1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
|
/*
* Copyright (c) 2015-2025 The Khronos Group Inc.
* Copyright (c) 2015-2025 Valve Corporation
* Copyright (c) 2015-2025 LunarG, Inc.
* Copyright (c) 2015-2025 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*/
#include <thread>
#include <algorithm>
#include "../framework/sync_val_tests.h"
#include "../framework/pipeline_helper.h"
#include "../framework/descriptor_helper.h"
#include "../framework/render_pass_helper.h"
#include "../framework/thread_helper.h"
#include "../framework/queue_submit_context.h"
#include "../layers/sync/sync_settings.h"
class PositiveSyncVal : public VkSyncValTest {};
static const std::array syncval_enables = {VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT};
static const std::array syncval_disables = {
VK_VALIDATION_FEATURE_DISABLE_THREAD_SAFETY_EXT, VK_VALIDATION_FEATURE_DISABLE_API_PARAMETERS_EXT,
VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES_EXT, VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT};
void VkSyncValTest::InitSyncValFramework(const SyncValSettings *p_sync_settings) {
std::vector<VkLayerSettingEXT> settings;
static const SyncValSettings test_default_sync_settings = [] {
// That's a separate set of defaults for testing purposes.
// The main layer configuration can have some options turned off by default,
// but we might still want that functionality to be available for testing.
SyncValSettings settings;
settings.submit_time_validation = true;
settings.shader_accesses_heuristic = true;
return settings;
}();
const SyncValSettings &sync_settings = p_sync_settings ? *p_sync_settings : test_default_sync_settings;
const auto submit_time_validation = static_cast<VkBool32>(sync_settings.submit_time_validation);
settings.emplace_back(VkLayerSettingEXT{OBJECT_LAYER_NAME, "syncval_submit_time_validation", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &submit_time_validation});
const auto shader_accesses_heuristic = static_cast<VkBool32>(sync_settings.shader_accesses_heuristic);
settings.emplace_back(VkLayerSettingEXT{OBJECT_LAYER_NAME, "syncval_shader_accesses_heuristic",
VK_LAYER_SETTING_TYPE_BOOL32_EXT, 1, &shader_accesses_heuristic});
VkLayerSettingsCreateInfoEXT settings_create_info = vku::InitStructHelper();
settings_create_info.settingCount = size32(settings);
settings_create_info.pSettings = settings.data();
VkValidationFeaturesEXT validation_features = vku::InitStructHelper();
validation_features.enabledValidationFeatureCount = size32(syncval_enables);
validation_features.pEnabledValidationFeatures = syncval_enables.data();
if (m_syncval_disable_core) {
validation_features.disabledValidationFeatureCount = size32(syncval_disables);
validation_features.pDisabledValidationFeatures = syncval_disables.data();
}
validation_features.pNext = &settings_create_info;
AddRequiredExtensions(VK_EXT_VALIDATION_FEATURES_EXTENSION_NAME);
InitFramework(&validation_features);
}
void VkSyncValTest::InitSyncVal(const SyncValSettings *p_sync_settings) {
RETURN_IF_SKIP(InitSyncValFramework(p_sync_settings));
RETURN_IF_SKIP(InitState());
}
void VkSyncValTest::InitTimelineSemaphore() {
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredFeature(vkt::Feature::timelineSemaphore);
RETURN_IF_SKIP(InitSyncVal());
}
void VkSyncValTest::InitRayTracing() {
SetTargetApiVersion(VK_API_VERSION_1_2);
AddRequiredExtensions(VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME);
AddRequiredExtensions(VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::bufferDeviceAddress);
AddRequiredFeature(vkt::Feature::accelerationStructure);
AddRequiredFeature(vkt::Feature::rayTracingPipeline);
RETURN_IF_SKIP(InitSyncVal());
}
TEST_F(PositiveSyncVal, BufferCopyNonOverlappedRegions) {
TEST_DESCRIPTION("Copy to non-overlapped regions of the same buffer");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferCopy first_half = {0, 0, 128};
VkBufferCopy second_half = {128, 128, 128};
m_command_buffer.Begin();
vk::CmdCopyBuffer(m_command_buffer, buffer_b, buffer_a, 1, &first_half);
vk::CmdCopyBuffer(m_command_buffer, buffer_b, buffer_a, 1, &second_half);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, BufferCopySecondary) {
TEST_DESCRIPTION("Execution dependency protects protects READ access from subsequent WRITEs");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer buffer_c(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
// buffer_c READ
vkt::CommandBuffer secondary_cb1(*m_device, m_command_pool, VK_COMMAND_BUFFER_LEVEL_SECONDARY);
secondary_cb1.Begin();
secondary_cb1.Copy(buffer_c, buffer_a);
secondary_cb1.End();
// Execution dependency
vkt::CommandBuffer secondary_cb2(*m_device, m_command_pool, VK_COMMAND_BUFFER_LEVEL_SECONDARY);
secondary_cb2.Begin();
vk::CmdPipelineBarrier(secondary_cb2, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr,
0, nullptr);
secondary_cb2.End();
// buffer_c WRITE
vkt::CommandBuffer secondary_cb3(*m_device, m_command_pool, VK_COMMAND_BUFFER_LEVEL_SECONDARY);
secondary_cb3.Begin();
secondary_cb3.Copy(buffer_b, buffer_c);
secondary_cb3.End();
m_command_buffer.Begin();
VkCommandBuffer three_cbs[3] = {secondary_cb1, secondary_cb2, secondary_cb3};
vk::CmdExecuteCommands(m_command_buffer, 3, three_cbs);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, CmdClearAttachmentLayer) {
TEST_DESCRIPTION(
"Clear one attachment layer and copy to a different one."
"This checks for bug regression that produced a false-positive WAW hazard.");
// VK_EXT_load_store_op_none is needed to disable render pass load/store accesses, so clearing
// attachment inside a render pass can create hazards with the copy operations outside render pass.
AddRequiredExtensions(VK_EXT_LOAD_STORE_OP_NONE_EXTENSION_NAME);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
const uint32_t width = 256;
const uint32_t height = 128;
const uint32_t layers = 2;
const VkFormat rt_format = VK_FORMAT_B8G8R8A8_UNORM;
const auto transfer_usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
const auto rt_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | transfer_usage;
vkt::Image image(*m_device, width, height, rt_format, transfer_usage);
image.SetLayout(VK_IMAGE_LAYOUT_GENERAL);
vkt::Image rt(*m_device, vkt::Image::ImageCreateInfo2D(width, height, 1, layers, rt_format, rt_usage));
rt.SetLayout(VK_IMAGE_LAYOUT_GENERAL);
auto attachment_without_load_store = [](VkFormat format) {
VkAttachmentDescription attachment = {};
attachment.format = format;
attachment.samples = VK_SAMPLE_COUNT_1_BIT;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_NONE;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_NONE;
attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_NONE;
attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_NONE;
attachment.initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachment.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
return attachment;
};
const VkAttachmentDescription attachment = attachment_without_load_store(rt_format);
const VkAttachmentReference color_ref = {0, VK_IMAGE_LAYOUT_GENERAL};
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_ref;
VkRenderPassCreateInfo rpci = vku::InitStructHelper();
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
rpci.pAttachments = &attachment;
vkt::RenderPass render_pass(*m_device, rpci);
vkt::ImageView rt_view = rt.CreateView(VK_IMAGE_VIEW_TYPE_2D_ARRAY, 0, 1, 0, layers);
VkFramebufferCreateInfo fbci = vku::InitStructHelper();
fbci.flags = 0;
fbci.renderPass = render_pass;
fbci.attachmentCount = 1;
fbci.pAttachments = &rt_view.handle();
fbci.width = width;
fbci.height = height;
fbci.layers = layers;
vkt::Framebuffer framebuffer(*m_device, fbci);
CreatePipelineHelper pipe(*this);
pipe.gp_ci_.renderPass = render_pass;
pipe.CreateGraphicsPipeline();
VkImageCopy copy_region = {};
copy_region.srcSubresource = {VkImageAspectFlags(VK_IMAGE_ASPECT_COLOR_BIT), 0, 0, 1};
copy_region.dstSubresource = {VkImageAspectFlags(VK_IMAGE_ASPECT_COLOR_BIT), 0, 0 /* copy only to layer 0 */, 1};
copy_region.srcOffset = {0, 0, 0};
copy_region.dstOffset = {0, 0, 0};
copy_region.extent = {width, height, 1};
VkClearRect clear_rect = {};
clear_rect.rect.offset = {0, 0};
clear_rect.rect.extent = {width, height};
clear_rect.baseArrayLayer = 1; // skip layer 0, clear only layer 1
clear_rect.layerCount = 1;
const VkClearAttachment clear_attachment = {VK_IMAGE_ASPECT_COLOR_BIT};
m_command_buffer.Begin();
// Write 1: Copy to render target's layer 0
vk::CmdCopyImage(m_command_buffer, image, VK_IMAGE_LAYOUT_GENERAL, rt, VK_IMAGE_LAYOUT_GENERAL, 1, ©_region);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
m_command_buffer.BeginRenderPass(render_pass, framebuffer, width, height);
// Write 2: Clear render target's layer 1
vk::CmdClearAttachments(m_command_buffer, 1, &clear_attachment, 1, &clear_rect);
vk::CmdEndRenderPass(m_command_buffer);
m_command_buffer.End();
m_default_queue->SubmitAndWait(m_command_buffer);
}
TEST_F(PositiveSyncVal, LoadOpImplicitOrdering) {
TEST_DESCRIPTION("LoadOp happens-before (including memory effects) any recorded render pass operation");
RETURN_IF_SKIP(InitSyncVal());
RenderPassSingleSubpass rp(*this);
// Use LOAD_OP_CLEAR we check that input attachment READ is implicitly ordered against load op WRITE
rp.AddAttachmentDescription(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_DONT_CARE);
rp.AddAttachmentReference({0, VK_IMAGE_LAYOUT_GENERAL});
rp.AddInputAttachment(0);
// Need to add color attachment too, otherwise input attachment alone can't be used with LOAD_OP_CLEAR
rp.AddColorAttachment(0);
rp.CreateRenderPass();
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView image_view = image.CreateView();
vkt::Framebuffer framebuffer(*m_device, rp, 1, &image_view.handle(), 64, 64);
VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
VkShaderObj fs_read(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper pipe_read(*this);
pipe_read.shader_stages_ = {vs.GetStageCreateInfo(), fs_read.GetStageCreateInfo()};
pipe_read.dsl_bindings_[0] = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT};
pipe_read.gp_ci_.renderPass = rp;
pipe_read.CreateGraphicsPipeline();
pipe_read.descriptor_set_->WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_IMAGE_LAYOUT_GENERAL);
pipe_read.descriptor_set_->UpdateDescriptorSets();
VkClearValue clear_value{};
m_command_buffer.Begin();
m_command_buffer.BeginRenderPass(rp, framebuffer, 64, 64, 1, &clear_value);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read.pipeline_layout_, 0, 1,
&pipe_read.descriptor_set_->set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.EndRenderPass();
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, StoreOpImplicitOrdering) {
TEST_DESCRIPTION("StoreOp happens-after (including memory effects) any recorded render pass operation");
RETURN_IF_SKIP(InitSyncVal());
RenderPassSingleSubpass rp(*this);
rp.AddAttachmentDescription(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_DONT_CARE);
rp.AddAttachmentReference({0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL});
rp.AddInputAttachment(0);
rp.CreateRenderPass();
vkt::Image input_image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView input_image_view = input_image.CreateView();
vkt::Framebuffer framebuffer(*m_device, rp, 1, &input_image_view.handle(), 64, 64);
VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
VkShaderObj fs(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper pipe(*this);
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.dsl_bindings_[0] = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT};
pipe.gp_ci_.renderPass = rp;
pipe.CreateGraphicsPipeline();
pipe.descriptor_set_->WriteDescriptorImageInfo(0, input_image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
pipe.descriptor_set_->UpdateDescriptorSets();
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_, 0, 1,
&pipe.descriptor_set_->set_, 0, nullptr);
m_command_buffer.BeginRenderPass(rp, framebuffer, 64, 64);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
// Test ordering rules between input attachment READ and store op WRITE (DONT_CARE).
// Implicit ordering ensures there is no WAR hazard.
m_command_buffer.EndRenderPass();
}
TEST_F(PositiveSyncVal, SubpassWithBarrier) {
TEST_DESCRIPTION("The first draw writes to attachment, the second reads it as input attachment");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RenderPassSingleSubpass rp(*this);
rp.AddAttachmentDescription(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_DONT_CARE);
rp.AddAttachmentReference({0, VK_IMAGE_LAYOUT_GENERAL});
rp.AddColorAttachment(0);
rp.AddInputAttachment(0);
// Add subpass self-dependency in order to be able to use pipeline barrier in subpass
rp.AddSubpassDependency(VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT,
VK_DEPENDENCY_BY_REGION_BIT);
rp.CreateRenderPass();
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView image_view = image.CreateView();
vkt::Framebuffer framebuffer(*m_device, rp, 1, &image_view.handle(), 64, 64);
VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
VkShaderObj fs_write(this, kFragmentMinimalGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
VkShaderObj fs_read(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper pipe_write(*this);
pipe_write.shader_stages_ = {vs.GetStageCreateInfo(), fs_write.GetStageCreateInfo()};
pipe_write.gp_ci_.renderPass = rp;
pipe_write.CreateGraphicsPipeline();
CreatePipelineHelper pipe_read(*this);
pipe_read.shader_stages_ = {vs.GetStageCreateInfo(), fs_read.GetStageCreateInfo()};
pipe_read.dsl_bindings_[0] = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT};
pipe_read.gp_ci_.renderPass = rp;
pipe_read.CreateGraphicsPipeline();
pipe_read.descriptor_set_->WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_IMAGE_LAYOUT_GENERAL);
pipe_read.descriptor_set_->UpdateDescriptorSets();
VkMemoryBarrier2 barrier = vku::InitStructHelper();
barrier.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.srcAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
barrier.dstAccessMask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT;
m_command_buffer.Begin();
m_command_buffer.BeginRenderPass(rp, framebuffer, 64, 64);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_write);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.Barrier(barrier, VK_DEPENDENCY_BY_REGION_BIT);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read.pipeline_layout_, 0, 1,
&pipe_read.descriptor_set_->set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.EndRenderPass();
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, SubpassWithBarrier2) {
TEST_DESCRIPTION("The first draw reads input attachment, the second write to it");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RenderPassSingleSubpass rp(*this);
rp.AddAttachmentDescription(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_DONT_CARE);
rp.AddAttachmentReference({0, VK_IMAGE_LAYOUT_GENERAL});
rp.AddColorAttachment(0);
rp.AddInputAttachment(0);
// Add subpass self-dependency in order to be able to use pipeline barrier in subpass
rp.AddSubpassDependency(VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT);
rp.CreateRenderPass();
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView image_view = image.CreateView();
vkt::Framebuffer framebuffer(*m_device, rp, 1, &image_view.handle(), 64, 64);
VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
VkShaderObj fs_read(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
VkShaderObj fs_write(this, kFragmentMinimalGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper pipe_read(*this);
pipe_read.shader_stages_ = {vs.GetStageCreateInfo(), fs_read.GetStageCreateInfo()};
pipe_read.dsl_bindings_[0] = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT};
pipe_read.gp_ci_.renderPass = rp;
pipe_read.CreateGraphicsPipeline();
pipe_read.descriptor_set_->WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_IMAGE_LAYOUT_GENERAL);
pipe_read.descriptor_set_->UpdateDescriptorSets();
CreatePipelineHelper pipe_write(*this);
pipe_write.shader_stages_ = {vs.GetStageCreateInfo(), fs_write.GetStageCreateInfo()};
pipe_write.gp_ci_.renderPass = rp;
pipe_write.CreateGraphicsPipeline();
VkMemoryBarrier2 barrier = vku::InitStructHelper();
barrier.srcStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
barrier.srcAccessMask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT;
barrier.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.dstAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
m_command_buffer.Begin();
m_command_buffer.BeginRenderPass(rp, framebuffer, 64, 64);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read.pipeline_layout_, 0, 1,
&pipe_read.descriptor_set_->set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.Barrier(barrier, VK_DEPENDENCY_BY_REGION_BIT);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_write);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.EndRenderPass();
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, DynamicRenderingWithBarrier) {
TEST_DESCRIPTION("The first draw writes to attachment, the second reads it as input attachment");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredFeature(vkt::Feature::dynamicRendering);
AddRequiredFeature(vkt::Feature::dynamicRenderingLocalRead);
RETURN_IF_SKIP(InitSyncVal());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView image_view = image.CreateView();
VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
VkShaderObj fs_write(this, kFragmentMinimalGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
VkShaderObj fs_read(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
VkFormat color_format = VK_FORMAT_R8G8B8A8_UNORM;
VkPipelineRenderingCreateInfo pipeline_rendering_info = vku::InitStructHelper();
pipeline_rendering_info.colorAttachmentCount = 1;
pipeline_rendering_info.pColorAttachmentFormats = &color_format;
CreatePipelineHelper pipe_write(*this, &pipeline_rendering_info);
pipe_write.shader_stages_ = {vs.GetStageCreateInfo(), fs_write.GetStageCreateInfo()};
pipe_write.CreateGraphicsPipeline();
CreatePipelineHelper pipe_read(*this, &pipeline_rendering_info);
pipe_read.shader_stages_ = {vs.GetStageCreateInfo(), fs_read.GetStageCreateInfo()};
pipe_read.dsl_bindings_[0] = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT};
pipe_read.CreateGraphicsPipeline();
pipe_read.descriptor_set_->WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_IMAGE_LAYOUT_GENERAL);
pipe_read.descriptor_set_->UpdateDescriptorSets();
VkMemoryBarrier2 barrier = vku::InitStructHelper();
barrier.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.srcAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
barrier.dstAccessMask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT;
VkRenderingAttachmentInfo attachment = vku::InitStructHelper();
attachment.imageView = image_view;
attachment.imageLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
VkRenderingInfo rendering_info = vku::InitStructHelper();
rendering_info.renderArea.extent = {64, 64};
rendering_info.layerCount = 1;
rendering_info.colorAttachmentCount = 1;
rendering_info.pColorAttachments = &attachment;
m_command_buffer.Begin();
vk::CmdBeginRendering(m_command_buffer, &rendering_info);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_write);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.Barrier(barrier, VK_DEPENDENCY_BY_REGION_BIT);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read.pipeline_layout_, 0, 1,
&pipe_read.descriptor_set_->set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
vk::CmdEndRendering(m_command_buffer);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, DynamicRenderingWithBarrier2) {
TEST_DESCRIPTION("The first draw reads input attachment, the second write to it");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredFeature(vkt::Feature::dynamicRendering);
AddRequiredFeature(vkt::Feature::dynamicRenderingLocalRead);
RETURN_IF_SKIP(InitSyncVal());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView image_view = image.CreateView();
VkShaderObj vs(this, kVertexMinimalGlsl, VK_SHADER_STAGE_VERTEX_BIT);
VkShaderObj fs_read(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
VkShaderObj fs_write(this, kFragmentMinimalGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
VkFormat color_format = VK_FORMAT_R8G8B8A8_UNORM;
VkPipelineRenderingCreateInfo pipeline_rendering_info = vku::InitStructHelper();
pipeline_rendering_info.colorAttachmentCount = 1;
pipeline_rendering_info.pColorAttachmentFormats = &color_format;
CreatePipelineHelper pipe_read(*this, &pipeline_rendering_info);
pipe_read.shader_stages_ = {vs.GetStageCreateInfo(), fs_read.GetStageCreateInfo()};
pipe_read.dsl_bindings_[0] = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT};
pipe_read.CreateGraphicsPipeline();
pipe_read.descriptor_set_->WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_IMAGE_LAYOUT_GENERAL);
CreatePipelineHelper pipe_write(*this, &pipeline_rendering_info);
pipe_write.shader_stages_ = {vs.GetStageCreateInfo(), fs_write.GetStageCreateInfo()};
pipe_write.CreateGraphicsPipeline();
pipe_read.descriptor_set_->UpdateDescriptorSets();
VkMemoryBarrier2 barrier = vku::InitStructHelper();
barrier.srcStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
barrier.srcAccessMask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT;
barrier.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.dstAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderingAttachmentInfo attachment = vku::InitStructHelper();
attachment.imageView = image_view;
attachment.imageLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
VkRenderingInfo rendering_info = vku::InitStructHelper();
rendering_info.renderArea.extent = {64, 64};
rendering_info.layerCount = 1;
rendering_info.colorAttachmentCount = 1;
rendering_info.pColorAttachments = &attachment;
m_command_buffer.Begin();
vk::CmdBeginRendering(m_command_buffer, &rendering_info);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_read.pipeline_layout_, 0, 1,
&pipe_read.descriptor_set_->set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.Barrier(barrier, VK_DEPENDENCY_BY_REGION_BIT);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe_write);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
vk::CmdEndRendering(m_command_buffer);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, LayoutTransition) {
TEST_DESCRIPTION("Sandwitch image clear between two layout transitions");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
const VkClearValue clear_value{};
VkImageSubresourceRange subresource_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageMemoryBarrier2 transition1 = vku::InitStructHelper();
transition1.dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
transition1.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
transition1.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition1.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition1.image = image;
transition1.subresourceRange = subresource_range;
VkImageMemoryBarrier2 transition2 = vku::InitStructHelper();
transition2.srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
transition2.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
transition2.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition2.newLayout = VK_IMAGE_LAYOUT_GENERAL;
transition2.image = image;
transition2.subresourceRange = subresource_range;
m_command_buffer.Begin();
m_command_buffer.Barrier(transition1); // transition to layout required by clear
vk::CmdClearColorImage(m_command_buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clear_value.color, 1,
&subresource_range);
m_command_buffer.Barrier(transition2); // transtion to final layout
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, LayoutTransitionAfterLayoutTransition) {
// TODO: check results of this dicussion https://gitlab.khronos.org/vulkan/vulkan/-/issues/4302
// NOTE: artem can't believe this does not cause race conditions
TEST_DESCRIPTION("There should be no hazard for ILT after ILT");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkImageMemoryBarrier2 transition1 = vku::InitStructHelper();
transition1.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition1.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition1.image = image;
transition1.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageMemoryBarrier2 transition2 = vku::InitStructHelper();
transition2.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition2.newLayout = VK_IMAGE_LAYOUT_GENERAL;
transition2.image = image;
transition2.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_command_buffer.Begin();
m_command_buffer.Barrier(transition1);
m_command_buffer.Barrier(transition2);
m_command_buffer.End();
}
// Image transition ensures that image data is made visible and available when necessary.
// The user's responsibility is only to properly define the barrier. This test checks that
// writing to the image immediately after the transition does not produce WAW hazard against
// the writes performed by the transition.
TEST_F(PositiveSyncVal, WriteToImageAfterTransition) {
TEST_DESCRIPTION("Perform image transition then copy to image from buffer");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
constexpr uint32_t width = 256;
constexpr uint32_t height = 128;
constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
vkt::Buffer buffer(*m_device, width * height * 4, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Image image(*m_device, width, height, format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkImageMemoryBarrier barrier = vku::InitStructHelper();
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.layerCount = 1;
VkBufferImageCopy region = {};
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {width, height, 1};
m_command_buffer.Begin();
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr,
1, &barrier);
vk::CmdCopyBufferToImage(m_command_buffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
m_command_buffer.End();
}
// Regression test for vkWaitSemaphores timeout while waiting for vkSignalSemaphore.
// This scenario is not an issue for validation objects that use fine grained locking.
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/4968
TEST_F(PositiveSyncVal, SignalAndWaitSemaphoreOnHost) {
TEST_DESCRIPTION("Signal semaphore on the host and wait on the host");
SetTargetApiVersion(VK_API_VERSION_1_2);
RETURN_IF_SKIP(InitSyncValFramework());
AddRequiredFeature(vkt::Feature::timelineSemaphore);
RETURN_IF_SKIP(InitState());
if (IsPlatformMockICD()) {
// Mock does not support proper ordering of events, e.g. wait can return before signal
GTEST_SKIP() << "Test not supported by MockICD";
}
constexpr uint64_t max_signal_value = 10'000;
VkSemaphoreTypeCreateInfo semaphore_type_info = vku::InitStructHelper();
semaphore_type_info.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE;
const VkSemaphoreCreateInfo create_info = vku::InitStructHelper(&semaphore_type_info);
vkt::Semaphore semaphore(*m_device, create_info);
std::atomic<bool> bailout{false};
m_errorMonitor->SetBailout(&bailout);
// Send signals
auto signaling_thread = std::thread{[&] {
uint64_t last_signalled_value = 0;
while (last_signalled_value != max_signal_value) {
VkSemaphoreSignalInfo signal_info = vku::InitStructHelper();
signal_info.semaphore = semaphore;
signal_info.value = ++last_signalled_value;
ASSERT_EQ(VK_SUCCESS, vk::SignalSemaphore(*m_device, &signal_info));
if (bailout.load()) {
break;
}
}
}};
// Wait for each signal
uint64_t wait_value = 1;
while (wait_value <= max_signal_value) {
VkSemaphoreWaitInfo wait_info = vku::InitStructHelper();
wait_info.flags = VK_SEMAPHORE_WAIT_ANY_BIT;
wait_info.semaphoreCount = 1;
wait_info.pSemaphores = &semaphore.handle();
wait_info.pValues = &wait_value;
ASSERT_EQ(VK_SUCCESS, vk::WaitSemaphores(*m_device, &wait_info, vvl::kU64Max));
++wait_value;
if (bailout.load()) {
break;
}
}
signaling_thread.join();
}
// Regression test for vkGetSemaphoreCounterValue timeout while waiting for vkSignalSemaphore.
// This scenario is not an issue for validation objects that use fine grained locking.
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/4968
TEST_F(PositiveSyncVal, SignalAndGetSemaphoreCounter) {
TEST_DESCRIPTION("Singal semaphore on the host and regularly read semaphore payload value");
SetTargetApiVersion(VK_API_VERSION_1_2);
RETURN_IF_SKIP(InitSyncValFramework());
AddRequiredFeature(vkt::Feature::timelineSemaphore);
RETURN_IF_SKIP(InitState());
if (IsPlatformMockICD()) {
// Mock does not support precise semaphore counter reporting
GTEST_SKIP() << "Test not supported by MockICD";
}
constexpr uint64_t max_signal_value = 1'000;
VkSemaphoreTypeCreateInfo semaphore_type_info = vku::InitStructHelper();
semaphore_type_info.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE;
const VkSemaphoreCreateInfo create_info = vku::InitStructHelper(&semaphore_type_info);
vkt::Semaphore semaphore(*m_device, create_info);
std::atomic<bool> bailout{false};
m_errorMonitor->SetBailout(&bailout);
// Send signals
auto signaling_thread = std::thread{[&] {
uint64_t last_signalled_value = 0;
while (last_signalled_value != max_signal_value) {
VkSemaphoreSignalInfo signal_info = vku::InitStructHelper();
signal_info.semaphore = semaphore;
signal_info.value = ++last_signalled_value;
ASSERT_EQ(VK_SUCCESS, vk::SignalSemaphore(*m_device, &signal_info));
if (bailout.load()) {
break;
}
}
}};
// Spin until semaphore payload value equals maximum signaled value
uint64_t counter = 0;
while (counter != max_signal_value) {
ASSERT_EQ(VK_SUCCESS, vk::GetSemaphoreCounterValue(*m_device, semaphore, &counter));
if (bailout.load()) {
break;
}
}
signaling_thread.join();
}
TEST_F(PositiveSyncVal, GetSemaphoreCounterFromMultipleThreads) {
TEST_DESCRIPTION("Read semaphore counter value from multiple threads");
SetTargetApiVersion(VK_API_VERSION_1_2);
RETURN_IF_SKIP(InitSyncValFramework());
AddRequiredFeature(vkt::Feature::timelineSemaphore);
RETURN_IF_SKIP(InitState());
if (IsPlatformMockICD()) {
// Mock does not support precise semaphore counter reporting
GTEST_SKIP() << "Test not supported by MockICD";
}
constexpr uint64_t max_signal_value = 5'000; // 15'000 in the original version for stress testing
constexpr int waiter_count = 8; // 24 in the original version for stress testing
vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
ThreadTimeoutHelper timeout_helper(waiter_count + 1 /* signaling thread*/);
std::atomic<bool> bailout{false};
m_errorMonitor->SetBailout(&bailout);
// Start a bunch of waiter threads
auto waiting_thread = [&]() {
auto timeout_guard = timeout_helper.ThreadGuard();
uint64_t counter = 0;
while (counter != max_signal_value) {
ASSERT_EQ(VK_SUCCESS, vk::GetSemaphoreCounterValue(*m_device, semaphore, &counter));
if (bailout.load()) {
break;
}
}
};
std::vector<std::thread> waiters;
for (int i = 0; i < waiter_count; i++) {
waiters.emplace_back(waiting_thread);
}
// The signaling thread advances semaphore's payload value
auto signaling_thread = std::thread([&] {
auto timeout_guard = timeout_helper.ThreadGuard();
uint64_t last_signalled_value = 0;
while (last_signalled_value != max_signal_value) {
VkSemaphoreSignalInfo signal_info = vku::InitStructHelper();
signal_info.semaphore = semaphore;
signal_info.value = ++last_signalled_value;
ASSERT_EQ(VK_SUCCESS, vk::SignalSemaphore(*m_device, &signal_info));
if (bailout.load()) {
break;
}
}
});
constexpr int wait_time = 100;
if (!timeout_helper.WaitForThreads(wait_time)) {
ADD_FAILURE() << "The waiting time for the worker threads exceeded the maximum limit: " << wait_time << " seconds.";
bailout.store(true);
}
for (auto &waiter : waiters) {
waiter.join();
}
signaling_thread.join();
}
TEST_F(PositiveSyncVal, ShaderReferencesNotBoundSet) {
TEST_DESCRIPTION("Shader references a descriptor set that was not bound. SyncVal should not crash if core checks are disabled");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
InitRenderTarget();
const VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT, nullptr};
const vkt::DescriptorSetLayout set_layout(*m_device, {binding});
const vkt::PipelineLayout pipeline_layout(*m_device, {&set_layout, &set_layout});
OneOffDescriptorSet set(m_device, {binding});
CreatePipelineHelper pipe(*this);
pipe.gp_ci_.layout = pipeline_layout;
pipe.CreateGraphicsPipeline();
m_command_buffer.Begin();
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
// Bind set 0.
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &set.set_, 0, nullptr);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
// Core checks prevent SyncVal from running when error is found. This test has core checks disabled and also invalid
// setup where a shader uses not bound set 1.
// Check that syncval does not cause out of bounds access (PerSet has single element (index 0), shader set index is 1).
vk::CmdDraw(m_command_buffer, 3, 1, 0, 0);
vk::CmdEndRenderPass(m_command_buffer);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, SeparateAvailabilityAndVisibilityForBuffer) {
TEST_DESCRIPTION("Use separate barriers for availability and visibility operations.");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
constexpr VkDeviceSize size = 1024;
const vkt::Buffer staging_buffer(*m_device, size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
const vkt::Buffer buffer(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferCopy region = {};
region.size = size;
m_command_buffer.Begin();
// Perform a copy
vk::CmdCopyBuffer(m_command_buffer, staging_buffer, buffer, 1, ®ion);
// Make writes available
VkBufferMemoryBarrier barrier_a = vku::InitStructHelper();
barrier_a.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier_a.dstAccessMask = 0;
barrier_a.buffer = buffer;
barrier_a.size = VK_WHOLE_SIZE;
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 1,
&barrier_a, 0, nullptr);
// Make writes visible
VkBufferMemoryBarrier barrier_b = vku::InitStructHelper();
barrier_b.srcAccessMask = 0; // already available
barrier_b.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier_b.buffer = buffer;
barrier_b.size = VK_WHOLE_SIZE;
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 1,
&barrier_b, 0, nullptr);
// Perform one more copy. Should not generate WAW.
vk::CmdCopyBuffer(m_command_buffer, staging_buffer, buffer, 1, ®ion);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, LayoutTransitionWithAlreadyAvailableImage) {
TEST_DESCRIPTION(
"Image barrier makes image available but not visible. A subsequent layout transition barrier should not generate hazards. "
"Available memory is automatically made visible to a layout transition.");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
constexpr VkDeviceSize buffer_size = 64 * 64 * 4;
const vkt::Buffer buffer(*m_device, buffer_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
m_command_buffer.Begin();
// Copy data from buffer to image
VkBufferImageCopy region = {};
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {64, 64, 1};
vk::CmdCopyBufferToImage(m_command_buffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
// Make writes available
VkImageMemoryBarrier barrier_a = vku::InitStructHelper();
barrier_a.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier_a.dstAccessMask = 0;
barrier_a.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier_a.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier_a.image = image;
barrier_a.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier_a);
// Transition to new layout. Available memory should automatically be made visible to the layout transition.
VkImageMemoryBarrier barrier_b = vku::InitStructHelper();
barrier_b.srcAccessMask = 0; // already available
barrier_b.dstAccessMask = 0; // for this test we don't care if the memory is visible after the transition or not
barrier_b.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier_b.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
barrier_b.image = image;
barrier_b.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0,
nullptr, 0, nullptr, 1, &barrier_b);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, ImageArrayDynamicIndexing) {
TEST_DESCRIPTION("Access different elements of the image array using dynamic indexing. There should be no hazards");
SetTargetApiVersion(VK_API_VERSION_1_2);
AddRequiredFeature(vkt::Feature::shaderStorageImageArrayNonUniformIndexing);
AddRequiredFeature(vkt::Feature::runtimeDescriptorArray);
AddRequiredFeature(vkt::Feature::fragmentStoresAndAtomics);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
InitRenderTarget();
constexpr VkDescriptorType descriptor_type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
constexpr VkImageLayout image_layout = VK_IMAGE_LAYOUT_GENERAL;
vkt::Image images[4];
vkt::ImageView views[4];
for (int i = 0; i < 4; i++) {
images[i].Init(*m_device, 64, 64, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_STORAGE_BIT);
ASSERT_TRUE(images[i].initialized());
images[i].SetLayout(image_layout);
views[i] = images[i].CreateView();
}
OneOffDescriptorSet descriptor_set(m_device, {
{0, descriptor_type, 4, VK_SHADER_STAGE_ALL, nullptr},
});
descriptor_set.WriteDescriptorImageInfo(0, views[0], VK_NULL_HANDLE, descriptor_type, image_layout, 0);
descriptor_set.WriteDescriptorImageInfo(0, views[1], VK_NULL_HANDLE, descriptor_type, image_layout, 1);
descriptor_set.WriteDescriptorImageInfo(0, views[2], VK_NULL_HANDLE, descriptor_type, image_layout, 2);
descriptor_set.WriteDescriptorImageInfo(0, views[3], VK_NULL_HANDLE, descriptor_type, image_layout, 3);
descriptor_set.UpdateDescriptorSets();
// Write to image 0 or 1
const char fsSource[] = R"glsl(
#version 450
#extension GL_EXT_nonuniform_qualifier : enable
layout(set=0, binding=0, rgba8) uniform image2D image_array[];
void main() {
imageStore(image_array[nonuniformEXT(int(gl_FragCoord.x) % 2)], ivec2(1, 1), vec4(1.0, 0.5, 0.2, 1.0));
}
)glsl";
const VkShaderObj fs(this, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper gfx_pipe(*this);
gfx_pipe.shader_stages_ = {gfx_pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
gfx_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
gfx_pipe.CreateGraphicsPipeline();
// Read from image 2 or 3
char const *cs_source = R"glsl(
#version 450
#extension GL_EXT_nonuniform_qualifier : enable
layout(set=0, binding=0, rgba8) uniform image2D image_array[];
void main() {
vec4 data = imageLoad(image_array[nonuniformEXT(2 + (gl_LocalInvocationID.x % 2))], ivec2(1, 1));
}
)glsl";
CreateComputePipelineHelper cs_pipe(*this);
cs_pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
cs_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
cs_pipe.CreateComputePipeline();
m_command_buffer.Begin();
// Graphics pipeline writes
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 3, 1, 0, 0);
m_command_buffer.EndRenderPass();
// Compute pipeline reads
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
m_default_queue->SubmitAndWait(m_command_buffer);
}
TEST_F(PositiveSyncVal, ImageArrayConstantIndexing) {
TEST_DESCRIPTION("Access different elements of the image array using constant indices. There should be no hazards");
SetTargetApiVersion(VK_API_VERSION_1_1);
AddRequiredFeature(vkt::Feature::fragmentStoresAndAtomics);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
InitRenderTarget();
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_STORAGE_BIT);
image.SetLayout(VK_IMAGE_LAYOUT_GENERAL);
const vkt::ImageView view = image.CreateView();
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 2, VK_SHADER_STAGE_ALL, nullptr},
});
descriptor_set.WriteDescriptorImageInfo(0, view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_IMAGE_LAYOUT_GENERAL, 0);
descriptor_set.WriteDescriptorImageInfo(0, view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_IMAGE_LAYOUT_GENERAL, 1);
descriptor_set.UpdateDescriptorSets();
// Write to image 0
const char fsSource[] = R"glsl(
#version 450
layout(set=0, binding=0, rgba8) uniform image2D image_array[];
void main() {
imageStore(image_array[0], ivec2(1, 1), vec4(1.0, 0.5, 0.2, 1.0));
}
)glsl";
const VkShaderObj fs(this, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper gfx_pipe(*this);
gfx_pipe.shader_stages_ = {gfx_pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
gfx_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
gfx_pipe.CreateGraphicsPipeline();
// Read from image 1
char const *cs_source = R"glsl(
#version 450
layout(set=0, binding=0, rgba8) uniform image2D image_array[];
void main() {
vec4 data = imageLoad(image_array[1], ivec2(1, 1));
}
)glsl";
CreateComputePipelineHelper cs_pipe(*this);
cs_pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
cs_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
cs_pipe.CreateComputePipeline();
m_command_buffer.Begin();
// Graphics pipeline writes
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 3, 1, 0, 0);
m_command_buffer.EndRenderPass();
// Compute pipeline reads
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
m_default_queue->SubmitAndWait(m_command_buffer);
}
TEST_F(PositiveSyncVal, TexelBufferArrayConstantIndexing) {
TEST_DESCRIPTION("Access different elements of the texel buffer array using constant indices. There should be no hazards");
SetTargetApiVersion(VK_API_VERSION_1_1);
AddRequiredFeature(vkt::Feature::fragmentStoresAndAtomics);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
InitRenderTarget();
const vkt::Buffer buffer0(*m_device, 1024, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT);
const vkt::Buffer buffer1(*m_device, 1024, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT);
const vkt::BufferView buffer_view0(*m_device, buffer0, VK_FORMAT_R8G8B8A8_UINT);
const vkt::BufferView buffer_view1(*m_device, buffer1, VK_FORMAT_R8G8B8A8_UINT);
OneOffDescriptorSet descriptor_set(m_device, {
{0, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 2, VK_SHADER_STAGE_ALL, nullptr},
});
descriptor_set.WriteDescriptorBufferView(0, buffer_view0, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 0);
descriptor_set.WriteDescriptorBufferView(0, buffer_view1, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 1);
descriptor_set.UpdateDescriptorSets();
// Write to texel buffer 0
const char fsSource[] = R"glsl(
#version 450
layout(set=0, binding=0, rgba8ui) uniform uimageBuffer texel_buffer_array[];
void main() {
imageStore(texel_buffer_array[0], 0, uvec4(1, 2, 3, 42));
}
)glsl";
const VkShaderObj fs(this, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT);
CreatePipelineHelper gfx_pipe(*this);
gfx_pipe.shader_stages_ = {gfx_pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
gfx_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
gfx_pipe.CreateGraphicsPipeline();
// Read from texel buffer 1
char const *cs_source = R"glsl(
#version 450
layout(set=0, binding=0, rgba8ui) uniform uimageBuffer texel_buffer_array[];
void main() {
uvec4 data = imageLoad(texel_buffer_array[1], 0);
}
)glsl";
CreateComputePipelineHelper cs_pipe(*this);
cs_pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
cs_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
cs_pipe.CreateComputePipeline();
m_command_buffer.Begin();
// Graphics pipeline writes
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDraw(m_command_buffer, 3, 1, 0, 0);
m_command_buffer.EndRenderPass();
// Compute pipeline reads
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
m_default_queue->SubmitAndWait(m_command_buffer);
}
TEST_F(PositiveSyncVal, QSBufferCopyHazardsDisabled) {
SyncValSettings settings;
settings.submit_time_validation = false;
RETURN_IF_SKIP(InitSyncValFramework(&settings));
RETURN_IF_SKIP(InitState());
QSTestContext test(m_device, m_device->QueuesWithGraphicsCapability()[0]);
if (!test.Valid()) {
GTEST_SKIP() << "Test requires a valid queue object.";
}
test.RecordCopy(test.cba, test.buffer_a, test.buffer_b);
test.RecordCopy(test.cbb, test.buffer_c, test.buffer_a);
VkSubmitInfo submit1 = vku::InitStructHelper();
submit1.commandBufferCount = 2;
VkCommandBuffer two_cbs[2] = {test.h_cba, test.h_cbb};
submit1.pCommandBuffers = two_cbs;
// This should be a hazard if we didn't disable it at InitSyncValFramework time
vk::QueueSubmit(test.q0, 1, &submit1, VK_NULL_HANDLE);
test.DeviceWait();
}
TEST_F(PositiveSyncVal, QSTransitionWithSrcNoneStage) {
TEST_DESCRIPTION(
"Two submission batches synchronized with binary semaphore. Layout transition in the second batch should not interfere "
"with image read in the previous batch.");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
image.SetLayout(VK_IMAGE_LAYOUT_GENERAL);
vkt::ImageView view = image.CreateView();
vkt::Semaphore semaphore(*m_device);
// Submit 0: shader reads image data (read access)
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_ALL, nullptr}});
descriptor_set.WriteDescriptorImageInfo(0, view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_IMAGE_LAYOUT_GENERAL);
descriptor_set.UpdateDescriptorSets();
char const *cs_source = R"glsl(
#version 450
layout(set=0, binding=0, rgba8) uniform image2D image;
void main() {
vec4 data = imageLoad(image, ivec2(1, 1));
}
)glsl";
CreateComputePipelineHelper cs_pipe(*this);
cs_pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
cs_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
cs_pipe.CreateComputePipeline();
vkt::CommandBuffer cb(*m_device, m_command_pool);
cb.Begin();
vk::CmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe);
vk::CmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe.pipeline_layout_, 0, 1, &descriptor_set.set_, 0, nullptr);
vk::CmdDispatch(cb, 1, 1, 1);
cb.End();
m_default_queue->Submit2(cb, vkt::Signal(semaphore));
// Submit 1: transition image layout (write access)
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
// NOTE: this test check that using NONE as source stage for transition works correctly.
// Wait on ALL_COMMANDS semaphore should protect this submission from previous accesses.
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.srcAccessMask = 0;
layout_transition.dstAccessMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
layout_transition.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
layout_transition.image = image;
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkt::CommandBuffer cb2(*m_device, m_command_pool);
cb2.Begin();
cb2.Barrier(layout_transition);
cb2.End();
m_default_queue->Submit2(cb2, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, QSTransitionWithSrcNoneStage2) {
TEST_DESCRIPTION(
"Two submission batches synchronized with binary semaphore. Layout transition in the second batch should not interfere "
"with image write in the first batch.");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
image.SetLayout(VK_IMAGE_LAYOUT_GENERAL);
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
layout_transition.dstAccessMask = VK_ACCESS_2_SHADER_READ_BIT;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
layout_transition.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
layout_transition.image = image;
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkt::Semaphore semaphore(*m_device);
// Submit 1: Clear image (WRITE access)
vkt::CommandBuffer cb(*m_device, m_command_pool);
cb.Begin();
vk::CmdClearColorImage(cb, image, VK_IMAGE_LAYOUT_GENERAL, &m_clear_color, 1, &layout_transition.subresourceRange);
cb.End();
m_default_queue->Submit2(cb, vkt::Signal(semaphore));
// Submit 2: Transition layout (WRITE access)
vkt::CommandBuffer cb2(*m_device, m_command_pool);
cb2.Begin();
cb2.Barrier(layout_transition);
cb2.End();
m_default_queue->Submit2(cb2, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, QSTransitionAndRead) {
TEST_DESCRIPTION("Transition and read image in different submits synchronized via ALL_COMMANDS semaphore");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_STORAGE_BIT);
vkt::ImageView view = image.CreateView();
vkt::Semaphore semaphore(*m_device);
// Submit0: transition image and signal semaphore with ALL_COMMANDS scope
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
layout_transition.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
layout_transition.dstAccessMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_GENERAL;
layout_transition.image = image;
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkt::CommandBuffer cb(*m_device, m_command_pool);
cb.Begin();
cb.Barrier(layout_transition);
cb.End();
m_default_queue->Submit2(cb, vkt::Signal(semaphore));
// Submit1: wait for the semaphore and read image in the shader
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_ALL, nullptr}});
descriptor_set.WriteDescriptorImageInfo(0, view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_IMAGE_LAYOUT_GENERAL);
descriptor_set.UpdateDescriptorSets();
char const *cs_source = R"glsl(
#version 450
layout(set=0, binding=0, rgba8) uniform image2D image;
void main() {
vec4 data = imageLoad(image, ivec2(1, 1));
}
)glsl";
CreateComputePipelineHelper cs_pipe(*this);
cs_pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
cs_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
cs_pipe.CreateComputePipeline();
vkt::CommandBuffer cb2(*m_device, m_command_pool);
cb2.Begin();
vk::CmdBindPipeline(cb2, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe);
vk::CmdBindDescriptorSets(cb2, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe.pipeline_layout_, 0, 1, &descriptor_set.set_, 0,
nullptr);
vk::CmdDispatch(cb2, 1, 1, 1);
cb2.End();
m_default_queue->Submit2(cb2, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, DynamicRenderingColorResolve) {
TEST_DESCRIPTION("Test color resolve with dynamic rendering");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredFeature(vkt::Feature::dynamicRendering);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
const uint32_t width = 64;
const uint32_t height = 64;
const VkFormat color_format = VK_FORMAT_R8G8B8A8_UNORM;
const VkImageUsageFlags usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
auto color_ci = vkt::Image::ImageCreateInfo2D(width, height, 1, 1, color_format, usage);
color_ci.samples = VK_SAMPLE_COUNT_4_BIT; // guaranteed by framebufferColorSampleCounts
vkt::Image color_image(*m_device, color_ci, vkt::set_layout);
vkt::ImageView color_image_view = color_image.CreateView(VK_IMAGE_ASPECT_COLOR_BIT);
auto color_resolved_ci = vkt::Image::ImageCreateInfo2D(width, height, 1, 1, color_format, usage);
vkt::Image color_resolved_image(*m_device, color_resolved_ci, vkt::set_layout);
vkt::ImageView color_resolved_image_view = color_resolved_image.CreateView(VK_IMAGE_ASPECT_COLOR_BIT);
VkRenderingAttachmentInfo color_attachment = vku::InitStructHelper();
color_attachment.imageView = color_image_view;
color_attachment.imageLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
color_attachment.resolveMode = VK_RESOLVE_MODE_AVERAGE_BIT;
color_attachment.resolveImageView = color_resolved_image_view;
color_attachment.resolveImageLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
color_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
color_attachment.clearValue.color = m_clear_color;
VkRenderingInfo rendering_info = vku::InitStructHelper();
rendering_info.renderArea.extent = {width, height};
rendering_info.layerCount = 1;
rendering_info.colorAttachmentCount = 1;
rendering_info.pColorAttachments = &color_attachment;
m_command_buffer.Begin();
vk::CmdBeginRendering(m_command_buffer, &rendering_info);
vk::CmdEndRendering(m_command_buffer);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, DynamicRenderingDepthResolve) {
TEST_DESCRIPTION("Test depth resolve with dynamic rendering");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredFeature(vkt::Feature::dynamicRendering);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
VkPhysicalDeviceDepthStencilResolveProperties resolve_properties = vku::InitStructHelper();
GetPhysicalDeviceProperties2(resolve_properties);
if ((resolve_properties.supportedDepthResolveModes & VK_RESOLVE_MODE_MIN_BIT) == 0) {
GTEST_SKIP() << "VK_RESOLVE_MODE_MIN_BIT not supported";
}
const uint32_t width = 64;
const uint32_t height = 64;
const VkFormat depth_format = FindSupportedDepthOnlyFormat(Gpu());
const VkImageUsageFlags usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
auto depth_ci = vkt::Image::ImageCreateInfo2D(width, height, 1, 1, depth_format, usage);
depth_ci.samples = VK_SAMPLE_COUNT_4_BIT; // guaranteed by framebufferDepthSampleCounts
vkt::Image depth_image(*m_device, depth_ci, vkt::set_layout);
vkt::ImageView depth_image_view = depth_image.CreateView(VK_IMAGE_ASPECT_DEPTH_BIT);
auto depth_resolved_ci = vkt::Image::ImageCreateInfo2D(width, height, 1, 1, depth_format, usage);
vkt::Image depth_resolved_image(*m_device, depth_resolved_ci, vkt::set_layout);
vkt::ImageView depth_resolved_image_view = depth_resolved_image.CreateView(VK_IMAGE_ASPECT_DEPTH_BIT);
VkRenderingAttachmentInfo depth_attachment = vku::InitStructHelper();
depth_attachment.imageView = depth_image_view;
depth_attachment.imageLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
depth_attachment.resolveMode = VK_RESOLVE_MODE_MIN_BIT;
depth_attachment.resolveImageView = depth_resolved_image_view;
depth_attachment.resolveImageLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
depth_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depth_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
depth_attachment.clearValue.depthStencil.depth = 1.0f;
VkRenderingInfo rendering_info = vku::InitStructHelper();
rendering_info.renderArea.extent = {width, height};
rendering_info.layerCount = 1;
rendering_info.pDepthAttachment = &depth_attachment;
m_command_buffer.Begin();
vk::CmdBeginRendering(m_command_buffer, &rendering_info);
vk::CmdEndRendering(m_command_buffer);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, FillBuffer) {
TEST_DESCRIPTION("Synchronize with vkCmdFillBuffer assuming that its writes happen on the CLEAR stage");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
constexpr VkDeviceSize size = 1024;
vkt::Buffer src_buffer(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst_buffer(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferCopy region{};
region.size = size;
VkBufferMemoryBarrier2 barrier = vku::InitStructHelper();
barrier.srcStageMask = VK_PIPELINE_STAGE_2_CLEAR_BIT;
barrier.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
barrier.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
barrier.dstAccessMask = VK_ACCESS_2_TRANSFER_READ_BIT;
barrier.buffer = src_buffer;
barrier.size = size;
m_command_buffer.Begin();
vk::CmdFillBuffer(m_command_buffer, src_buffer, 0, size, 42);
m_command_buffer.Barrier(barrier);
vk::CmdCopyBuffer(m_command_buffer, src_buffer, dst_buffer, 1, ®ion);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, UpdateBuffer) {
TEST_DESCRIPTION("Synchronize with vkCmdUpdateBuffer assuming that its writes happen on the CLEAR stage");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
constexpr VkDeviceSize size = 64;
vkt::Buffer src_buffer(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst_buffer(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
std::array<uint8_t, size> data = {};
VkBufferCopy region{};
region.size = size;
VkBufferMemoryBarrier2 barrier = vku::InitStructHelper();
barrier.srcStageMask = VK_PIPELINE_STAGE_2_CLEAR_BIT;
barrier.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
barrier.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
barrier.dstAccessMask = VK_ACCESS_2_TRANSFER_READ_BIT;
barrier.buffer = src_buffer;
barrier.size = size;
m_command_buffer.Begin();
vk::CmdUpdateBuffer(m_command_buffer, src_buffer, 0, static_cast<VkDeviceSize>(data.size()), data.data());
m_command_buffer.Barrier(barrier);
vk::CmdCopyBuffer(m_command_buffer, src_buffer, dst_buffer, 1, ®ion);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, QSSynchronizedWritesAndAsyncWait) {
TEST_DESCRIPTION(
"Graphics queue: Image transition and subsequent image write are synchronized using a pipeline barrier. Transfer queue: "
"waits for the image layout transition using a semaphore. This should not affect pipeline barrier on the graphics queue");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
vkt::Queue *transfer_queue = m_device->TransferOnlyQueue();
if (!transfer_queue) {
GTEST_SKIP() << "Transfer-only queue is not present";
}
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
vkt::Buffer buffer(*m_device, 64 * 64, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferImageCopy region = {};
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {64, 64, 1};
vkt::Semaphore semaphore(*m_device);
// Submit 0: perform image layout transition on Graphics queue.
// Image barrier synchronizes with COPY-WRITE access from Submit 2.
vkt::CommandBuffer cb0(*m_device, m_command_pool);
cb0.Begin();
VkImageMemoryBarrier2 image_barrier = vku::InitStructHelper();
image_barrier.srcStageMask = VK_PIPELINE_STAGE_2_NONE;
image_barrier.srcAccessMask = VK_ACCESS_2_NONE;
image_barrier.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
image_barrier.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
image_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
image_barrier.image = image;
image_barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
cb0.Barrier(image_barrier);
cb0.End();
m_default_queue->Submit2(cb0, vkt::Signal(semaphore));
// Submit 1: empty submit on Transfer queue that waits for Submit 0.
transfer_queue->Submit2(vkt::no_cmd, vkt::Wait(semaphore));
// Submit 2: copy to image on Graphics queue. No synchronization is needed because of COPY+WRITE barrier from Submit 0.
vkt::CommandBuffer cb2(*m_device, m_command_pool);
cb2.Begin();
vk::CmdCopyBufferToImage(cb2, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
cb2.End();
m_default_queue->Submit2(cb2);
m_default_queue->Wait();
transfer_queue->Wait();
}
// TODO:
// It has to be this test found a bug in the existing code, so it's disabled until it's fixed.
// Draw access happen-after loadOp access so it's enough to synchronize with FRAGMENT_SHADER read.
// last_reads contains both loadOp read access and draw (fragment shader) read access. The code
// synchronizes only with draw (FRAGMENT_SHADER) but not with loadOp (COLOR_ATTACHMENT_OUTPUT),
// and the syncval complains that COLOR_ATTACHMENT_OUTPUT access is not synchronized.
TEST_F(PositiveSyncVal, DISABLED_RenderPassStoreOpNone) {
TEST_DESCRIPTION("Synchronization with draw command when render pass uses storeOp=NONE");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredExtensions(VK_EXT_LOAD_STORE_OP_NONE_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
const VkImageLayout input_attachment_layout = VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL;
RenderPassSingleSubpass rp(*this);
rp.AddAttachmentDescription(format, input_attachment_layout, input_attachment_layout, VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_NONE);
rp.AddAttachmentReference({0, input_attachment_layout});
rp.AddInputAttachment(0);
rp.CreateRenderPass();
vkt::Image image(*m_device, 32, 32, format, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
vkt::ImageView image_view = image.CreateView();
vkt::Framebuffer fb(*m_device, rp, 1, &image_view.handle());
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
// Form an execution dependency with draw command (FRAGMENT_SHADER). Execution dependency is enough to sync with READ.
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
layout_transition.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.dstAccessMask = VK_ACCESS_2_NONE;
layout_transition.oldLayout = input_attachment_layout;
layout_transition.newLayout = VK_IMAGE_LAYOUT_GENERAL;
layout_transition.image = image;
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
// Fragment shader READs input attachment.
VkShaderObj fs(this, kFragmentSubpassLoadGlsl, VK_SHADER_STAGE_FRAGMENT_BIT);
const VkDescriptorSetLayoutBinding binding = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
OneOffDescriptorSet descriptor_set(m_device, {binding});
descriptor_set.WriteDescriptorImageInfo(0, image_view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
input_attachment_layout);
descriptor_set.UpdateDescriptorSets();
const vkt::PipelineLayout pipeline_layout(*m_device, {&descriptor_set.layout_});
CreatePipelineHelper pipe(*this);
pipe.shader_stages_[1] = fs.GetStageCreateInfo();
pipe.gp_ci_.layout = pipeline_layout;
pipe.gp_ci_.renderPass = rp;
pipe.CreateGraphicsPipeline();
m_command_buffer.Begin();
m_command_buffer.BeginRenderPass(rp, fb);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &descriptor_set.set_, 0,
nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.EndRenderPass();
// This waits for the FRAGMENT_SHADER read before starting with transition.
// If storeOp other than NONE was used we had to wait for it instead.
m_command_buffer.Barrier(layout_transition);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, ThreadedSubmitAndFenceWait) {
TEST_DESCRIPTION("Minimal version of https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/7250");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
constexpr int N = 100;
vkt::Buffer src(*m_device, 1024, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst(*m_device, 1024, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferCopy copy_info{};
copy_info.size = 1024;
// Allocate array of fences instead of calling ResetFences to minimize the number of
// API functions used by this test (leave only those that are part of the regression scenario).
std::vector<vkt::Fence> fences;
std::vector<vkt::Fence> thread_fences;
fences.reserve(N);
thread_fences.reserve(N);
for (int i = 0; i < N; i++) {
fences.emplace_back(*m_device);
thread_fences.emplace_back(*m_device);
}
vkt::CommandBuffer cmd(*m_device, m_command_pool);
cmd.Begin();
vk::CmdCopyBuffer(cmd, src, dst, 1, ©_info);
cmd.End();
vkt::CommandBuffer thread_cmd(*m_device, m_command_pool);
thread_cmd.Begin();
thread_cmd.End();
std::mutex queue_mutex;
std::mutex queue_mutex2;
// Worker thread runs "submit empty buffer and wait" loop.
std::thread thread([&] {
for (int i = 0; i < N; i++) {
{
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Submit(thread_cmd, thread_fences[i]);
}
{
// WaitForFences does not require external synchronization.
// queue_mutex2 is not needed for correctness, but it was added to decrease
// the number of degrees of freedom of this test, so it's easier to analyze it.
std::unique_lock<std::mutex> lock(queue_mutex2);
vk::WaitForFences(device(), 1, &thread_fences[i].handle(), VK_TRUE, kWaitTimeout);
}
}
});
// Main thread runs "submit accesses and wait" loop.
{
for (int i = 0; i < N; i++) {
{
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Submit(cmd, fences[i]);
}
{
std::unique_lock<std::mutex> lock(queue_mutex2);
vk::WaitForFences(device(), 1, &fences[i].handle(), VK_TRUE, kWaitTimeout);
}
}
}
thread.join();
}
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/pull/7713
TEST_F(PositiveSyncVal, CopyBufferToCompressedImage) {
TEST_DESCRIPTION("Copy from a buffer to compressed image without overlap.");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
VkFormatProperties format_properties;
VkFormat mp_format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
vk::GetPhysicalDeviceFormatProperties(Gpu(), mp_format, &format_properties);
if ((format_properties.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT) == 0) {
GTEST_SKIP()
<< "Device does not support VK_FORMAT_FEATURE_TRANSFER_DST_BIT for VK_FORMAT_BC1_RGBA_UNORM_BLOCK, skipping test.\n";
}
const VkDeviceSize buffer_size = 32; // enough for 8x8 BC1 region
vkt::Buffer src_buffer(*m_device, buffer_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkt::Image dst_image(*m_device, 16, 16, mp_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkBufferImageCopy buffer_copy[2] = {};
buffer_copy[0].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[0].imageOffset = {0, 0, 0};
buffer_copy[0].imageExtent = {8, 8, 1};
buffer_copy[1].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[1].imageOffset = {8, 0, 0};
buffer_copy[1].imageExtent = {8, 8, 1};
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[0]);
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[1]);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, CopyBufferToCompressedImageASTC) {
TEST_DESCRIPTION("Copy from a buffer to 20x10 ASTC-compressed image without overlap.");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
VkFormatProperties format_properties;
VkFormat format = VK_FORMAT_ASTC_10x10_UNORM_BLOCK;
vk::GetPhysicalDeviceFormatProperties(Gpu(), format, &format_properties);
if ((format_properties.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT) == 0) {
GTEST_SKIP()
<< "Device does not support VK_FORMAT_FEATURE_TRANSFER_DST_BIT for VK_FORMAT_ASTC_10x10_UNORM_BLOCK, skipping test.\n";
}
const VkDeviceSize buffer_size = 32; // enough for 20x10 ASTC_10x10 region
vkt::Buffer src_buffer(*m_device, buffer_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkt::Image dst_image(*m_device, 20, 10, format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkBufferImageCopy buffer_copy[2] = {};
buffer_copy[0].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[0].imageOffset = {0, 0, 0};
buffer_copy[0].imageExtent = {10, 10, 1};
buffer_copy[1].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[1].imageOffset = {10, 0, 0};
buffer_copy[1].imageExtent = {10, 10, 1};
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[0]);
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[1]);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, CopyBufferToCompressedImageASTC2) {
TEST_DESCRIPTION("Copy from a buffer to 10x20 ASTC-compressed image without overlap.");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
VkFormatProperties format_properties;
VkFormat format = VK_FORMAT_ASTC_10x10_UNORM_BLOCK;
vk::GetPhysicalDeviceFormatProperties(Gpu(), format, &format_properties);
if ((format_properties.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT) == 0) {
GTEST_SKIP()
<< "Device does not support VK_FORMAT_FEATURE_TRANSFER_DST_BIT for VK_FORMAT_ASTC_10x10_UNORM_BLOCK, skipping test.\n";
}
const VkDeviceSize buffer_size = 32; // enough for 10x20 ASTC_10x10 region
vkt::Buffer src_buffer(*m_device, buffer_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkt::Image dst_image(*m_device, 10, 20, format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkBufferImageCopy buffer_copy[2] = {};
buffer_copy[0].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[0].imageOffset = {0, 0, 0};
buffer_copy[0].imageExtent = {10, 10, 1};
buffer_copy[1].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[1].imageOffset = {0, 10, 0};
buffer_copy[1].imageExtent = {10, 10, 1};
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[0]);
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[1]);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, CopyBufferToCompressedImageASTC3) {
TEST_DESCRIPTION("Copy from a buffer to 20x20 ASTC-compressed with overlap protected by a barrier.");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
VkFormatProperties format_properties;
VkFormat format = VK_FORMAT_ASTC_10x10_UNORM_BLOCK;
vk::GetPhysicalDeviceFormatProperties(Gpu(), format, &format_properties);
if ((format_properties.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT) == 0) {
GTEST_SKIP()
<< "Device does not support VK_FORMAT_FEATURE_TRANSFER_DST_BIT for VK_FORMAT_ASTC_10x10_UNORM_BLOCK, skipping test.\n";
}
const VkDeviceSize buffer_size = 64; // enough for 20x20 ASTC_10x10 region
vkt::Buffer src_buffer(*m_device, buffer_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkt::Image dst_image(*m_device, 20, 20, format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkBufferImageCopy buffer_copy[2] = {};
buffer_copy[0].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[0].imageOffset = {10, 10, 0};
buffer_copy[0].imageExtent = {10, 10, 1};
buffer_copy[1].imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
buffer_copy[1].imageOffset = {10, 0, 0};
buffer_copy[1].imageExtent = {10, 20, 1};
VkImageMemoryBarrier barrier = vku::InitStructHelper();
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.image = dst_image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[0]);
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
vk::CmdCopyBufferToImage(m_command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_copy[1]);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, SignalAndWaitSemaphoreOneQueueSubmit) {
TEST_DESCRIPTION("Signal and wait semaphore using one submit command");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
vkt::Semaphore semaphore(*m_device);
VkSemaphoreSubmitInfo semaphore_info = vku::InitStructHelper();
semaphore_info.semaphore = semaphore;
semaphore_info.stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
VkSubmitInfo2 submits[2];
submits[0] = vku::InitStructHelper();
submits[0].signalSemaphoreInfoCount = 1;
submits[0].pSignalSemaphoreInfos = &semaphore_info;
submits[1] = vku::InitStructHelper();
submits[1].waitSemaphoreInfoCount = 1;
submits[1].pWaitSemaphoreInfos = &semaphore_info;
vk::QueueSubmit2(*m_default_queue, 2, submits, VK_NULL_HANDLE);
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, SignalUnsignalSignalMultipleSubmits) {
TEST_DESCRIPTION("Create a sequence that at some point unsignals and then signals a semaphore through separate submit calls");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
vkt::Semaphore semaphore(*m_device);
vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
m_command_buffer.Begin();
m_command_buffer.Copy(buffer_a, buffer_b);
m_command_buffer.End();
vkt::CommandBuffer command_buffer2(*m_device, m_command_pool);
command_buffer2.Begin();
command_buffer2.Copy(buffer_a, buffer_b);
command_buffer2.End();
m_default_queue->Submit2(vkt::no_cmd, vkt::Signal(semaphore));
m_default_queue->Submit2(m_command_buffer, vkt::Wait(semaphore), vkt::Signal(semaphore));
m_default_queue->Submit2(command_buffer2, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, SignalUnsignalSignalSingleSubmit) {
TEST_DESCRIPTION("Create a sequence that at some point unsignals and then signals a semaphore using a single submit call");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
vkt::Semaphore semaphore(*m_device);
vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
m_command_buffer.Begin();
m_command_buffer.Copy(buffer_a, buffer_b);
m_command_buffer.End();
vkt::CommandBuffer command_buffer2(*m_device, m_command_pool);
command_buffer2.Begin();
command_buffer2.Copy(buffer_a, buffer_b);
command_buffer2.End();
VkSemaphoreSubmitInfo semaphore_info = vku::InitStructHelper();
semaphore_info.semaphore = semaphore;
semaphore_info.stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
VkCommandBufferSubmitInfo cmd_info = vku::InitStructHelper();
cmd_info.commandBuffer = m_command_buffer;
VkCommandBufferSubmitInfo cmd_info2 = vku::InitStructHelper();
cmd_info2.commandBuffer = command_buffer2.handle();
VkSubmitInfo2 submits[3];
submits[0] = vku::InitStructHelper();
submits[0].signalSemaphoreInfoCount = 1;
submits[0].pSignalSemaphoreInfos = &semaphore_info;
submits[1] = vku::InitStructHelper();
submits[1].waitSemaphoreInfoCount = 1;
submits[1].pWaitSemaphoreInfos = &semaphore_info;
submits[1].commandBufferInfoCount = 1;
submits[1].pCommandBufferInfos = &cmd_info;
submits[1].signalSemaphoreInfoCount = 1;
submits[1].pSignalSemaphoreInfos = &semaphore_info;
submits[2] = vku::InitStructHelper();
submits[2].waitSemaphoreInfoCount = 1;
submits[2].pWaitSemaphoreInfos = &semaphore_info;
submits[2].commandBufferInfoCount = 1;
submits[2].pCommandBufferInfos = &cmd_info2;
vk::QueueSubmit2(*m_default_queue, 3, submits, VK_NULL_HANDLE);
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, WriteAndReadNonOverlappedUniformBufferRegions) {
TEST_DESCRIPTION("Specify non-verlapped regions using offset in VkDescriptorBufferInfo");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
// 32 bytes
const VkDeviceSize uniform_data_size = 8 * sizeof(uint32_t);
// 128 bytes or more (depending on minUniformBufferOffsetAlignment)
const VkDeviceSize copy_dst_area_size =
std::max((VkDeviceSize)128, m_device->Physical().limits_.minUniformBufferOffsetAlignment);
// 160 bytes or more (depending on minUniformBufferOffsetAlignment)
const VkDeviceSize size = copy_dst_area_size + uniform_data_size;
// We have at least 128 bytes of copy destination region, followed by 32 bytes of uniform data.
// Copying data to the first region (WRITE) should not conflict with uniform READ from the second region.
vkt::Buffer buffer_a(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
vkt::Buffer buffer_b(*m_device, copy_dst_area_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
});
// copy_dst_area_size offset ensures uniform region does not overlap with copy destination.
descriptor_set.WriteDescriptorBufferInfo(0, buffer_a, copy_dst_area_size, uniform_data_size, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) uniform buffer_a { uint x[8]; } constants;
void main(){
uint x = constants.x[0];
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
// Writes into region [0..127]
VkBufferCopy region{};
region.size = copy_dst_area_size;
vk::CmdCopyBuffer(m_command_buffer, buffer_b, buffer_a, 1, ®ion);
// Reads from region [128..159]
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, WriteAndReadNonOverlappedDynamicUniformBufferRegions) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/8084
TEST_DESCRIPTION("Specify non-verlapped regions using dynamic offset in vkCmdBindDescriptorSets");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
// 32 bytes
const VkDeviceSize uniform_data_size = 8 * sizeof(uint32_t);
// 128 bytes or more (depending on minUniformBufferOffsetAlignment)
const VkDeviceSize copy_dst_area_size =
std::max((VkDeviceSize)128, m_device->Physical().limits_.minUniformBufferOffsetAlignment);
// 160 bytes or more (depending on minUniformBufferOffsetAlignment)
const VkDeviceSize size = copy_dst_area_size + uniform_data_size;
// We have at least 128 bytes of copy destination region, followed by 32 bytes of uniform data.
// Copying data to the first region (WRITE) should not conflict with uniform READ from the second region.
vkt::Buffer buffer_a(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
vkt::Buffer buffer_b(*m_device, copy_dst_area_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
});
// Specify 0 base offset, but dynamic offset will ensure that uniform data does not overlap with copy destination.
descriptor_set.WriteDescriptorBufferInfo(0, buffer_a, 0, uniform_data_size, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) uniform buffer_a { uint x[8]; } constants;
void main(){
uint x = constants.x[0];
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
// this ensures copy region does not overlap with uniform data region
uint32_t dynamic_offset = static_cast<uint32_t>(copy_dst_area_size);
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
1, &dynamic_offset);
// Writes into region [0..127]
VkBufferCopy region{};
region.size = copy_dst_area_size;
vk::CmdCopyBuffer(m_command_buffer, buffer_b, buffer_a, 1, ®ion);
// Reads from region [128..159]
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, WriteAndReadNonOverlappedDynamicUniformBufferRegions2) {
// NOTE: the only difference between this test and the previous one (without suffix 2)
// is the order of commands. This test does Dispatch and then Copy. This checks for
// regression when dynamic offset is not applied during Record phase.
TEST_DESCRIPTION("Specify non-verlapped regions using dynamic offset in vkCmdBindDescriptorSets");
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
// 32 bytes
const VkDeviceSize uniform_data_size = 8 * sizeof(uint32_t);
// 128 bytes or more (depending on minUniformBufferOffsetAlignment)
const VkDeviceSize copy_dst_area_size =
std::max((VkDeviceSize)128, m_device->Physical().limits_.minUniformBufferOffsetAlignment);
// 160 bytes or more (depending on minUniformBufferOffsetAlignment)
const VkDeviceSize size = copy_dst_area_size + uniform_data_size;
// We have at least 128 bytes of copy destination region, followed by 32 bytes of uniform data.
// Copying data to the first region (WRITE) should not conflict with uniform READ from the second region.
vkt::Buffer buffer_a(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
vkt::Buffer buffer_b(*m_device, copy_dst_area_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
});
// Specify 0 base offset, but dynamic offset will ensure that uniform data does not overlap with copy destination.
descriptor_set.WriteDescriptorBufferInfo(0, buffer_a, 0, uniform_data_size, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) uniform buffer_a { uint x[8]; } constants;
void main(){
uint x = constants.x[0];
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
// this ensures copy region does not overlap with uniform data region
uint32_t dynamic_offset = static_cast<uint32_t>(copy_dst_area_size);
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
1, &dynamic_offset);
// Reads from region [128..159]
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
// Writes into region [0..127]
VkBufferCopy region{};
region.size = copy_dst_area_size;
vk::CmdCopyBuffer(m_command_buffer, buffer_b, buffer_a, 1, ®ion);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, ImageUsedInShaderWithoutAccess) {
TEST_DESCRIPTION("Test that imageSize() query is not classified as image access");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer copy_source(*m_device, 32 * 32 * 4, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
vkt::Image image(*m_device, 32, 32, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
vkt::ImageView view = image.CreateView();
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_COMPUTE_BIT}});
descriptor_set.WriteDescriptorImageInfo(0, view, VK_NULL_HANDLE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_IMAGE_LAYOUT_GENERAL);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set = 0, binding = 0, rgba8) uniform image2D image;
void main(){
uvec2 size = imageSize(image);
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
VkBufferImageCopy region{};
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {32, 32, 1};
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
// this should not cause WRITE-AFTER-READ because previous dispatch reads only image descriptor
vk::CmdCopyBufferToImage(m_command_buffer, copy_source, image, VK_IMAGE_LAYOUT_GENERAL, 1, ®ion);
m_command_buffer.End();
}
// WARNING: this test passes due to LUCK. Currently syncval does not know about atomic
// accesses and going to treat two atomic writes from different dispatches as WRITE-AFTER-WRITE
// hazard. The reason it does not report WRITE-AFTER-WRITE here is because SPIR-V analysis reports
// READ access for atomicAdd(data[0], 1).
//
// TODO:
// The first step is to try to update SPIR-V static analysis so it reports WRITE and sets a
// flag that variable was used in atomic operation. This change will expose the missing
// syncval ability to detect atomic operation in the form that this test will fail with
// WRITE-AFTER-WRITE report.
//
// The next step is to update syncval heuristic to take into account atomic flag so this test
// passes again.
TEST_F(PositiveSyncVal, AtomicAccessFromTwoDispatches) {
TEST_DESCRIPTION("Not synchronized dispatches/draws can write to the same memory location by using atomics");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer buffer(*m_device, 128, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT}});
descriptor_set.WriteDescriptorBufferInfo(0, buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) buffer ssbo { uint data[]; };
void main(){
atomicAdd(data[0], 1);
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
}
// WARNING: this test also passes due to LUCK. Same reason as the previous test.
TEST_F(PositiveSyncVal, AtomicAccessFromTwoSubmits) {
TEST_DESCRIPTION("Not synchronized dispatches/draws can write to the same memory location by using atomics");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer buffer(*m_device, 128, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT}});
descriptor_set.WriteDescriptorBufferInfo(0, buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) buffer ssbo { uint data[]; };
void main(){
atomicAdd(data[0], 1);
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer);
m_default_queue->Submit(m_command_buffer);
m_default_queue->Wait();
}
// TODO: this test does not work due to SuppressedBoundDescriptorWAW(). That workaround should be removed.
// Two possible solutions:
// a) Try to detect if there is atomic operation in the buffer access chain. If yes, skip validation.
// b) If a) is hard to do, then this case is in the category that is not handled by the current heuristic
// and is part of "Shader access heuristic" is disabled by default direction.
TEST_F(PositiveSyncVal, AtomicAccessFromTwoDispatches2) {
TEST_DESCRIPTION("Use atomic counter so parallel dispatches write to different locations");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer counter_buffer(*m_device, 16, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
vkt::Buffer data_buffer(*m_device, 128, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT}});
descriptor_set.WriteDescriptorBufferInfo(0, counter_buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.WriteDescriptorBufferInfo(1, data_buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) buffer i_am_counter { uint counter[]; };
layout(set=0, binding=1) buffer i_am_data { uint data[]; };
void main(){
uint index = atomicAdd(counter[0], 1);
data[index] = 42;
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
}
// Demostrates false-positive from the client's report.
TEST_F(PositiveSyncVal, AtomicAccessFromTwoSubmits2) {
TEST_DESCRIPTION("Use atomic counter so parallel dispatches write to different locations");
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer counter_buffer(*m_device, 16, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
vkt::Buffer data_buffer(*m_device, 128, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT}});
descriptor_set.WriteDescriptorBufferInfo(0, counter_buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.WriteDescriptorBufferInfo(1, data_buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) buffer i_am_counter { uint counter[]; };
layout(set=0, binding=1) buffer i_am_data { uint data[]; };
void main(){
uint index = atomicAdd(counter[0], 1);
data[index] = 42;
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer);
// TODO: this should be a positive test, but currenlty we have a false-positive.
// Remove error monitor check if we have better solution, or when we disable
// Shader access heuristic setting for this test (so will simulate configuration
// when the user disabled the feature).
m_errorMonitor->SetDesiredError("SYNC-HAZARD-WRITE-AFTER-WRITE");
m_default_queue->Submit(m_command_buffer);
m_errorMonitor->VerifyFound();
m_default_queue->Wait();
}
TEST_F(PositiveSyncVal, QueueFamilyOwnershipTransfer) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/7024
TEST_DESCRIPTION("Ownership transfer from transfer to graphics queue");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
vkt::Queue *transfer_queue = m_device->TransferOnlyQueue();
if (!transfer_queue) {
GTEST_SKIP() << "Transfer-only queue is needed";
}
vkt::CommandPool transfer_cmd_pool(*m_device, transfer_queue->family_index);
vkt::CommandBuffer transfer_command_buffer(*m_device, transfer_cmd_pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
vkt::Buffer buffer(*m_device, 64 * 64 * 4, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
const VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
vkt::Image image(*m_device, 64, 64, VK_FORMAT_R8G8B8A8_UNORM, usage);
image.SetLayout(VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkt::Semaphore semaphore(*m_device);
// Tranfer queue: copy to image and issue release operation
{
VkBufferImageCopy2 region = vku::InitStructHelper();
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {64, 64, 1};
VkCopyBufferToImageInfo2 copy_info = vku::InitStructHelper();
copy_info.srcBuffer = buffer;
copy_info.dstImage = image;
copy_info.dstImageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_info.regionCount = 1;
copy_info.pRegions = ®ion;
VkImageMemoryBarrier2 release_barrier = vku::InitStructHelper();
release_barrier.srcStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
release_barrier.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
// Not needed, use semaphore to estabish execution dependency
release_barrier.dstStageMask = VK_PIPELINE_STAGE_2_NONE;
// Visibility operation is not performed for release operation
release_barrier.dstAccessMask = VK_ACCESS_2_NONE;
release_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
release_barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
release_barrier.srcQueueFamilyIndex = transfer_queue->family_index;
release_barrier.dstQueueFamilyIndex = m_default_queue->family_index;
release_barrier.image = image;
release_barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
transfer_command_buffer.Begin();
vk::CmdCopyBufferToImage2(transfer_command_buffer, ©_info);
transfer_command_buffer.Barrier(release_barrier);
transfer_command_buffer.End();
transfer_queue->Submit2(transfer_command_buffer, vkt::Signal(semaphore));
}
// Graphics queue: wait for transfer queue and issue acquire operation
{
VkImageMemoryBarrier2 acquire_barrier = vku::InitStructHelper();
// Not needed, use semaphore to estabish execution dependency
acquire_barrier.srcStageMask = VK_PIPELINE_STAGE_2_NONE;
// Availability operation is not performed for release operation
acquire_barrier.srcAccessMask = VK_ACCESS_2_NONE;
acquire_barrier.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
acquire_barrier.dstAccessMask = VK_ACCESS_2_SHADER_SAMPLED_READ_BIT;
acquire_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
acquire_barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
acquire_barrier.srcQueueFamilyIndex = transfer_queue->family_index;
acquire_barrier.dstQueueFamilyIndex = m_default_queue->family_index;
acquire_barrier.image = image;
acquire_barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_command_buffer.Begin();
m_command_buffer.Barrier(acquire_barrier);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(semaphore));
}
m_device->Wait();
}
TEST_F(PositiveSyncVal, IndirectDrawAndSuballocatedVertexBuffer) {
TEST_DESCRIPTION("Indirect draw reads suballocated vertex buffer. CmdFillBuffer writes to another non-overlapped region");
RETURN_IF_SKIP(InitSyncVal());
InitRenderTarget();
VkDrawIndirectCommand indirect_command = {};
indirect_command.vertexCount = 3;
indirect_command.instanceCount = 1;
vkt::Buffer indirect_buffer(*m_device, VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT, &indirect_command, sizeof(VkDrawIndirectCommand));
const size_t vertices_size = 3 * 3 * sizeof(float); // 3 VK_FORMAT_R32G32B32_SFLOAT vertices
const size_t fill_region_size = 32;
const VkDeviceSize buffer_size = vertices_size + fill_region_size;
vkt::Buffer buffer(*m_device, buffer_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
const VkVertexInputBindingDescription input_binding = {0, 3 * sizeof(float), VK_VERTEX_INPUT_RATE_VERTEX};
const VkVertexInputAttributeDescription input_attrib = {0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0};
CreatePipelineHelper pipe(*this);
pipe.vi_ci_.vertexBindingDescriptionCount = 1;
pipe.vi_ci_.pVertexBindingDescriptions = &input_binding;
pipe.vi_ci_.vertexAttributeDescriptionCount = 1;
pipe.vi_ci_.pVertexAttributeDescriptions = &input_attrib;
pipe.CreateGraphicsPipeline();
m_command_buffer.Begin();
// Indirect draw reads from vertex region
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
const VkDeviceSize vertices_offset = 0;
vk::CmdBindVertexBuffers(m_command_buffer, 0, 1, &buffer.handle(), &vertices_offset);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
vk::CmdDrawIndirect(m_command_buffer, indirect_buffer, 0, 1, 0);
m_command_buffer.EndRenderPass();
// Fill region does not intersect vertex region. There should be no hazards.
vk::CmdFillBuffer(m_command_buffer, buffer, vertices_size, fill_region_size, 0);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, IndirectDrawAndSuballocatedIndexBuffer) {
TEST_DESCRIPTION("Indirect draw reads suballocated index buffer. CmdFillBuffer writes to another non-overlapped region");
RETURN_IF_SKIP(InitSyncVal());
InitRenderTarget();
VkDrawIndexedIndirectCommand indirect_command = {};
indirect_command.indexCount = 3;
indirect_command.instanceCount = 1;
vkt::Buffer indirect_buffer(*m_device, VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT, &indirect_command,
sizeof(VkDrawIndexedIndirectCommand));
const size_t vertices_size = 3 * 3 * sizeof(float); // 3 VK_FORMAT_R32G32B32_SFLOAT vertices
vkt::Buffer vertex_buffer(*m_device, vertices_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
constexpr size_t indices_size = 3 * sizeof(uint32_t);
constexpr size_t fill_region_size = 12;
constexpr VkDeviceSize buffer_size = indices_size + fill_region_size;
uint32_t buffer_data[buffer_size / sizeof(uint32_t)] = {0, 1, 2}; // initialize index region
vkt::Buffer buffer(*m_device, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, buffer_data, buffer_size);
const VkVertexInputBindingDescription input_binding = {0, 3 * sizeof(float), VK_VERTEX_INPUT_RATE_VERTEX};
const VkVertexInputAttributeDescription input_attrib = {0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0};
CreatePipelineHelper pipe(*this);
pipe.vi_ci_.vertexBindingDescriptionCount = 1;
pipe.vi_ci_.pVertexBindingDescriptions = &input_binding;
pipe.vi_ci_.vertexAttributeDescriptionCount = 1;
pipe.vi_ci_.pVertexAttributeDescriptions = &input_attrib;
pipe.CreateGraphicsPipeline();
m_command_buffer.Begin();
// Indirect draw reads from index region
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
const VkDeviceSize vertices_offset = 0;
vk::CmdBindIndexBuffer(m_command_buffer, buffer, 0, VK_INDEX_TYPE_UINT32);
vk::CmdBindVertexBuffers(m_command_buffer, 0, 1, &vertex_buffer.handle(), &vertices_offset);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe);
vk::CmdDrawIndexedIndirect(m_command_buffer, indirect_buffer, 0, 1, 0);
m_command_buffer.EndRenderPass();
// Fill region does not intersect index region. There should be no hazards.
vk::CmdFillBuffer(m_command_buffer, buffer, indices_size, fill_region_size, 1);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, DynamicRenderingDSWithOnlyStencilAspect) {
TEST_DESCRIPTION("");
AddRequiredExtensions(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::dynamicRendering);
RETURN_IF_SKIP(InitSyncVal());
vkt::Image color_image(*m_device, 32u, 32u, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
vkt::ImageView color_image_view = color_image.CreateView();
vkt::Image depth_image(*m_device, 32u, 32u, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
vkt::ImageView depth_image_view = depth_image.CreateView(VK_IMAGE_ASPECT_STENCIL_BIT);
{
RenderPassSingleSubpass rp(*this);
rp.AddAttachmentDescription(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
rp.AddAttachmentReference({0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL});
rp.AddColorAttachment(0);
rp.AddAttachmentDescription(VK_FORMAT_D32_SFLOAT_S8_UINT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
rp.AddAttachmentReference({1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL});
rp.AddDepthStencilAttachment(1);
rp.CreateRenderPass();
VkImageView image_views[] = {color_image_view, depth_image_view};
vkt::Framebuffer framebuffer(*m_device, rp, 2u, image_views);
VkClearValue color_clear_value;
color_clear_value.color.float32[0] = 0.0f;
color_clear_value.color.float32[1] = 0.0f;
color_clear_value.color.float32[2] = 0.0f;
color_clear_value.color.float32[3] = 1.0f;
VkRenderPassBeginInfo render_pass_begin_info = vku::InitStructHelper();
render_pass_begin_info.renderPass = rp;
render_pass_begin_info.framebuffer = framebuffer;
render_pass_begin_info.renderArea = {{0, 0}, {32u, 32u}};
render_pass_begin_info.clearValueCount = 1u;
render_pass_begin_info.pClearValues = &color_clear_value;
m_command_buffer.Begin();
m_command_buffer.BeginRenderPass(render_pass_begin_info);
m_command_buffer.EndRenderPass();
m_command_buffer.End();
}
VkRenderingAttachmentInfo color_attachment = vku::InitStructHelper();
color_attachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
color_attachment.imageView = color_image_view;
VkRenderingAttachmentInfo depth_stencil_attachment = vku::InitStructHelper();
depth_stencil_attachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depth_stencil_attachment.imageView = depth_image_view;
VkRenderingInfo rendering_info = vku::InitStructHelper();
rendering_info.renderArea = {{0, 0}, {32u, 32u}};
rendering_info.layerCount = 1u;
rendering_info.colorAttachmentCount = 1u;
rendering_info.pColorAttachments = &color_attachment;
rendering_info.pDepthAttachment = &depth_stencil_attachment;
rendering_info.pStencilAttachment = &depth_stencil_attachment;
m_command_buffer.Begin();
m_command_buffer.BeginRendering(rendering_info);
m_command_buffer.EndRendering();
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, AmdBufferMarker) {
TEST_DESCRIPTION("Use barrier to synchronize with AMD buffer marker accesses");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredExtensions(VK_AMD_BUFFER_MARKER_EXTENSION_NAME);
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferMemoryBarrier2 barrier = vku::InitStructHelper();
// AMD marker access is WRITE on TRANSFER stage
barrier.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT;
barrier.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
// Buffer copy access
barrier.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
barrier.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
barrier.buffer = buffer_a;
barrier.size = 256;
m_command_buffer.Begin();
vk::CmdWriteBufferMarkerAMD(m_command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, buffer_a, 0, 1);
m_command_buffer.Barrier(barrier);
m_command_buffer.Copy(buffer_b, buffer_a);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, VertexBufferWithEventSync) {
TEST_DESCRIPTION("Use Event to synchronize vertex buffer accesses");
RETURN_IF_SKIP(InitSyncValFramework());
void *p_next = nullptr;
VkPhysicalDevicePortabilitySubsetFeaturesKHR portability_subset_features = vku::InitStructHelper();
if (IsExtensionsEnabled(VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME)) {
p_next = &portability_subset_features;
GetPhysicalDeviceFeatures2(portability_subset_features);
if (!portability_subset_features.events) {
GTEST_SKIP() << "VkPhysicalDevicePortabilitySubsetFeaturesKHR::events not supported";
}
}
RETURN_IF_SKIP(InitState(nullptr, p_next));
InitRenderTarget();
vkt::Buffer vertex_buffer(*m_device, 12, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer source_buffer(*m_device, 12, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
const VkDeviceSize offset = 0;
VkBufferMemoryBarrier barrier = vku::InitStructHelper();
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.buffer = vertex_buffer;
barrier.size = 12;
vkt::Event event(*m_device);
CreatePipelineHelper gfx_pipe(*this);
gfx_pipe.CreateGraphicsPipeline();
m_command_buffer.Begin();
m_command_buffer.Copy(source_buffer, vertex_buffer);
m_command_buffer.SetEvent(event, VK_PIPELINE_STAGE_TRANSFER_BIT);
m_command_buffer.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindVertexBuffers(m_command_buffer, 0, 1, &vertex_buffer.handle(), &offset);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe);
vk::CmdWaitEvents(m_command_buffer, 1, &event.handle(), VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0,
nullptr, 1, &barrier, 0, nullptr);
vk::CmdDraw(m_command_buffer, 1, 0, 0, 0);
m_command_buffer.EndRenderPass();
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, CmdDispatchBase) {
TEST_DESCRIPTION("Basic test of vkCmdDispatchBase");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
vkt::Buffer buffer_a(*m_device, 128, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
vkt::Buffer buffer_b(*m_device, 128, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
});
descriptor_set.WriteDescriptorBufferInfo(0, buffer_a, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.WriteDescriptorBufferInfo(1, buffer_b, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) buffer buffer_a { uint values_a[]; };
layout(set=0, binding=1) buffer buffer_b { uint values_b[]; };
void main(){
values_b[0] = values_a[0];
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.cp_ci_.flags = VK_PIPELINE_CREATE_DISPATCH_BASE_BIT;
pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
pipe.CreateComputePipeline();
// Test access validation
VkMemoryBarrier2 protect_copy_barrier = vku::InitStructHelper();
protect_copy_barrier.srcStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
protect_copy_barrier.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
protect_copy_barrier.dstStageMask = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT;
protect_copy_barrier.dstAccessMask = VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT;
m_command_buffer.Begin();
m_command_buffer.Copy(buffer_a, buffer_b);
m_command_buffer.Barrier(protect_copy_barrier);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatchBase(m_command_buffer, 0, 0, 0, 1, 1, 1);
m_command_buffer.End();
// Test access update (that copy can see previous dispatch write)
VkMemoryBarrier2 protect_dispatch_barrier = vku::InitStructHelper();
protect_dispatch_barrier.srcStageMask = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT;
protect_dispatch_barrier.srcAccessMask = VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT;
protect_dispatch_barrier.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
protect_dispatch_barrier.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1, &descriptor_set.set_,
0, nullptr);
vk::CmdDispatchBase(m_command_buffer, 5, 5, 5, 1, 1, 1);
m_command_buffer.Barrier(protect_dispatch_barrier);
m_command_buffer.Copy(buffer_a, buffer_b);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, TwoExternalDependenciesSyncLayoutTransitions) {
// Implements scenario from https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/9903 with the
// issue fixed by providing additional external dependency.
TEST_DESCRIPTION(
"The first attachment has last use in subpass 0, another one in subpass 1. Use external subpass dependencies to "
"synchronize layout transitions.");
RETURN_IF_SKIP(InitSyncVal());
const uint32_t w = 128;
const uint32_t h = 128;
vkt::Image image0(*m_device, w, h, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
vkt::ImageView image_view0 = image0.CreateView(VK_IMAGE_ASPECT_COLOR_BIT);
vkt::Image image1(*m_device, w, h, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
vkt::ImageView image_view1 = image1.CreateView(VK_IMAGE_ASPECT_COLOR_BIT);
const VkImageView image_views[2] = {image_view0, image_view1};
VkAttachmentDescription attachment0 = {};
attachment0.format = VK_FORMAT_B8G8R8A8_UNORM;
attachment0.samples = VK_SAMPLE_COUNT_1_BIT;
attachment0.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment0.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment0.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment0.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment0.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachment0.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkAttachmentDescription attachment1 = attachment0;
const VkAttachmentDescription attachments[2] = {attachment0, attachment1};
const VkAttachmentReference attachment_reference0 = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
const VkAttachmentReference attachment_reference1 = {1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
const VkAttachmentReference subpass0_refs[2] = {attachment_reference0, attachment_reference1};
const uint32_t preserve_attachment = 1;
VkSubpassDescription subpass0{};
subpass0.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass0.colorAttachmentCount = 2;
subpass0.pColorAttachments = subpass0_refs;
VkSubpassDescription subpass1{};
subpass1.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass1.colorAttachmentCount = 1;
subpass1.pColorAttachments = &attachment_reference0;
subpass1.preserveAttachmentCount = 1;
subpass1.pPreserveAttachments = &preserve_attachment;
const VkSubpassDescription subpasses[2] = {subpass0, subpass1};
// Make subpass1 start after subpass0
VkSubpassDependency subpass_dependency0{};
subpass_dependency0.srcSubpass = 0;
subpass_dependency0.dstSubpass = 1;
subpass_dependency0.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
subpass_dependency0.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
subpass_dependency0.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
subpass_dependency0.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
// This dependency is needed for attachment1. The last subpass that used attachment1 is subpass 0.
// Just using external dependency with subpass 1, won't synchronize attachment1 final layout transition.
VkSubpassDependency subpass_dependency1{};
subpass_dependency1.srcSubpass = 0;
subpass_dependency1.dstSubpass = VK_SUBPASS_EXTERNAL;
subpass_dependency1.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
subpass_dependency1.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
subpass_dependency1.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
subpass_dependency1.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
// This is for attachment 0 which is used by both subpass 0 and 1.
VkSubpassDependency subpass_dependency2{};
subpass_dependency2.srcSubpass = 1;
subpass_dependency2.dstSubpass = VK_SUBPASS_EXTERNAL;
subpass_dependency2.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
subpass_dependency2.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
subpass_dependency2.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
subpass_dependency2.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
const VkSubpassDependency subpass_dependencies[3] = {subpass_dependency0, subpass_dependency1, subpass_dependency2};
VkRenderPassCreateInfo renderpass_ci = vku::InitStructHelper();
renderpass_ci.attachmentCount = 2;
renderpass_ci.pAttachments = attachments;
renderpass_ci.subpassCount = 2;
renderpass_ci.pSubpasses = subpasses;
renderpass_ci.dependencyCount = 3;
renderpass_ci.pDependencies = subpass_dependencies;
const vkt::RenderPass rp(*m_device, renderpass_ci);
const vkt::Framebuffer fb(*m_device, rp, 2, image_views, w, h);
const VkPipelineColorBlendAttachmentState blend_attachment_states[2] = {};
VkPipelineColorBlendStateCreateInfo blend_state_ci = vku::InitStructHelper();
blend_state_ci.attachmentCount = 2;
blend_state_ci.pAttachments = blend_attachment_states;
CreatePipelineHelper gfx_pipe(*this);
gfx_pipe.gp_ci_.pColorBlendState = &blend_state_ci;
gfx_pipe.gp_ci_.renderPass = rp;
gfx_pipe.CreateGraphicsPipeline();
vkt::Sampler sampler(*m_device, SafeSaneSamplerCreateInfo());
OneOffDescriptorSet descriptor_set(m_device, {{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT},
{1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT}});
descriptor_set.WriteDescriptorImageInfo(0, image_view0, sampler, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
descriptor_set.WriteDescriptorImageInfo(1, image_view1, sampler, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
descriptor_set.UpdateDescriptorSets();
const char *cs_source = R"glsl(
#version 450
layout(set=0, binding=0) uniform sampler2D color_image0;
layout(set=0, binding=1) uniform sampler2D color_image1;
void main(){
vec4 color_data0 = texture(color_image0, vec2(0));
vec4 color_data1 = texture(color_image1, vec2(0));
}
)glsl";
CreateComputePipelineHelper cs_pipe(*this);
cs_pipe.cs_ = VkShaderObj(this, cs_source, VK_SHADER_STAGE_COMPUTE_BIT);
cs_pipe.pipeline_layout_ = vkt::PipelineLayout(*m_device, {&descriptor_set.layout_});
cs_pipe.CreateComputePipeline();
m_command_buffer.Begin();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, gfx_pipe);
m_command_buffer.BeginRenderPass(rp, fb, w, h);
m_command_buffer.NextSubpass();
m_command_buffer.EndRenderPass();
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe);
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cs_pipe.pipeline_layout_, 0, 1,
&descriptor_set.set_, 0, nullptr);
vk::CmdDispatch(m_command_buffer, 1, 1, 1);
m_command_buffer.End();
}
TEST_F(PositiveSyncVal, SingleQueryCopyIgnoresStride) {
RETURN_IF_SKIP(InitSyncVal());
vkt::QueryPool query_pool(*m_device, VK_QUERY_TYPE_TIMESTAMP, 1);
vkt::Buffer buffer8(*m_device, 8, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer buffer16(*m_device, 16, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
m_command_buffer.Begin();
vk::CmdResetQueryPool(m_command_buffer, query_pool, 0, 1);
vk::CmdWriteTimestamp(m_command_buffer, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, query_pool, 0);
// Write 32-bit query into offset 0.
// Use 8-byte stride which should be ignored when copying single query
vk::CmdCopyQueryPoolResults(m_command_buffer, query_pool, 0, 1, buffer8, 0 /*offset*/, 8 /*stride*/, 0);
// Write into [4,8) range, this does not overlap with query result
vk::CmdFillBuffer(m_command_buffer, buffer8, 4, 4, 0x42);
// Write 64 bit query into offset 0.
// Use 16-byte stride which should be ignored when copying single query
vk::CmdCopyQueryPoolResults(m_command_buffer, query_pool, 0, 1, buffer16, 0 /*offset*/, 16 /*stride*/, VK_QUERY_RESULT_64_BIT);
// Write into [8,16) range, this does not overlap with query result
vk::CmdFillBuffer(m_command_buffer, buffer16, 8, 8, 0x42);
m_command_buffer.End();
}
|