File: sync_val_semaphore_positive.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.321.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,412 kB
  • sloc: cpp: 594,175; python: 11,321; sh: 24; makefile: 20; xml: 14
file content (776 lines) | stat: -rw-r--r-- 33,878 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/* Copyright (c) 2024-2025 The Khronos Group Inc.
 * Copyright (c) 2024-2025 Valve Corporation
 * Copyright (c) 2024-2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <thread>
#include "../framework/sync_val_tests.h"
#ifdef VK_USE_PLATFORM_WIN32_KHR
#include "../framework/external_memory_sync.h"
#endif  // VK_USE_PLATFORM_WIN32_KHR

struct PositiveSyncValTimelineSemaphore : public VkSyncValTest {};

TEST_F(PositiveSyncValTimelineSemaphore, WaitInitialValue) {
    TEST_DESCRIPTION("Wait on the initial value");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE, 1);
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    m_default_queue->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignal) {
    TEST_DESCRIPTION("Signal then wait for signaled value");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 1));
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_default_queue->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalSync1) {
    TEST_DESCRIPTION("Signal then wait for signaled value");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit(m_command_buffer, vkt::TimelineSignal(semaphore, 1));
    m_default_queue->Submit(m_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_default_queue->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalTwoQueues) {
    TEST_DESCRIPTION("Signal then wait for signaled value");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 1));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalSmallerValue) {
    TEST_DESCRIPTION("Signal a value then wait for a smaller value");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 2));
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_default_queue->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalSmallerValueTwoQueues) {
    TEST_DESCRIPTION("Signal a value then wait for a smaller value");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 2));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalNonDefaultStage) {
    TEST_DESCRIPTION("Signal and wait with specific synchronization scopes");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 3, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_default_queue->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalNonDefaultStage2) {
    TEST_DESCRIPTION("Signal and wait with specific synchronization scopes");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 3, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT));
    m_default_queue->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitAfterSignalNonDefaultStageTwoQueues) {
    TEST_DESCRIPTION("Signal and wait with specific synchronization scopes");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 3, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineWait(semaphore, 1, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitBeforeSignal) {
    TEST_DESCRIPTION("Wait on the first queue then signal from a different queue");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineSignal(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitBeforeSignalSync1) {
    TEST_DESCRIPTION("Wait on the first queue then signal from a different queue");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit(m_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_second_queue->Submit(m_second_command_buffer, vkt::TimelineSignal(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitSmallerValueBeforeSignal) {
    TEST_DESCRIPTION("Wait for a value on the first queue then signal a larger value from a different queue");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineSignal(semaphore, 2));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitBeforeSignalNonDefaultStage) {
    TEST_DESCRIPTION("Signal and wait with specific synchronization scopes");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineSignal(semaphore, 3, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitBeforeSignalNonDefaultStage2) {
    TEST_DESCRIPTION("Signal and wait with specific synchronization scopes");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1, VK_PIPELINE_STAGE_2_COPY_BIT));
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineSignal(semaphore, 3, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitLatestSignal) {
    TEST_DESCRIPTION("Check that resolving signal is determined correctly");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 1, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT));
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, 2));  // includes all stages

    // If due to regression signal=1 resolves this wait then it should generate a WAW hazard due to stage mask mismatch
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 2));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitLatestSignalTwoQueues) {
    TEST_DESCRIPTION("Check that resolving signal is determined correctly");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 1, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT));
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, 2));  // includes all stages

    // If due to regression signal=1 resolves this wait then it should generate a WAW hazard due to stage mask mismatch
    m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineWait(semaphore, 2));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, QueuesCollaborateToResolveEachOthersWait) {
    TEST_DESCRIPTION("Two queues resolve wait-before-signal for one another");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }

    vkt::Semaphore first_queue_wait(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    vkt::Semaphore second_queue_wait(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    m_second_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(second_queue_wait, 1));
    m_second_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(first_queue_wait, 1));
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(second_queue_wait, 1));
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(first_queue_wait, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, SignalResolvesTwoWaits) {
    TEST_DESCRIPTION("Signal resolves two wait-before-signal waits");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_third_queue) {
        GTEST_SKIP() << "Three queues are needed";
    }
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_second_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    m_third_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, SignalResolvesTwoWaits2) {
    TEST_DESCRIPTION("Signal resolves two waits");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    semaphore.Signal(1);
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    m_second_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, SyncSubmitsWithSingleSemaphore) {
    // TODO: existing implementation releases QBC objects and removes signals properly but vvl::Semaphore state
    // objects accumulate timepoints. Investigate if it's possible to safely release timepoint in vvl::Semaphore
    // or if should be special customization of vvl::Semaphore for syncval purposes, or maybe some other option.
    TEST_DESCRIPTION("This test helps to check that implementation releases SignalInfo and QueueBatchContexts objects");

    RETURN_IF_SKIP(InitTimelineSemaphore());

    // This number can be increased to monitor memory usage.
    // NOTE: currently memory usage increases due to vvl::Semaphore behavior mentioned above.
    const int N = 100;

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    for (int i = 1; i <= N; i++) {
        m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, i - 1), vkt::TimelineSignal(semaphore, i));
    }
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, FrameSynchronization) {
    TEST_DESCRIPTION("The host waits for frame completion by waiting on timeline semaphore");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    const int N = 100;

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    // Due to synchronization the copies from different frames do not collide
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    for (int i = 1; i <= N; i++) {
        m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, i));
        semaphore.Wait(i, vvl::kU64Max);
    }
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, FrameSynchronization2) {
    TEST_DESCRIPTION("The host waits for frame completion by polling semaphore counter value");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    if (IsPlatformMockICD()) {
        GTEST_SKIP() << "Test not supported by MockICD (requires counter from vkGetSemaphoreCounterValue)";
    }
    const int N = 100;

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    // Due to synchronization the copies from different frames do not collide
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    for (int i = 1; i <= N; i++) {
        m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, i));
        while (semaphore.GetCounterValue() != i)
            ;
    }
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, HostSignalAndWait) {
    TEST_DESCRIPTION("Signal on the host and then wait on the host");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    semaphore.Signal(1);
    semaphore.Wait(1, kWaitTimeout);
}

TEST_F(PositiveSyncValTimelineSemaphore, HostSignal) {
    TEST_DESCRIPTION("Host signal finishes device wait");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    semaphore.Signal(1);
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, HostWaitWait) {
    TEST_DESCRIPTION("Wait for semaphore one more time on the host");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, 1));
    semaphore.Wait(1, kWaitTimeout);
    // Test that the second wait does not cause any issues.
    semaphore.Wait(1, kWaitTimeout);
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, HostSignalSignal) {
    TEST_DESCRIPTION("Signal semaphore two times in a row from the host");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    semaphore.Signal(1);
    // Test that the second signal does not cause any issues.
    semaphore.Signal(2);

    m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, 1));
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, HostWaitEmptyBatch) {
    TEST_DESCRIPTION("Check that host wait for an empty batch correclty synchronizes with the previous batches");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }
    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);

    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_a, buffer_b);
    m_second_command_buffer.End();

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    VkCommandBufferSubmitInfo cbuf_info = vku::InitStructHelper();
    cbuf_info.commandBuffer = m_command_buffer;

    VkSemaphoreSubmitInfo semaphore_info = vku::InitStructHelper();
    semaphore_info.semaphore = semaphore;
    semaphore_info.value = 1;
    semaphore_info.stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;

    VkSubmitInfo2 submits[2];
    submits[0] = vku::InitStructHelper();
    submits[0].commandBufferInfoCount = 1;
    submits[0].pCommandBufferInfos = &cbuf_info;

    // The second batch does not have command buffers and just signals the semaphore.
    // The test checks that waiting on the semaphore from such an empty batch works as expected.
    submits[1] = vku::InitStructHelper();
    submits[1].signalSemaphoreInfoCount = 1;
    submits[1].pSignalSemaphoreInfos = &semaphore_info;
    vk::QueueSubmit2(*m_default_queue, 2, submits, VK_NULL_HANDLE);

    semaphore.Wait(1, kWaitTimeout);

    // The wait should synchronize writes to buffer_b, so it's safe to copy again
    m_second_queue->Submit2(m_second_command_buffer);
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, KhronosTimelineSemaphoreExample) {
    TEST_DESCRIPTION("https://www.khronos.org/blog/vulkan-timeline-semaphores");
    RETURN_IF_SKIP(InitTimelineSemaphore());
    if (IsPlatformMockICD()) {
        GTEST_SKIP() << "Test not supported by MockICD (synchronization dependencies)";
    }
    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, kHostVisibleMemProps);
    if (!buffer_b.Memory().initialized()) {
        GTEST_SKIP() << "Can't allocate host visible/coherent memory";
    }
    uint8_t* bytes = static_cast<uint8_t*>(buffer_b.Memory().Map());

    m_command_buffer.Begin();
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();
    m_second_command_buffer.Begin();
    m_second_command_buffer.Copy(buffer_b, buffer_a);
    m_second_command_buffer.End();

    vkt::Semaphore timeline(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    auto thread1 = [this, &timeline]() {
        const uint64_t wait_value_1 = 0;    // No-op wait. Value is always >= 0.
        const uint64_t signal_value_1 = 5;  // Unblock thread2's CPU work.
        m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(timeline, wait_value_1),
                                 vkt::TimelineSignal(timeline, signal_value_1));
    };
    auto thread2 = [&timeline, &bytes]() {
        // Wait for thread1's device work to complete.
        const uint64_t wait_value_2 = 4;
        timeline.Wait(wait_value_2, kWaitTimeout);
        // Increment everything
        for (int i = 0; i < 256; i++, bytes++) {
            ++(*bytes);
        }
        // Unblock thread3's device work.
        timeline.Signal(7);
    };
    auto thread3 = [this, &timeline]() {
        const uint64_t wait_value_3 = 7;    // Wait for thread2's CPU work to complete.
        const uint64_t signal_value_3 = 8;  // Signal completion of all work.
        m_second_queue->Submit2(m_second_command_buffer, vkt::TimelineWait(timeline, wait_value_3),
                                vkt::TimelineSignal(timeline, signal_value_3));
    };

    std::thread t1(thread1);
    std::thread t2(thread2);
    std::thread t3(thread3);

    timeline.Wait(8, kWaitTimeout);
    t3.join();
    t2.join();
    t1.join();
}

TEST_F(PositiveSyncValTimelineSemaphore, ResolveManyWaitBeforeSignals) {
    TEST_DESCRIPTION("Check for regression when resolved wait-before-signal did not cleanup older signals");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    // This test is mostly for manual observation of memory usage.
    // Increase constant value to get longer running time.
    uint32_t N = 1000;
    for (uint32_t i = 0; i < N; i++) {
        m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineWait(semaphore, i + 1));
        m_second_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, i + 1));
        m_device->Wait();
    }
}

#ifdef VK_USE_PLATFORM_WIN32_KHR
TEST_F(PositiveSyncValTimelineSemaphore, ExternalSemaphoreWaitBeforeSignal) {
    TEST_DESCRIPTION("Wait-before-signal with external semaphore should not hoard resources");
    AddRequiredExtensions(VK_KHR_EXTERNAL_SEMAPHORE_WIN32_EXTENSION_NAME);
    RETURN_IF_SKIP(InitTimelineSemaphore());

    if (IsPlatformMockICD()) {
        GTEST_SKIP() << "Test not supported by MockICD";
    }
    if (!m_second_queue) {
        GTEST_SKIP() << "Two queues are needed";
    }

    constexpr auto handle_type = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT;
    if (!SemaphoreExportImportSupported(Gpu(), VK_SEMAPHORE_TYPE_TIMELINE, handle_type)) {
        GTEST_SKIP() << "Semaphore does not support export and import through Win32 handle";
    }

    VkSemaphoreTypeCreateInfo semaphore_type_ci = vku::InitStructHelper();
    semaphore_type_ci.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE;
    semaphore_type_ci.initialValue = 0;
    VkExportSemaphoreCreateInfo export_info = vku::InitStructHelper(&semaphore_type_ci);
    export_info.handleTypes = handle_type;
    const VkSemaphoreCreateInfo export_semaphore_ci = vku::InitStructHelper(&export_info);
    vkt::Semaphore export_semaphore(*m_device, export_semaphore_ci);

    vkt::Semaphore import_semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    HANDLE win32_handle = NULL;
    export_semaphore.ExportHandle(win32_handle, handle_type);
    import_semaphore.ImportHandle(win32_handle, handle_type);

    // This test is for manual inspection. Without special handling the wait-before-signal with an
    // external semaphore accumulates unresolved batches and registered signals (it's not possible
    // to track external signal). Check that the list of unresolved batches and signals does not grow.
    const int N = 100;
    for (int i = 1; i <= N; i++) {
        m_default_queue->Submit(vkt::no_cmd, vkt::TimelineWait(export_semaphore, i));
        m_second_queue->Submit(vkt::no_cmd, vkt::TimelineSignal(import_semaphore, i));
        m_device->Wait();
    }
}
#endif  // VK_USE_PLATFORM_WIN32_KHR

TEST_F(PositiveSyncValTimelineSemaphore, QueueWaitIdleRemovesSignals) {
    TEST_DESCRIPTION("Test for manual inspection of registered signals (VK_SYNCVAL_SHOW_STATS can be used)");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    const uint32_t N = 100;
    for (uint32_t i = 1; i <= N; i++) {
        m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, i));
        // The maximum number of registered signals will be around 25
        if (i % 25 == 0) {
            m_default_queue->Wait();
        }
    }
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, DeviceWaitIdleRemovesignals) {
    TEST_DESCRIPTION("Test for manual inspection of registered signals (VK_SYNCVAL_SHOW_STATS can be used)");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    const uint32_t N = 100;
    for (uint32_t i = 1; i <= N; i++) {
        m_default_queue->Submit2(vkt::no_cmd, vkt::TimelineSignal(semaphore, i));
        // The maximum number of registered signals will be around 50
        if (i % 50 == 0) {
            m_device->Wait();
        }
    }
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, ManyOrphanedSignals) {
    TEST_DESCRIPTION("Test limit of maximum number of registered signals per timeline");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
    vkt::Semaphore binary_semaphore(*m_device);

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    VkCommandBufferSubmitInfo cbuf_info = vku::InitStructHelper();
    cbuf_info.commandBuffer = m_command_buffer;

    VkSemaphoreSubmitInfo wait = vku::InitStructHelper();
    wait.semaphore = binary_semaphore;
    wait.stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;

    VkSemaphoreSubmitInfo signals[2];
    // binary signal
    signals[0] = vku::InitStructHelper();
    signals[0].semaphore = binary_semaphore;
    signals[0].stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
    // timeline signal (value is set for each loop iteration)
    signals[1] = vku::InitStructHelper();
    signals[1].semaphore = semaphore;
    signals[1].stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;

    const uint32_t N = 1'000;
    for (uint32_t i = 1; i <= N; i++) {
        // signal timeline on each iteration but never wait for it
        signals[1].value = i;

        VkSubmitInfo2 submit = vku::InitStructHelper();
        if (i > 1) {
            // wait binary signal from previous iteration
            submit.waitSemaphoreInfoCount = 1;
            submit.pWaitSemaphoreInfos = &wait;
        }
        submit.commandBufferInfoCount = 1;
        submit.pCommandBufferInfos = &cbuf_info;
        submit.signalSemaphoreInfoCount = 2;
        submit.pSignalSemaphoreInfos = signals;

        vk::QueueSubmit2(m_default_queue->handle(), 1, &submit, VK_NULL_HANDLE);
    }
    m_device->Wait();
}

TEST_F(PositiveSyncValTimelineSemaphore, WaitForFencesWithTimelineSignalBatches) {
    TEST_DESCRIPTION("Check that WaitForFences applies tagged waits to timeline signal batches");
    RETURN_IF_SKIP(InitTimelineSemaphore());

    vkt::Semaphore semaphore(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);

    vkt::Buffer buffer_a(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
    vkt::Buffer buffer_b(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
    m_command_buffer.Begin(VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
    m_command_buffer.Copy(buffer_a, buffer_b);
    m_command_buffer.End();

    vkt::Fence fence(*m_device);

    // The first batch context.
    // Specify VERTEX_SHADER signal scope, so waiting for timeline signal does not protect buffer copy
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineSignal(semaphore, 1, VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT), fence);

    // The second batch context which imports the first one.
    // The timeline signal in the first submit still references the first batch.
    m_default_queue->Submit2(vkt::no_cmd);

    // The original omission was that iteration over all batch context did not take into account
    // batches associated with timeline signals. In the case of regression accesses in the first
    // batch (stored in timeline signal) will survive the fence wait.
    fence.Wait(kWaitTimeout);

    // Waiting for timeline signal imports the first batch stored in that signal.
    // In case of regression the first batch will contain unprotected copy writes and
    // this will cause WRITE-AFTER-WRITE hazard.
    m_default_queue->Submit2(m_command_buffer, vkt::TimelineWait(semaphore, 1));

    m_default_queue->Wait();
}