File: range_map.h

package info (click to toggle)
vulkan-validationlayers 1.4.328.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,412 kB
  • sloc: cpp: 615,223; python: 12,115; sh: 24; makefile: 20; xml: 14
file content (1084 lines) | stat: -rw-r--r-- 47,157 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
/* Copyright (c) 2019-2025 The Khronos Group Inc.
 * Copyright (c) 2019-2025 Valve Corporation
 * Copyright (c) 2019-2025 LunarG, Inc.
 * Copyright (C) 2019-2025 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * John Zulauf <jzulauf@lunarg.com>
 *
 */
#pragma once

#include <algorithm>
#include <cassert>
#include <map>
#include <optional>
#include <utility>
#include "containers/range.h"
#include "containers/container_utils.h"

#define RANGE_ASSERT(b) assert(b)

namespace sparse_container {

enum class value_precedence { prefer_source, prefer_dest };

template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range);

// range_map
//
// The range based sparse map implemented on the ImplMap.
// Implements an ordered map of non-overlapping, non-empty ranges
template <typename Key, typename T, typename ImplMap = std::map<vvl::range<Key>, T>>
class range_map {
  private:
    ImplMap impl_map_;
    using ImplIterator = typename ImplMap::iterator;
    using ImplConstIterator = typename ImplMap::const_iterator;
    template <typename IndexType>
    using range = vvl::range<IndexType>;

  public:
    using mapped_type = typename ImplMap::mapped_type;
    using value_type = typename ImplMap::value_type;
    using key_type = typename ImplMap::key_type;
    using index_type = typename key_type::index_type;
    using size_type = typename ImplMap::size_type;

  protected:
    template <typename ThisType>
    using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin());

    template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
    static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) {
        if (key.valid()) {
            // ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key,
            // not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin
            // with the operator > in range, we can safely use an empty range for comparison
            auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin));

            // If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin
            // or lower is at end
            if (!that.at_impl_begin(lower)) {
                auto prev = lower;
                --prev;
                // If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower
                if (key.begin < prev->first.end) {
                    lower = prev;
                }
            }
            return lower;
        }
        // Key is ill-formed
        return that.impl_end();  // Point safely to nothing.
    }

    ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); }

    ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); }

    template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
    static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) {
        if (key.valid()) {
            // the upper bound is the first range that is full greater (upper.begin >= key.end
            // we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is
            // exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound
            auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end));
            if (!that.at_impl_end(upper) && (upper != that.impl_begin())) {
                auto prev = upper;
                --prev;
                // We know key.end  is >= prev.begin, the only question is whether it's ==
                if (prev->first.begin == key.end) {
                    upper = prev;
                }
            }
            return upper;
        }
        return that.impl_end();  // Point safely to nothing.
    }

    ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); }

    ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); }

    ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); }
    ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); }
    bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); }

    ImplIterator impl_end() { return impl_map_.end(); }
    ImplConstIterator impl_end() const { return impl_map_.end(); }

    ImplIterator impl_begin() { return impl_map_.begin(); }
    ImplConstIterator impl_begin() const { return impl_map_.begin(); }

    inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); }
    inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); }

    inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); }
    inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); }

    ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); }

    template <typename Value>
    ImplIterator impl_insert(const ImplIterator &hint, Value &&value) {
        RANGE_ASSERT(impl_not_found(value.first));
        RANGE_ASSERT(value.first.non_empty());
        return impl_map_.emplace_hint(hint, std::forward<Value>(value));
    }
    ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) {
        return impl_insert(hint, std::make_pair(key, value));
    }

    ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) {
        return impl_insert(hint, key_type(begin, end), value);
    }

    ImplIterator split_impl(const ImplIterator &split_it, const index_type &index) {
        const auto range = split_it->first;

        if (!range.includes(index)) {
            return split_it;  // If we don't have a valid split point, just return the iterator
        }

        key_type lower_range(range.begin, index);

        if (lower_range.empty()) {
            // This is a noop, we're keeping the upper half which is the same as split_it
            return split_it;
        }

        // Save the contents and erase
        auto value = split_it->second;
        auto next_it = impl_map_.erase(split_it);

        key_type upper_range(index, range.end);
        assert(!upper_range.empty());  // Upper range cannot be empty

        // Copy value to the upper range
        // NOTE: we insert from upper to lower because that's what emplace_hint can do in constant time
        RANGE_ASSERT(impl_map_.find(upper_range) == impl_map_.end());
        next_it = impl_map_.emplace_hint(next_it, std::make_pair(upper_range, value));

        // Move value to the lower range (we can move since the upper range already got a copy of value)
        RANGE_ASSERT(impl_map_.find(lower_range) == impl_map_.end());
        next_it = impl_map_.emplace_hint(next_it, std::make_pair(lower_range, std::move(value)));

        // Iterator to the beginning of the lower range
        return next_it;
    }

    ImplIterator split_impl_keep_only_lower(const ImplIterator &split_it, const index_type &index) {
        const auto range = split_it->first;

        if (!range.includes(index)) {
            return split_it;  // If we don't have a valid split point, just return the iterator
        }

        key_type lower_range(range.begin, index);

        // Save the contents and erase
        auto value = split_it->second;
        auto next_it = impl_map_.erase(split_it);

        if (lower_range.empty()) {
            // This effectively an erase because this function does not keep upper range and lower is empty
            return next_it;
        }

        RANGE_ASSERT(impl_map_.find(lower_range) == impl_map_.end());
        next_it = impl_map_.emplace_hint(next_it, std::make_pair(lower_range, std::move(value)));

        // Iterator to the beginning of the lower range
        return next_it;
    }

    template <typename TouchOp>
    ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower, const TouchOp &touch_mapped_value) {
        // Logic assumes we are starting at a valid lower bound
        RANGE_ASSERT(!at_impl_end(lower));
        RANGE_ASSERT(lower == lower_bound_impl(bounds));

        // Trim/infill the beginning if needed
        auto current = lower;
        const auto first_begin = current->first.begin;
        if (bounds.begin > first_begin) {
            // Preserve the portion of lower bound excluded from bounds
            if (current->first.end <= bounds.end) {
                // If current ends within the erased bound we can discard the the upper portion of current
                current = split_impl_keep_only_lower(current, bounds.begin);
            } else {
                // Keep the upper portion of current for the later split below
                current = split_impl(current, bounds.begin);
            }
            // Exclude the preserved portion
            ++current;
            RANGE_ASSERT(current == lower_bound_impl(bounds));
        }

        // Loop over completely contained entries and erase them
        while (!at_impl_end(current) && (current->first.end <= bounds.end)) {
            if (touch_mapped_value(current->second)) {
                current = impl_erase(current);
            } else {
                ++current;
            }
        }

        if (!at_impl_end(current) && current->first.includes(bounds.end)) {
            // last entry extends past the end of the bounds range, snip to only erase the bounded section
            current = split_impl(current, bounds.end);
            // test if lower_bound (eventually) computed in split_impl is not empty.
            // If it is not empty, then it contains values inside the bounds range,
            // they need to be touched
            if ((current->first & bounds).non_empty()) {
                if (touch_mapped_value(current->second)) {
                    current = impl_erase(current);
                } else {
                    // make current point to upper bound
                    ++current;
                }
            }
        }

        RANGE_ASSERT(current == upper_bound_impl(bounds));
        return current;
    }

    template <typename ValueType, typename WrappedIterator_>
    struct iterator_impl {
      public:
        friend class range_map;
        using WrappedIterator = WrappedIterator_;

      private:
        WrappedIterator pos_;

        // Create an iterator at a specific internal state -- only from the parent container
        iterator_impl(const WrappedIterator &pos) : pos_(pos) {}

      public:
        iterator_impl() : iterator_impl(WrappedIterator()) {}
        iterator_impl(const iterator_impl &other) : pos_(other.pos_) {}

        iterator_impl &operator=(const iterator_impl &rhs) {
            pos_ = rhs.pos_;
            return *this;
        }

        inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; }

        inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; }

        ValueType &operator*() const { return *pos_; }
        ValueType *operator->() const { return &*pos_; }

        iterator_impl &operator++() {
            ++pos_;
            return *this;
        }

        iterator_impl &operator--() {
            --pos_;
            return *this;
        }

        // To allow for iterator -> const_iterator construction
        // NOTE: while it breaks strict encapsulation, it does so less than friend
        const WrappedIterator &get_pos() const { return pos_; };
    };

  public:
    using iterator = iterator_impl<value_type, ImplIterator>;

    // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
    class const_iterator : public iterator_impl<const value_type, ImplConstIterator> {
        using Base = iterator_impl<const value_type, ImplConstIterator>;
        friend range_map;

      public:
        const_iterator &operator=(const const_iterator &other) {
            Base::operator=(other);
            return *this;
        }
        const_iterator(const const_iterator &other) : Base(other){};
        const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {}
        const_iterator() : Base() {}

      private:
        const_iterator(const ImplConstIterator &pos) : Base(pos) {}
    };

  private:
    inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); }
    inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); }
    inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); }

  public:
    iterator end() { return iterator(impl_map_.end()); }                          //  policy and bounds don't matter for end
    const_iterator end() const { return const_iterator(impl_map_.end()); }        //  policy and bounds don't matter for end
    iterator begin() { return iterator(impl_map_.begin()); }                      // with default policy, and thus no bounds
    const_iterator begin() const { return const_iterator(impl_map_.begin()); }    // with default policy, and thus no bounds
    const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); }  // with default policy, and thus no bounds
    const_iterator cend() const { return const_iterator(impl_map_.cend()); }      // with default policy, and thus no bounds

    iterator erase(const iterator &pos) {
        RANGE_ASSERT(!at_end(pos));
        return iterator(impl_erase(pos.pos_));
    }

    iterator erase(range<iterator> bounds) {
        auto current = bounds.begin.pos_;
        while (current != bounds.end.pos_) {
            RANGE_ASSERT(!at_impl_end(current));
            current = impl_map_.erase(current);
        }
        RANGE_ASSERT(current == bounds.end.pos_);
        return current;
    }

    iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); }

    // Before trying to erase a range, function touch_mapped_value is called on the mapped value.
    // touch_mapped_value is allowed to have it's parameter type to be non const reference.
    // If it returns true, regular erase will occur.
    // Else, range is kept.
    template <typename TouchOp>
    iterator erase_range_or_touch(const key_type &bounds, const TouchOp &touch_mapped_value) {
        auto lower = lower_bound_impl(bounds);

        if (at_impl_end(lower) || !bounds.intersects(lower->first)) {
            // There is nothing in this range lower bound is above bound
            return iterator(lower);
        }
        auto next = impl_erase_range(bounds, lower, touch_mapped_value);
        return iterator(next);
    }

    iterator erase_range(const key_type &bounds) {
        return erase_range_or_touch(bounds, [](const auto &) { return true; });
    }

    void clear() { impl_map_.clear(); }

    iterator find(const key_type &key) { return iterator(impl_map_.find(key)); }

    const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); }

    iterator find(const index_type &index) {
        auto lower = lower_bound(range<index_type>(index, index + 1));
        if (!at_end(lower) && lower->first.includes(index)) {
            return lower;
        }
        return end();
    }

    const_iterator find(const index_type &index) const {
        auto lower = lower_bound(key_type(index, index + 1));
        if (!at_end(lower) && lower->first.includes(index)) {
            return lower;
        }
        return end();
    }

    iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); }

    const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); }

    iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); }

    const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); }

    range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; }
    range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; }
    range<const_iterator> bounds(const key_type &key) const { return cbounds(key); }

    using insert_pair = std::pair<iterator, bool>;

    // This is traditional no replacement insert.
    insert_pair insert(const value_type &value) {
        const auto &key = value.first;
        if (!key.non_empty()) {
            // It's an invalid key, early bail pointing to end
            return std::make_pair(end(), false);
        }

        // Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
        // we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
        auto lower = lower_bound_impl(key);
        if (at_impl_end(lower) || !lower->first.intersects(key)) {
            // range is not even partially overlapped, and lower is strictly > than key
            auto impl_insert = impl_map_.emplace_hint(lower, value);
            // auto impl_insert = impl_map_.emplace(value);
            iterator wrap_it(impl_insert);
            return std::make_pair(wrap_it, true);
        }
        // We don't replace
        return std::make_pair(iterator(lower), false);
    };

    iterator insert(const_iterator hint, const value_type &value) {
        bool hint_open;
        ImplConstIterator impl_next = hint.pos_;
        if (impl_map_.empty()) {
            hint_open = true;
        } else if (impl_next == impl_map_.cbegin()) {
            hint_open = value.first.strictly_less(impl_next->first);
        } else if (impl_next == impl_map_.cend()) {
            auto impl_prev = impl_next;
            --impl_prev;
            hint_open = value.first.strictly_greater(impl_prev->first);
        } else {
            auto impl_prev = impl_next;
            --impl_prev;
            hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first);
        }

        if (!hint_open) {
            // Hint was unhelpful, fall back to the non-hinted version
            auto plain_insert = insert(value);
            return plain_insert.first;
        }

        auto impl_insert = impl_map_.insert(impl_next, value);
        return iterator(impl_insert);
    }

    iterator split(const iterator whole_it, const index_type &index) {
        auto split_it = split_impl(whole_it.pos_, index);
        return iterator(split_it);
    }

    // The overwrite hint here is lower.... and if it's not right... this fails
    template <typename Value>
    iterator overwrite_range(const iterator &lower, Value &&value) {
        // We're not robust to a bad hint, so detect it with extreme prejudice
        // TODO: Add bad hint test to make this robust...
        auto lower_impl = lower.pos_;
        auto insert_hint = lower_impl;
        if (!at_impl_end(lower_impl)) {
            // If we're at end (and the hint is good, there's nothing to erase
            RANGE_ASSERT(lower == lower_bound(value.first));
            insert_hint = impl_erase_range(value.first, lower_impl, [](const auto &) { return true; });
        }
        auto inserted = impl_insert(insert_hint, std::forward<Value>(value));
        return iterator(inserted);
    }

    template <typename Value>
    iterator overwrite_range(Value &&value) {
        auto lower = lower_bound(value.first);
        return overwrite_range(lower, value);
    }

    bool empty() const { return impl_map_.empty(); }
    size_type size() const { return impl_map_.size(); }

    // For configuration/debug use // Use with caution...
    ImplMap &get_implementation_map() { return impl_map_; }
    const ImplMap &get_implementation_map() const { return impl_map_; }
};

template <typename Container>
using const_correct_iterator = decltype(std::declval<Container>().begin());

// Forward index iterator, tracking an index value and the appropos lower bound
// returns an index_type, lower_bound pair.  Supports ++,  offset, and seek affecting the index,
// lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced
// iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1)
//
// Must be explicitly invalidated when the underlying map is changed.
template <typename Map>
class cached_lower_bound_impl {
    using plain_map_type = typename std::remove_const<Map>::type;  // Allow instatiation with const or non-const Map
  public:
    using iterator = const_correct_iterator<Map>;
    using key_type = typename plain_map_type::key_type;
    using mapped_type = typename plain_map_type::mapped_type;
    // Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state
    // and we don't want and caller altering internal state.
    using index_type = typename Map::index_type;
    struct value_type {
        const index_type &index;
        const iterator &lower_bound;
        const bool &valid;
        value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_)
            : index(index_), lower_bound(lower_bound_), valid(valid_) {}
    };

  private:
    Map *const map_;
    const iterator end_;
    value_type pos_;

    index_type index_;
    iterator lower_bound_;
    bool valid_;

    bool is_valid() const { return includes(index_); }

    // Allow reuse of a type with const semantics
    void set_value(const index_type &index, const iterator &it) {
        RANGE_ASSERT(it == lower_bound(index));
        index_ = index;
        lower_bound_ = it;
        valid_ = is_valid();
    }

    void update(const index_type &index) {
        RANGE_ASSERT(lower_bound_ == lower_bound(index));
        index_ = index;
        valid_ = is_valid();
    }

    inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); }
    inline bool at_end(const iterator &it) const { return it == end_; }

    bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); }

  public:
    // The cached lower bound knows the parent map, and thus can tell us this...
    inline bool at_end() const { return at_end(lower_bound_); }
    // includes(index) is a convenience function to test if the index would be in the currently cached lower bound
    bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); }

    // The return is const because we are sharing the internal state directly.
    const value_type &operator*() const { return pos_; }
    const value_type *operator->() const { return &pos_; }

    // Advance the cached location by 1
    cached_lower_bound_impl &operator++() {
        const index_type next = index_ + 1;
        if (is_lower_than(next, lower_bound_)) {
            update(next);
        } else {
            // if we're past pos_->second, next *must* be the new lower bound.
            // NOTE: that next can't be past end, so lower_bound_ isn't end.
            auto next_it = lower_bound_;
            ++next_it;
            set_value(next, next_it);

            // However we *must* not be past next.
            RANGE_ASSERT(is_lower_than(next, next_it));
        }

        return *this;
    }

    // seek(index) updates lower_bound for index, updating lower_bound_ as needed.
    cached_lower_bound_impl &seek(const index_type &seek_to) {
        // Optimize seeking to  forward
        if (index_ == seek_to) {
            // seek to self is a NOOP.  To reset lower bound after a map change, use invalidate
        } else if (index_ < seek_to) {
            // See if the current or next ranges are the appropriate lower_bound... should be a common use case
            if (is_lower_than(seek_to, lower_bound_)) {
                // lower_bound_ is still the correct lower bound
                update(seek_to);
            } else {
                // Look to see if the next range is the new lower_bound (and we aren't at end)
                auto next_it = lower_bound_;
                ++next_it;
                if (is_lower_than(seek_to, next_it)) {
                    // next_it is the correct new lower bound
                    set_value(seek_to, next_it);
                } else {
                    // We don't know where we are...  and we aren't going to walk the tree looking for seek_to.
                    set_value(seek_to, lower_bound(seek_to));
                }
            }
        } else {
            // General case... this is += so we're not implmenting optimized negative offset logic
            set_value(seek_to, lower_bound(seek_to));
        }
        return *this;
    }

    // Advance the cached location by offset.
    cached_lower_bound_impl &offset(const index_type &offset) {
        const index_type next = index_ + offset;
        return seek(next);
    }

    // invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations
    // Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_
    cached_lower_bound_impl &invalidate(index_type index) {
        set_value(index, lower_bound(index));
        return *this;
    }

    // For times when the application knows what it's done to the underlying map... (with assert in set_value)
    cached_lower_bound_impl &invalidate(const iterator &hint, index_type index) {
        set_value(index, hint);
        return *this;
    }

    cached_lower_bound_impl &invalidate() { return invalidate(index_); }

    // Allow a hint for a *valid* lower bound for current index
    // TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...)
    cached_lower_bound_impl &invalidate(const iterator &hint) {
        if ((hint != end_) && hint->first.includes(index_)) {
            auto index = index_;  // by copy set modifies in place
            set_value(index, hint);
        } else {
            invalidate();
        }
        return *this;
    }

    // The offset in index type to the next change (the end of the current range, or the transition from invalid to
    // valid.  If invalid and at_end, returns index_type(0)
    index_type distance_to_edge() {
        if (valid_) {
            // Distance to edge of
            return lower_bound_->first.end - index_;
        } else if (at_end()) {
            return index_type(0);
        } else {
            return lower_bound_->first.begin - index_;
        }
    }

    Map &map() { return *map_; }
    const Map &map() const { return *map_; }

    // Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use.
    cached_lower_bound_impl()
        : map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {}
    cached_lower_bound_impl(Map &map, const index_type &index)
        : map_(&map),
          end_(map.end()),
          pos_(index_, lower_bound_, valid_),
          index_(index),
          lower_bound_(lower_bound(index)),
          valid_(is_valid()) {}
};

template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type>
const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) {
    if (clb->valid) {
        return clb->lower_bound->second;
    }
    return default_value;
}

// Split a range into pieces bound by the intersection of the iterator's range and the supplied range
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range) {
    assert(in != map.end());  // Not designed for use with invalid iterators...
    const auto in_range = in->first;
    const auto split_range = in_range & range;

    if (split_range.empty()) return map.end();

    auto pos = in;
    if (split_range.begin != in_range.begin) {
        pos = map.split(pos, split_range.begin);
        ++pos;
    }
    if (split_range.end != in_range.end) {
        pos = map.split(pos, split_range.end);
    }
    return pos;
}

// Apply an operation over a range map, infilling where content is absent, updating where content is present.
// The passed pos must *either* be strictly less than range or *is* lower_bound (which may be end)
// Trims to range boundaries.
// infill op doesn't have to alter map, but mustn't invalidate iterators passed to it. (i.e. no erasure)
// infill data (default mapped value or other initial value) is contained with ops.
// update allows existing ranges to be updated (merged, whatever) based on data contained in ops.  All iterators
// passed to update are already trimmed to fit within range.
template <typename RangeMap, typename InfillUpdateOps, typename Iterator = typename RangeMap::iterator>
Iterator infill_update_range(RangeMap &map, Iterator pos, const typename RangeMap::key_type &range, const InfillUpdateOps &ops) {
    using KeyType = typename RangeMap::key_type;
    using IndexType = typename RangeMap::index_type;

    const auto end = map.end();
    assert((pos == end) || (pos == map.lower_bound(range)) || pos->first.strictly_less(range));

    if (range.empty()) return pos;
    if (pos == end) {
        // Only pass pos == end for range tail after last entry
        assert(end == map.lower_bound(range));
    } else if (pos->first.strictly_less(range)) {
        // pos isn't lower_bound for range (it's less than range), however, if range is monotonically increasing it's likely
        // the next entry in the map will be the lower bound.

        // If the new (pos + 1) *isn't* stricly_less and pos is,
        // (pos + 1) must be the lower_bound, otherwise we have to look for it O(log n)
        ++pos;
        if ((pos != end) && pos->first.strictly_less(range)) {
            pos = map.lower_bound(range);
        }
        assert(pos == map.lower_bound(range));
    }

    if ((pos != end) && (range.begin > pos->first.begin)) {
        // lower bound starts before the range, trim and advance
        pos = map.split(pos, range.begin);
        ++pos;
    }

    IndexType current_begin = range.begin;
    while (pos != end && current_begin < range.end) {
        if (current_begin < pos->first.begin) {
            // The current_begin is pointing to the beginning of a gap to infill (we supply pos for "insert in front of" calls)
            ops.infill(map, pos, KeyType(current_begin, std::min(range.end, pos->first.begin)));
            // Advance current begin, but *not* pos as it's the next valid value. (infill shall not invalidate pos)
            current_begin = pos->first.begin;
        } else {
            // The current_begin is pointing to the next existing value to update
            assert(current_begin == pos->first.begin);

            // We need to run the update operation on the valid portion of the current value.
            // If this entry overlaps end-of-range we need to trim it to the range
            if (pos->first.end > range.end) {
                pos = map.split(pos, range.end);
            }

            // We have a valid fully contained range, apply update op
            ops.update(pos);

            // Advance the current location and map entry
            current_begin = pos->first.end;
            ++pos;
        }
    }

    // Fill to the end as needed
    if (current_begin < range.end) {
        ops.infill(map, pos, KeyType(current_begin, range.end));
    }

    return pos;
}

template <typename RangeMap, typename InfillUpdateOps>
void infill_update_range(RangeMap &map, const typename RangeMap::key_type &range, const InfillUpdateOps &ops) {
    if (range.empty()) return;
    auto pos = map.lower_bound(range);
    infill_update_range(map, pos, range, ops);
}

// Parallel iterator
// Traverse to range maps over the the same range, but without assumptions of aligned ranges.
// ++ increments to the next point where on of the two maps changes range, giving a range over which the two
// maps do not transition ranges
template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type>
class parallel_iterator {
  public:
    using key_type = KeyType;
    using index_type = typename key_type::index_type;

    // The traits keep the iterator/const_interator consistent with the constness of the map.
    using map_type_A = MapA;
    using plain_map_type_A = typename std::remove_const<MapA>::type;  // Allow instatiation with const or non-const Map
    using key_type_A = typename plain_map_type_A::key_type;
    using index_type_A = typename plain_map_type_A::index_type;
    using iterator_A = const_correct_iterator<map_type_A>;
    using lower_bound_A = cached_lower_bound_impl<map_type_A>;

    using map_type_B = MapB;
    using plain_map_type_B = typename std::remove_const<MapB>::type;
    using key_type_B = typename plain_map_type_B::key_type;
    using index_type_B = typename plain_map_type_B::index_type;
    using iterator_B = const_correct_iterator<map_type_B>;
    using lower_bound_B = cached_lower_bound_impl<map_type_B>;

    // This is the value we'll always be returning, but the referenced object will be updated by the operations
    struct value_type {
        const key_type &range;
        const lower_bound_A &pos_A;
        const lower_bound_B &pos_B;
        value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_)
            : range(range_), pos_A(pos_A_), pos_B(pos_B_) {}
    };

  private:
    lower_bound_A pos_A_;
    lower_bound_B pos_B_;
    key_type range_;
    value_type pos_;
    index_type compute_delta() {
        auto delta_A = pos_A_.distance_to_edge();
        auto delta_B = pos_B_.distance_to_edge();
        index_type delta_min;

        // If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
        if (delta_A == 0) {  // lower A is at end
            delta_min = static_cast<index_type>(delta_B);
        } else if (delta_B == 0) {  // lower B is at end
            delta_min = static_cast<index_type>(delta_A);
        } else {
            // Neither are at end, use the nearest edge, s.t. over this range A and B are both constant
            delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B));
        }
        return delta_min;
    }

  public:
    // Default constructed object will report range empty (for end checks), but otherwise is unsafe to use
    parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {}
    parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index)
        : pos_A_(map_A, static_cast<index_type_A>(index)),
          pos_B_(map_B, static_cast<index_type_B>(index)),
          range_(index, index + compute_delta()),
          pos_(range_, pos_A_, pos_B_) {}

    // Advance to the next spot one of the two maps changes
    parallel_iterator &operator++() {
        const auto start = range_.end;         // we computed this the last time we set range
        const auto delta = range_.distance();  // we computed this the last time we set range
        RANGE_ASSERT(delta != 0);              // Trying to increment past end

        pos_A_.offset(static_cast<index_type_A>(delta));
        pos_B_.offset(static_cast<index_type_B>(delta));

        range_ = key_type(start, start + compute_delta());  // find the next boundary (must be after offset)
        RANGE_ASSERT(pos_A_->index == start);
        RANGE_ASSERT(pos_B_->index == start);

        return *this;
    }

    // Seeks to a specific index in both maps reseting range.  Cannot guarantee range.begin is on edge boundary,
    /// but range.end will be.  Lower bound objects assumed to invalidate their cached lower bounds on seek.
    parallel_iterator &seek(const index_type &index) {
        pos_A_.seek(static_cast<index_type_A>(index));
        pos_B_.seek(static_cast<index_type_B>(index));
        range_ = key_type(index, index + compute_delta());
        RANGE_ASSERT(pos_A_->index == index);
        RANGE_ASSERT(pos_A_->index == pos_B_->index);
        return *this;
    }

    // Invalidates the lower_bound caches, reseting range.  Cannot guarantee range.begin is on edge boundary,
    // but range.end will be.
    parallel_iterator &invalidate() {
        const index_type start = range_.begin;
        seek(start);
        return *this;
    }

    parallel_iterator &invalidate_A() {
        const index_type index = range_.begin;
        pos_A_.invalidate(static_cast<index_type_A>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &invalidate_A(const iterator_A &hint) {
        const index_type index = range_.begin;
        pos_A_.invalidate(hint, static_cast<index_type_A>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &invalidate_B() {
        const index_type index = range_.begin;
        pos_B_.invalidate(static_cast<index_type_B>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &invalidate_B(const iterator_B &hint) {
        const index_type index = range_.begin;
        pos_B_.invalidate(hint, static_cast<index_type_B>(index));
        range_ = key_type(index, index + compute_delta());
        return *this;
    }

    parallel_iterator &trim_A() {
        if (pos_A_->valid && (range_ != pos_A_->lower_bound->first)) {
            split(pos_A_->lower_bound, pos_A_.map(), range_);
            invalidate_A();
        }
        return *this;
    }

    // The return is const because we are sharing the internal state directly.
    const value_type &operator*() const { return pos_; }
    const value_type *operator->() const { return &pos_; }
};

template <typename DstRangeMap, typename SrcRangeMap, typename Updater,
          typename SourceIterator = typename SrcRangeMap::const_iterator>
void splice(DstRangeMap &to, const SrcRangeMap &from, SourceIterator begin, SourceIterator end, const Updater &updater) {
    if (from.empty() || (begin == end) || (begin == from.cend())) return;  // nothing to merge.

    using ParallelIterator = parallel_iterator<DstRangeMap, const SrcRangeMap>;
    using Key = typename SrcRangeMap::key_type;
    using CachedLowerBound = cached_lower_bound_impl<DstRangeMap>;
    using ConstCachedLowerBound = cached_lower_bound_impl<const SrcRangeMap>;
    ParallelIterator par_it(to, from, begin->first.begin);
    while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) {
        const Key &range = par_it->range;
        const CachedLowerBound &to_lb = par_it->pos_A;
        const ConstCachedLowerBound &from_lb = par_it->pos_B;
        if (from_lb->valid) {
            auto read_it = from_lb->lower_bound;
            auto write_it = to_lb->lower_bound;
            // Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span
            // transitions between map entries or between valid and invalid ranges)
            if (to_lb->valid) {
                if (write_it->first == range) {
                    // if the source and destination ranges match we can overwrite everything
                    updater.update(write_it->second, read_it->second);
                } else {
                    // otherwise we need to split the destination range.
                    auto value_to_update = write_it->second; // intentional copy
                    updater.update(value_to_update, read_it->second);
                    auto intersected_range = write_it->first & range;
                    to.overwrite_range(to_lb->lower_bound, std::make_pair(intersected_range, value_to_update));
                    par_it.invalidate_A();  // we've changed map 'to' behind to_lb's back... let it know.
                }
            } else {
                // Insert into the gap.
                auto opt = updater.insert(read_it->second);
                if (opt) {
                    to.insert(write_it, std::make_pair(range, std::move(*opt)));
                    par_it.invalidate_A();  // we've changed map 'to' behind to_lb's back... let it know.
                }
            }
        }
        ++par_it;  // next range over which both 'to' and 'from' stay constant
    }
}
// And short hand for "from begin to end"
template <typename DstRangeMap, typename SrcRangeMap, typename Updater>
void splice(DstRangeMap &to, const SrcRangeMap &from, const Updater &updater) {
    splice(to, from, from.cbegin(), from.cend(), updater);
}

template <typename T>
struct update_prefer_source {
    bool update(T &dst, const T &src) const {
        if (dst != src) {
            dst = src;
            return true;
        }
        return false;
    }

    std::optional<T> insert(const T &src) const { return std::optional<T>(vvl::in_place, src); }
};

template <typename T>
struct update_prefer_dest {
    bool update([[maybe_unused]] T &dst, [[maybe_unused]] const T &src) const { return false; }

    std::optional<T> insert(const T &src) const { return std::optional<T>(vvl::in_place, src); }
};

template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter, [[maybe_unused]] SourceIterator begin,
            [[maybe_unused]] SourceIterator end) {
    if (arbiter == value_precedence::prefer_source) {
        return splice(to, from, from.cbegin(), from.cend(), update_prefer_source<typename RangeMap::mapped_type>());
    } else {
        return splice(to, from, from.cbegin(), from.cend(), update_prefer_dest<typename RangeMap::mapped_type>());
    }
}

// And short hand for "from begin to end"
template <typename RangeMap>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter) {
    return splice(to, from, arbiter, from.cbegin(), from.cend());
}

template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type>
bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) {
    using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<Map>;
    CachedLowerBound pos(map, range.begin);

    bool updated = false;
    while (range.includes(pos->index)) {
        if (!pos->valid) {
            if (precedence == value_precedence::prefer_source) {
                // We can convert this into and overwrite...
                map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
                return true;
            }
            // Fill in the leading space (or in the case of pos at end the trailing space
            const auto start = pos->index;
            auto it = pos->lower_bound;
            const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
            map.insert(it, std::make_pair(Range(start, limit), value));
            // We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
            // will fix this (and move the state to valid)
            pos.seek(limit);
            updated = true;
        }
        // Note that after the "fill" operation pos may have become valid so we check again
        if (pos->valid) {
            if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) {
                // We've found a place where we're changing the value, at this point might as well simply over write the range
                // and be done with it. (save on later merge operations....)
                pos.seek(range.begin);
                map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
                return true;

            } else {
                // "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
                // Point just past the end of this section,  if it's within the given range, it will get filled next iteration
                // ++pos could move us past the end of range (which would exit the loop) so we don't use it.
                pos.seek(pos->lower_bound->first.end);
            }
        }
    }
    return updated;
}

//  combines directly adjacent ranges with equal RangeMap::mapped_type .
template <typename RangeMap>
void consolidate(RangeMap &map) {
    using Value = typename RangeMap::value_type;
    using Key = typename RangeMap::key_type;
    using It = typename RangeMap::iterator;

    It current = map.begin();
    const It map_end = map.end();

    // To be included in a merge range there must be no gap in the Key space, and the mapped_type values must match
    auto can_merge = [](const It &last, const It &cur) {
        return cur->first.begin == last->first.end && cur->second == last->second;
    };

    while (current != map_end) {
        // Establish a trival merge range at the current location, advancing current. Merge range is inclusive of merge_last
        const It merge_first = current;
        It merge_last = current;
        ++current;

        // Expand the merge range as much as possible
        while (current != map_end && can_merge(merge_last, current)) {
            merge_last = current;
            ++current;
        }

        // Current isn't in the active merge range. If there is a non-trivial merge range, we resolve it here.
        if (merge_first != merge_last) {
            // IFF there is more than one range in (merge_first, merge_last)  <- again noting the *inclusive* last
            // Create a new Val spanning (first, last), substitute it for the multiple entries.
            Value merged_value = std::make_pair(Key(merge_first->first.begin, merge_last->first.end), merge_last->second);
            // Note that current points to merge_last + 1, and is valid even if at map_end for these operations
            map.erase(merge_first, current);
            map.insert(current, std::move(merged_value));
        }
    }
}

}  // namespace sparse_container