidencyImage2D);
    RETURN_IF_SKIP(Init());

    auto index = m_device->graphics_queue_node_index_;
    if (!(m_device->Physical().queue_properties_[index].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT)) {
        GTEST_SKIP() << "Graphics queue does not have sparse binding bit";
    }

    VkImageCreateInfo image_create_info = vku::InitStructHelper();
    image_create_info.imageType = VK_IMAGE_TYPE_2D;
    image_create_info.format = VK_FORMAT_B8G8R8A8_UNORM;
    image_create_info.extent.width = 512;
    image_create_info.extent.height = 512;
    image_create_info.extent.depth = 1;
    image_create_info.mipLevels = 1;
    image_create_info.arrayLayers = 1;
    image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
    image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
    image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
    image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
    vkt::Image image(*m_device, image_create_info, vkt::no_mem);

    VkMemoryRequirements memory_reqs;

    vk::GetImageMemoryRequirements(device(), image, &memory_reqs);
    VkMemoryAllocateInfo memory_info = vku::InitStructHelper();
    memory_info.allocationSize = memory_reqs.size;
    bool pass = m_device->Physical().SetMemoryType(memory_reqs.memoryTypeBits, &memory_info, 0);
    ASSERT_TRUE(pass);

    vkt::DeviceMemory memory(*m_device, memory_info);

    VkSparseMemoryBind bind;
    bind.flags = 0;
    bind.memory = memory;
    bind.memoryOffset = 0;
    bind.resourceOffset = 0;
    bind.size = memory_info.allocationSize;

    VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo;
    opaqueBindInfo.image = image;
    opaqueBindInfo.bindCount = 1;
    opaqueBindInfo.pBinds = &bind;

    VkBindSparseInfo bindSparseInfo = vku::InitStructHelper();
    bindSparseInfo.imageOpaqueBindCount = 1;
    bindSparseInfo.pImageOpaqueBinds = &opaqueBindInfo;

    // Bind to the memory
    vk::QueueBindSparse(m_default_queue->handle(), 1, &bindSparseInfo, VK_NULL_HANDLE);

    // Bind back to NULL
    bind.memory = VK_NULL_HANDLE;
    vk::QueueBindSparse(m_default_queue->handle(), 1, &bindSparseInfo, VK_NULL_HANDLE);

    m_default_queue->Wait();

    // Free the memory, then use the image in a new command buffer
    memory.destroy();

    m_command_buffer.Begin();

    VkImageMemoryBarrier img_barrier = vku::InitStructHelper();
    img_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
    img_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
    img_barrier.image = image;
    img_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    img_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    img_barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    img_barrier.subresourceRange.baseArrayLayer = 0;
    img_barrier.subresourceRange.baseMipLevel = 0;
    img_barrier.subresourceRange.layerCount = 1;
    img_barrier.subresourceRange.levelCount = 1;
    vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr,
                           0, nullptr, 1, &img_barrier);

    const VkClearColorValue clear_color = {{0.0f, 0.0f, 0.0f, 1.0f}};
    VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
    vk::CmdClearColorImage(m_command_buffer, image, VK_IMAGE_LAYOUT_GENERAL, &clear_color, 1, &range);
    m_command_buffer.End();
    m_default_queue->Submit(m_command_buffer);
    // Wait for operations to finish before destroying anything
    m_default_queue->Wait();
}

TEST_F(PositiveSparseImage, BindMetadata) {
    TEST_DESCRIPTION("Bind memory for the metadata aspect of a sparse image");

    AddRequiredFeature(vkt::Feature::sparseBinding);
    AddRequiredFeature(vkt::Feature::sparseResidencyImage2D);
    RETURN_IF_SKIP(Init());

    auto index = m_device->graphics_queue_node_index_;
    if (!(m_device->Physical().queue_properties_[index].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT)) {
        GTEST_SKIP() << "Graphics queue does not have sparse binding bit";
    }

    // Create a sparse image
    VkImageCreateInfo image_create_info = vku::InitStructHelper();
    image_create_info.imageType = VK_IMAGE_TYPE_2D;
    image_create_info.format = VK_FORMAT_B8G8R8A8_UNORM;
    image_create_info.extent.width = 64;
    image_create_info.extent.height = 64;
    image_create_info.extent.depth = 1;
    image_create_info.mipLevels = 1;
    image_create_info.arrayLayers = 1;
    image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
    image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
    image_create_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
    image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
    vkt::Image image(*m_device, image_create_info, vkt::no_mem);

    // Query image memory requirements
    VkMemoryRequirements memory_reqs;
    vk::GetImageMemoryRequirements(device(), image, &memory_reqs);

    // Query sparse memory requirements
    uint32_t sparse_reqs_count = 0;
    vk::GetImageSparseMemoryRequirements(device(), image, &sparse_reqs_count, nullptr);
    std::vector<VkSparseImageMemoryRequirements> sparse_reqs(sparse_reqs_count);
    vk::GetImageSparseMemoryRequirements(device(), image, &sparse_reqs_count, sparse_reqs.data());

    // Find requirements for metadata aspect
    const VkSparseImageMemoryRequirements *metadata_reqs = nullptr;
    for (auto const &aspect_sparse_reqs : sparse_reqs) {
        if ((aspect_sparse_reqs.formatProperties.aspectMask & VK_IMAGE_ASPECT_METADATA_BIT) != 0) {
            metadata_reqs = &aspect_sparse_reqs;
        }
    }

    if (!metadata_reqs) {
        GTEST_SKIP() << "Sparse image does not require memory for metadata";
    }

    // Allocate memory for the metadata
    VkMemoryAllocateInfo metadata_memory_info = vku::InitStructHelper();
    metadata_memory_info.allocationSize = metadata_reqs->imageMipTailSize;
    m_device->Physical().SetMemoryType(memory_reqs.memoryTypeBits, &metadata_memory_info, 0);
    vkt::DeviceMemory metadata_memory(*m_device, metadata_memory_info);

    // Bind metadata
    VkSparseMemoryBind sparse_bind = {};
    sparse_bind.resourceOffset = metadata_reqs->imageMipTailOffset;
    sparse_bind.size = metadata_reqs->imageMipTailSize;
    sparse_bind.memory = metadata_memory;
    sparse_bind.memoryOffset = 0;
    sparse_bind.flags = VK_SPARSE_MEMORY_BIND_METADATA_BIT;

    VkSparseImageOpaqueMemoryBindInfo opaque_bind_info = {};
    opaque_bind_info.image = image;
    opaque_bind_info.bindCount = 1;
    opaque_bind_info.pBinds = &sparse_bind;

    VkBindSparseInfo bind_info = vku::InitStructHelper();
    bind_info.imageOpaqueBindCount = 1;
    bind_info.pImageOpaqueBinds = &opaque_bind_info;

    vk::QueueBindSparse(m_default_queue->handle(), 1, &bind_info, VK_NULL_HANDLE);

    // Wait for operations to finish before destroying anything
    m_default_queue->Wait();
}

TEST_F(PositiveSparseImage, OpImageSparse) {
    TEST_DESCRIPTION("Use OpImageSparse* operations at draw time");

    AddRequiredFeature(vkt::Feature::sparseBinding);
    AddRequiredFeature(vkt::Feature::sparseResidencyImage2D);
    AddRequiredFeature(vkt::Feature::shaderResourceResidency);
    RETURN_IF_SKIP(Init());

    auto index = m_device->graphics_queue_node_index_;
    if (!(m_device->Physical().queue_properties_[index].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT)) {
        GTEST_SKIP() << "Graphics queue does not have sparse binding bit";
    }
    InitRenderTarget();

    VkImageCreateInfo image_create_info = vku::InitStructHelper();
    image_create_info.imageType = VK_IMAGE_TYPE_2D;
    image_create_info.format = VK_FORMAT_B8G8R8A8_UNORM;
    image_create_info.extent.width = 64;
    image_create_info.extent.height = 64;
    image_create_info.extent.depth = 1;
    image_create_info.mipLevels = 1;
    image_create_info.arrayLayers = 1;
    image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
    image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
    image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
    image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
    vkt::Image image(*m_device, image_create_info, vkt::no_mem);

    vkt::ImageView image_view = image.CreateView();
    vkt::Sampler sampler(*m_device, SafeSaneSamplerCreateInfo());

    OneOffDescriptorSet ds(m_device, {
                                         {0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
                                     });
    ds.WriteDescriptorImageInfo(0, image_view, sampler, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
    ds.UpdateDescriptorSets();

    char const *fsSource = R"glsl(
        #version 450
        #extension GL_ARB_sparse_texture2 : enable

        layout(set = 0, binding = 0) uniform sampler2D s2D;

        layout(location = 0) out vec4 outColor;

        void main() {
            vec4 texel = vec4(1.0);
            int resident = 0;
            resident |= sparseTextureARB(s2D, vec2(0.0), texel);
            resident |= sparseTextureLodARB(s2D, vec2(0.0), 2.0, texel);
            resident |= sparseTexelFetchARB(s2D, ivec2(0), 2, texel);

            outColor = sparseTexelsResidentARB(resident) ? vec4(0.0) : vec4(1.0);
        }
    )glsl";

    VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
    VkShaderObj fs(this, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT);

    CreatePipelineHelper pipe(*this);
    pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
    pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&ds.layout_});
    pipe.CreateGraphicsPipeline();

    m_command_buffer.Begin();
    m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
    vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
    vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_, 0, 1, &ds.set_, 0, nullptr);
    vk::CmdDraw(m_command_buffer, 3, 1, 0, 0);
    m_command_buffer.EndRenderPass();
    m_command_buffer.End();
}

TEST_F(PositiveSparseImage, BindImage) {
    AddRequiredFeature(vkt::Feature::sparseBinding);
    AddRequiredFeature(vkt::Feature::sparseResidencyImage2D);
    RETURN_IF_SKIP(Init());

    if (m_device->QueuesWithSparseCapability().empty()) {
        GTEST_SKIP() << "Required SPARSE_BINDING queue families not present";
    }

    VkImageCreateInfo image_create_info = vku::InitStructHelper();
    image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
    image_create_info.imageType = VK_IMAGE_TYPE_2D;
    image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
    image_create_info.extent = {512, 64, 1};
    image_create_info.mipLevels = 1;
    image_create_info.arrayLayers = 1;
    image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
    image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
    image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
    image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
    vkt::Image image(*m_device, image_create_info, vkt::no_mem);

    VkSparseImageMemoryBind image_memory_bind = {};
    image_memory_bind.subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    image_memory_bind.extent = image_create_info.extent;

    VkSparseImageMemoryBindInfo image_memory_bind_info = {};
    image_memory_bind_info.image = image;
    image_memory_bind_info.bindCount = 1;
    image_memory_bind_info.pBinds = &image_memory_bind;

    VkBindSparseInfo bind_info = vku::InitStructHelper();
    bind_info.imageBindCount = 1;
    bind_info.pImageBinds = &image_memory_bind_info;

    vkt::Queue *sparse_queue = m_device->QueuesWithSparseCapability()[0];
    vk::QueueBindSparse(sparse_queue->handle(), 1, &bind_info, VK_NULL_HANDLE);
    sparse_queue->Wait();
}