1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
/* Copyright (c) 2025 The Khronos Group Inc.
* Copyright (c) 2025 Valve Corporation
* Copyright (c) 2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../framework/sync_val_tests.h"
#include <thread>
struct PositiveSyncValWsi : public VkSyncValTest {};
TEST_F(PositiveSyncValWsi, PresentAfterSubmit2AutomaticVisibility) {
TEST_DESCRIPTION("Waiting on the semaphore makes available image accesses visible to the presentation engine.");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
// this creates execution dependency with submit's wait semaphore, so layout
// transition does not start before image is acquired.
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition.srcAccessMask = 0;
// this creates execution dependency with submit's signal operation, so layout
// transition finishes before presentation starts.
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
// dstAccessMask makes accesses visible only to the device.
// Also, any writes to swapchain images that are made available, are
// automatically made visible to the presentation engine reads.
// This test checks that presentation engine accesses are not reported as hazards.
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition.image = swapchain_images[image_index];
layout_transition.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
layout_transition.subresourceRange.baseMipLevel = 0;
layout_transition.subresourceRange.levelCount = 1;
layout_transition.subresourceRange.baseArrayLayer = 0;
layout_transition.subresourceRange.layerCount = 1;
m_command_buffer.Begin();
m_command_buffer.Barrier(layout_transition);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, PresentAfterSubmitAutomaticVisibility) {
TEST_DESCRIPTION("Waiting on the semaphore makes available image accesses visible to the presentation engine.");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier layout_transition = vku::InitStructHelper();
layout_transition.srcAccessMask = 0;
// dstAccessMask makes accesses visible only to the device.
// Also, any writes to swapchain images that are made available, are
// automatically made visible to the presentation engine reads.
// This test checks that presentation engine accesses are not reported as hazards.
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition.image = swapchain_images[image_index];
layout_transition.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
layout_transition.subresourceRange.baseMipLevel = 0;
layout_transition.subresourceRange.levelCount = 1;
layout_transition.subresourceRange.baseArrayLayer = 0;
layout_transition.subresourceRange.layerCount = 1;
m_command_buffer.Begin();
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, nullptr, 0, nullptr, 1, &layout_transition);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, PresentAfterSubmitNoneDstStage) {
TEST_DESCRIPTION("Test that QueueSubmit's signal semaphore behaves the same way as QueueSubmit2 with ALL_COMMANDS signal.");
AddSurfaceExtension();
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition.srcAccessMask = 0;
// Specify NONE as destination stage to detect issues during conversion SubmitInfo -> SubmitInfo2
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition.image = swapchain_images[image_index];
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_command_buffer.Begin();
m_command_buffer.Barrier(layout_transition);
m_command_buffer.End();
// The goal of this test is to use QueueSubmit API (not QueueSubmit2) to
// ensure syncval correctly converts SubmitInfo to SubmitInfo2 with ALL_COMMANDS signal semaphore.
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_device->Wait();
}
TEST_F(PositiveSyncValWsi, ThreadedSubmitAndFenceWaitAndPresent) {
TEST_DESCRIPTION("https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/7250");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
const auto swapchain_images = m_swapchain.GetImages();
{
vkt::CommandBuffer cmd(*m_device, m_command_pool);
cmd.Begin();
for (VkImage image : swapchain_images) {
VkImageMemoryBarrier transition = vku::InitStructHelper();
transition.srcAccessMask = 0;
transition.dstAccessMask = 0;
transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
transition.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
transition.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
transition.image = image;
transition.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
transition.subresourceRange.baseMipLevel = 0;
transition.subresourceRange.levelCount = 1;
transition.subresourceRange.baseArrayLayer = 0;
transition.subresourceRange.layerCount = 1;
vk::CmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &transition);
}
cmd.End();
m_default_queue->Submit(cmd);
m_default_queue->Wait();
}
constexpr int N = 1'000;
std::mutex queue_mutex;
// Worker thread submits accesses and waits on the fence.
std::thread thread([&] {
const int size = 1024 * 128;
vkt::Buffer src(*m_device, size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferCopy copy_info{};
copy_info.size = size;
vkt::Fence fence(*m_device);
for (int i = 0; i < N; i++) {
m_command_buffer.Begin();
vk::CmdCopyBuffer(m_command_buffer, src, dst, 1, ©_info);
m_command_buffer.End();
{
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Submit(m_command_buffer, fence);
}
vk::WaitForFences(device(), 1, &fence.handle(), VK_TRUE, kWaitTimeout);
vk::ResetFences(device(), 1, &fence.handle());
}
});
// Main thread submits empty batches and presents images
{
vkt::Semaphore acquire_semaphore(*m_device);
std::vector<vkt::Semaphore> submit_semaphores;
for (size_t i = 0; i < swapchain_images.size(); i++) {
submit_semaphores.emplace_back(*m_device);
}
vkt::Fence fence(*m_device);
for (int i = 0; i < N; i++) {
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
{
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Submit(vkt::no_cmd, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphores[image_index]), fence);
m_default_queue->Present(m_swapchain, image_index, submit_semaphores[image_index]);
}
vk::WaitForFences(device(), 1, &fence.handle(), VK_TRUE, kWaitTimeout);
vk::ResetFences(device(), 1, &fence.handle());
}
{
// We did not synchronize with the presentation request from the last iteration.
// Wait on the queue to ensure submit semaphore used by presentation request is not in use.
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Wait();
}
}
thread.join();
}
TEST_F(PositiveSyncValWsi, WaitForFencesWithPresentBatches) {
TEST_DESCRIPTION("Check that WaitForFences applies tagged waits to present batches");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
const auto swapchain_images = m_swapchain.GetImages();
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
vkt::Semaphore acquire_semaphore2(*m_device);
vkt::Semaphore submit_semaphore2(*m_device);
vkt::Fence fence(*m_device);
vkt::Buffer buffer(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer src_buffer(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst_buffer(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
// Frame 0
{
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
m_command_buffer.Begin();
m_command_buffer.Copy(src_buffer, buffer);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore), vkt::Signal(submit_semaphore), fence);
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
}
// Frame 1
{
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore2, kWaitTimeout);
// TODO: Present should be able to accept semaphore from Acquire directly, but due to
// another bug we need this intermediate sumbit. Remove it and make present to wait
// on image_ready_semaphore semaphore when acquire->present direct synchronization is fixed.
m_default_queue->Submit(vkt::no_cmd, vkt::Wait(acquire_semaphore2), vkt::Signal(submit_semaphore2));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore2);
}
// Frame 2
{
// The goal of this test is to ensure that this wait is applied to the
// batches resulted from queue presentation operations. Those batches
// import accesses from regular submits.
vk::WaitForFences(*m_device, 1, &fence.handle(), VK_TRUE, kWaitTimeout);
m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout); // do not need to keep result
// If WaitForFences leaks accesses from present batches the following copy will cause submit time hazard.
m_command_buffer.Begin();
m_command_buffer.Copy(buffer, dst_buffer);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore));
}
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, RecreateBuffer) {
TEST_DESCRIPTION("Recreate buffer on each simulation iteration. Use acquire fence synchronization approach.");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
const auto swapchain_images = m_swapchain.GetImages();
std::vector<vkt::Fence> acquire_fences;
vkt::Fence current_fence(*m_device);
std::vector<vkt::CommandBuffer> command_buffers;
std::vector<vkt::Semaphore> submit_semaphores;
std::vector<vkt::Buffer> src_buffers(swapchain_images.size());
std::vector<vkt::Buffer> dst_buffers(swapchain_images.size());
for (VkImage image : swapchain_images) {
SetPresentImageLayout(image);
}
for (size_t i = 0; i < swapchain_images.size(); i++) {
acquire_fences.emplace_back(*m_device);
command_buffers.emplace_back(*m_device, m_command_pool);
submit_semaphores.emplace_back(*m_device);
}
// NOTE: This test can be used for manual inspection of memory usage.
// Increase frame count and observe that the test does not continuously allocate memory.
// Syncval should not track ranges of deleted resources.
const int frame_count = 100;
for (int i = 0; i < frame_count; i++) {
const uint32_t image_index = m_swapchain.AcquireNextImage(current_fence, kWaitTimeout);
current_fence.Wait(kWaitTimeout);
current_fence.Reset();
auto &src_buffer = src_buffers[image_index];
src_buffer.destroy();
src_buffer = vkt::Buffer(*m_device, 1024, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
auto &dst_buffer = dst_buffers[image_index];
dst_buffer.destroy();
dst_buffer = vkt::Buffer(*m_device, 1024, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
auto &command_buffer = command_buffers[image_index];
command_buffer.Begin();
command_buffer.Copy(src_buffer, dst_buffer);
command_buffer.End();
auto &submit_semaphore = submit_semaphores[image_index];
m_default_queue->Submit(command_buffer, vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
std::swap(acquire_fences[image_index], current_fence);
}
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, RecreateImage) {
TEST_DESCRIPTION("Recreate image on each simulation iteration. Use acquire fence synchronization approach.");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
constexpr uint32_t width = 256;
constexpr uint32_t height = 128;
constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
const auto swapchain_images = m_swapchain.GetImages();
std::vector<vkt::Fence> acquire_fences;
vkt::Fence current_fence(*m_device);
std::vector<vkt::CommandBuffer> command_buffers;
std::vector<vkt::Semaphore> submit_semaphores;
const vkt::Buffer src_buffer(*m_device, width * height * 4, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
std::vector<vkt::Image> dst_images(swapchain_images.size());
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
for (size_t i = 0; i < swapchain_images.size(); i++) {
acquire_fences.emplace_back(*m_device);
command_buffers.emplace_back(*m_device, m_command_pool);
submit_semaphores.emplace_back(*m_device);
}
// NOTE: This test can be used for manual inspection of memory usage.
// Increase frame count and observe that the test does not continuously allocate memory.
// Syncval should not track ranges of deleted resources.
const int frame_count = 100;
for (int i = 0; i < frame_count; i++) {
const uint32_t image_index = m_swapchain.AcquireNextImage(current_fence, kWaitTimeout);
current_fence.Wait(kWaitTimeout);
current_fence.Reset();
auto &dst_image = dst_images[image_index];
dst_image.destroy();
dst_image = vkt::Image(*m_device, width, height, format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkBufferImageCopy region = {};
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {width, height, 1};
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
layout_transition.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
layout_transition.image = dst_image;
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
auto &command_buffer = command_buffers[image_index];
command_buffer.Begin();
command_buffer.Barrier(layout_transition);
vk::CmdCopyBufferToImage(command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
command_buffer.End();
auto &submit_semaphore = submit_semaphores[image_index];
m_default_queue->Submit(command_buffer, vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
std::swap(acquire_fences[image_index], current_fence);
}
m_default_queue->Wait();
}
|