1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
|
/* Copyright (c) 2019-2025 The Khronos Group Inc.
* Copyright (c) 2019-2025 Valve Corporation
* Copyright (c) 2019-2025 LunarG, Inc.
* Copyright (C) 2019-2025 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#pragma once
#include <algorithm>
#include <cassert>
#include <map>
#include <optional>
#include <utility>
#include "containers/range.h"
#include "containers/container_utils.h"
#define RANGE_ASSERT(b) assert(b)
namespace sparse_container {
enum class value_precedence { prefer_source, prefer_dest };
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range);
// range_map
//
// The range based sparse map implemented on the ImplMap.
// Implements an ordered map of non-overlapping, non-empty ranges
template <typename Key, typename T, typename ImplMap = std::map<vvl::range<Key>, T>>
class range_map {
private:
ImplMap impl_map_;
using ImplIterator = typename ImplMap::iterator;
using ImplConstIterator = typename ImplMap::const_iterator;
template <typename IndexType>
using range = vvl::range<IndexType>;
public:
using mapped_type = typename ImplMap::mapped_type;
using value_type = typename ImplMap::value_type;
using key_type = typename ImplMap::key_type;
using index_type = typename key_type::index_type;
using size_type = typename ImplMap::size_type;
protected:
template <typename ThisType>
using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin());
template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) {
if (key.valid()) {
// ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key,
// not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin
// with the operator > in range, we can safely use an empty range for comparison
auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin));
// If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin
// or lower is at end
if (!that.at_impl_begin(lower)) {
auto prev = lower;
--prev;
// If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower
if (key.begin < prev->first.end) {
lower = prev;
}
}
return lower;
}
// Key is ill-formed
return that.impl_end(); // Point safely to nothing.
}
ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); }
ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); }
template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) {
if (key.valid()) {
// the upper bound is the first range that is full greater (upper.begin >= key.end
// we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is
// exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound
auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end));
if (!that.at_impl_end(upper) && (upper != that.impl_begin())) {
auto prev = upper;
--prev;
// We know key.end is >= prev.begin, the only question is whether it's ==
if (prev->first.begin == key.end) {
upper = prev;
}
}
return upper;
}
return that.impl_end(); // Point safely to nothing.
}
ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); }
ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); }
ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); }
ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); }
bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); }
ImplIterator impl_end() { return impl_map_.end(); }
ImplConstIterator impl_end() const { return impl_map_.end(); }
ImplIterator impl_begin() { return impl_map_.begin(); }
ImplConstIterator impl_begin() const { return impl_map_.begin(); }
inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); }
inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); }
inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); }
inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); }
ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); }
template <typename Value>
ImplIterator impl_insert(const ImplIterator &hint, Value &&value) {
RANGE_ASSERT(impl_not_found(value.first));
RANGE_ASSERT(value.first.non_empty());
return impl_map_.emplace_hint(hint, std::forward<Value>(value));
}
ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) {
return impl_insert(hint, std::make_pair(key, value));
}
ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) {
return impl_insert(hint, key_type(begin, end), value);
}
ImplIterator split_impl(const ImplIterator &split_it, const index_type &index) {
const auto range = split_it->first;
if (!range.includes(index)) {
return split_it; // If we don't have a valid split point, just return the iterator
}
key_type lower_range(range.begin, index);
if (lower_range.empty()) {
// This is a noop, we're keeping the upper half which is the same as split_it
return split_it;
}
// Save the contents and erase
auto value = split_it->second;
auto next_it = impl_map_.erase(split_it);
key_type upper_range(index, range.end);
assert(!upper_range.empty()); // Upper range cannot be empty
// Copy value to the upper range
// NOTE: we insert from upper to lower because that's what emplace_hint can do in constant time
RANGE_ASSERT(impl_map_.find(upper_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(upper_range, value));
// Move value to the lower range (we can move since the upper range already got a copy of value)
RANGE_ASSERT(impl_map_.find(lower_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(lower_range, std::move(value)));
// Iterator to the beginning of the lower range
return next_it;
}
ImplIterator split_impl_keep_only_lower(const ImplIterator &split_it, const index_type &index) {
const auto range = split_it->first;
if (!range.includes(index)) {
return split_it; // If we don't have a valid split point, just return the iterator
}
key_type lower_range(range.begin, index);
// Save the contents and erase
auto value = split_it->second;
auto next_it = impl_map_.erase(split_it);
if (lower_range.empty()) {
// This effectively an erase because this function does not keep upper range and lower is empty
return next_it;
}
RANGE_ASSERT(impl_map_.find(lower_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(lower_range, std::move(value)));
// Iterator to the beginning of the lower range
return next_it;
}
template <typename TouchOp>
ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower, const TouchOp &touch_mapped_value) {
// Logic assumes we are starting at a valid lower bound
RANGE_ASSERT(!at_impl_end(lower));
RANGE_ASSERT(lower == lower_bound_impl(bounds));
// Trim/infill the beginning if needed
auto current = lower;
const auto first_begin = current->first.begin;
if (bounds.begin > first_begin) {
// Preserve the portion of lower bound excluded from bounds
if (current->first.end <= bounds.end) {
// If current ends within the erased bound we can discard the the upper portion of current
current = split_impl_keep_only_lower(current, bounds.begin);
} else {
// Keep the upper portion of current for the later split below
current = split_impl(current, bounds.begin);
}
// Exclude the preserved portion
++current;
RANGE_ASSERT(current == lower_bound_impl(bounds));
}
// Loop over completely contained entries and erase them
while (!at_impl_end(current) && (current->first.end <= bounds.end)) {
if (touch_mapped_value(current->second)) {
current = impl_erase(current);
} else {
++current;
}
}
if (!at_impl_end(current) && current->first.includes(bounds.end)) {
// last entry extends past the end of the bounds range, snip to only erase the bounded section
current = split_impl(current, bounds.end);
// test if lower_bound (eventually) computed in split_impl is not empty.
// If it is not empty, then it contains values inside the bounds range,
// they need to be touched
if ((current->first & bounds).non_empty()) {
if (touch_mapped_value(current->second)) {
current = impl_erase(current);
} else {
// make current point to upper bound
++current;
}
}
}
RANGE_ASSERT(current == upper_bound_impl(bounds));
return current;
}
template <typename ValueType, typename WrappedIterator_>
struct iterator_impl {
public:
friend class range_map;
using WrappedIterator = WrappedIterator_;
private:
WrappedIterator pos_;
// Create an iterator at a specific internal state -- only from the parent container
iterator_impl(const WrappedIterator &pos) : pos_(pos) {}
public:
iterator_impl() : iterator_impl(WrappedIterator()) {}
iterator_impl(const iterator_impl &other) : pos_(other.pos_) {}
iterator_impl &operator=(const iterator_impl &rhs) {
pos_ = rhs.pos_;
return *this;
}
inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; }
inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; }
ValueType &operator*() const { return *pos_; }
ValueType *operator->() const { return &*pos_; }
iterator_impl &operator++() {
++pos_;
return *this;
}
iterator_impl &operator--() {
--pos_;
return *this;
}
// To allow for iterator -> const_iterator construction
// NOTE: while it breaks strict encapsulation, it does so less than friend
const WrappedIterator &get_pos() const { return pos_; };
};
public:
using iterator = iterator_impl<value_type, ImplIterator>;
// The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
class const_iterator : public iterator_impl<const value_type, ImplConstIterator> {
using Base = iterator_impl<const value_type, ImplConstIterator>;
friend range_map;
public:
const_iterator &operator=(const const_iterator &other) {
Base::operator=(other);
return *this;
}
const_iterator(const const_iterator &other) : Base(other){};
const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {}
const_iterator() : Base() {}
private:
const_iterator(const ImplConstIterator &pos) : Base(pos) {}
};
private:
inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); }
inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); }
inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); }
public:
iterator end() { return iterator(impl_map_.end()); } // policy and bounds don't matter for end
const_iterator end() const { return const_iterator(impl_map_.end()); } // policy and bounds don't matter for end
iterator begin() { return iterator(impl_map_.begin()); } // with default policy, and thus no bounds
const_iterator begin() const { return const_iterator(impl_map_.begin()); } // with default policy, and thus no bounds
const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); } // with default policy, and thus no bounds
const_iterator cend() const { return const_iterator(impl_map_.cend()); } // with default policy, and thus no bounds
iterator erase(const iterator &pos) {
RANGE_ASSERT(!at_end(pos));
return iterator(impl_erase(pos.pos_));
}
iterator erase(range<iterator> bounds) {
auto current = bounds.begin.pos_;
while (current != bounds.end.pos_) {
RANGE_ASSERT(!at_impl_end(current));
current = impl_map_.erase(current);
}
RANGE_ASSERT(current == bounds.end.pos_);
return current;
}
iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); }
// Before trying to erase a range, function touch_mapped_value is called on the mapped value.
// touch_mapped_value is allowed to have it's parameter type to be non const reference.
// If it returns true, regular erase will occur.
// Else, range is kept.
template <typename TouchOp>
iterator erase_range_or_touch(const key_type &bounds, const TouchOp &touch_mapped_value) {
auto lower = lower_bound_impl(bounds);
if (at_impl_end(lower) || !bounds.intersects(lower->first)) {
// There is nothing in this range lower bound is above bound
return iterator(lower);
}
auto next = impl_erase_range(bounds, lower, touch_mapped_value);
return iterator(next);
}
iterator erase_range(const key_type &bounds) {
return erase_range_or_touch(bounds, [](const auto &) { return true; });
}
void clear() { impl_map_.clear(); }
iterator find(const key_type &key) { return iterator(impl_map_.find(key)); }
const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); }
iterator find(const index_type &index) {
auto lower = lower_bound(range<index_type>(index, index + 1));
if (!at_end(lower) && lower->first.includes(index)) {
return lower;
}
return end();
}
const_iterator find(const index_type &index) const {
auto lower = lower_bound(key_type(index, index + 1));
if (!at_end(lower) && lower->first.includes(index)) {
return lower;
}
return end();
}
iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); }
const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); }
iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); }
const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); }
range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; }
range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; }
range<const_iterator> bounds(const key_type &key) const { return cbounds(key); }
using insert_pair = std::pair<iterator, bool>;
// This is traditional no replacement insert.
insert_pair insert(const value_type &value) {
const auto &key = value.first;
if (!key.non_empty()) {
// It's an invalid key, early bail pointing to end
return std::make_pair(end(), false);
}
// Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
// we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
auto lower = lower_bound_impl(key);
if (at_impl_end(lower) || !lower->first.intersects(key)) {
// range is not even partially overlapped, and lower is strictly > than key
auto impl_insert = impl_map_.emplace_hint(lower, value);
// auto impl_insert = impl_map_.emplace(value);
iterator wrap_it(impl_insert);
return std::make_pair(wrap_it, true);
}
// We don't replace
return std::make_pair(iterator(lower), false);
};
iterator insert(const_iterator hint, const value_type &value) {
bool hint_open;
ImplConstIterator impl_next = hint.pos_;
if (impl_map_.empty()) {
hint_open = true;
} else if (impl_next == impl_map_.cbegin()) {
hint_open = value.first.strictly_less(impl_next->first);
} else if (impl_next == impl_map_.cend()) {
auto impl_prev = impl_next;
--impl_prev;
hint_open = value.first.strictly_greater(impl_prev->first);
} else {
auto impl_prev = impl_next;
--impl_prev;
hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first);
}
if (!hint_open) {
// Hint was unhelpful, fall back to the non-hinted version
auto plain_insert = insert(value);
return plain_insert.first;
}
auto impl_insert = impl_map_.insert(impl_next, value);
return iterator(impl_insert);
}
iterator split(const iterator whole_it, const index_type &index) {
auto split_it = split_impl(whole_it.pos_, index);
return iterator(split_it);
}
// The overwrite hint here is lower.... and if it's not right... this fails
template <typename Value>
iterator overwrite_range(const iterator &lower, Value &&value) {
// We're not robust to a bad hint, so detect it with extreme prejudice
// TODO: Add bad hint test to make this robust...
auto lower_impl = lower.pos_;
auto insert_hint = lower_impl;
if (!at_impl_end(lower_impl)) {
// If we're at end (and the hint is good, there's nothing to erase
RANGE_ASSERT(lower == lower_bound(value.first));
insert_hint = impl_erase_range(value.first, lower_impl, [](const auto &) { return true; });
}
auto inserted = impl_insert(insert_hint, std::forward<Value>(value));
return iterator(inserted);
}
template <typename Value>
iterator overwrite_range(Value &&value) {
auto lower = lower_bound(value.first);
return overwrite_range(lower, value);
}
bool empty() const { return impl_map_.empty(); }
size_type size() const { return impl_map_.size(); }
// For configuration/debug use // Use with caution...
ImplMap &get_implementation_map() { return impl_map_; }
const ImplMap &get_implementation_map() const { return impl_map_; }
};
template <typename Container>
using const_correct_iterator = decltype(std::declval<Container>().begin());
// Forward index iterator, tracking an index value and the appropos lower bound
// returns an index_type, lower_bound pair. Supports ++, offset, and seek affecting the index,
// lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced
// iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1)
//
// Must be explicitly invalidated when the underlying map is changed.
template <typename Map>
class cached_lower_bound_impl {
using plain_map_type = typename std::remove_const<Map>::type; // Allow instatiation with const or non-const Map
public:
using iterator = const_correct_iterator<Map>;
using key_type = typename plain_map_type::key_type;
using mapped_type = typename plain_map_type::mapped_type;
// Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state
// and we don't want and caller altering internal state.
using index_type = typename Map::index_type;
struct value_type {
const index_type &index;
const iterator &lower_bound;
const bool &valid;
value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_)
: index(index_), lower_bound(lower_bound_), valid(valid_) {}
};
private:
Map *const map_;
const iterator end_;
value_type pos_;
index_type index_;
iterator lower_bound_;
bool valid_;
bool is_valid() const { return includes(index_); }
// Allow reuse of a type with const semantics
void set_value(const index_type &index, const iterator &it) {
RANGE_ASSERT(it == lower_bound(index));
index_ = index;
lower_bound_ = it;
valid_ = is_valid();
}
void update(const index_type &index) {
RANGE_ASSERT(lower_bound_ == lower_bound(index));
index_ = index;
valid_ = is_valid();
}
inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); }
inline bool at_end(const iterator &it) const { return it == end_; }
bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); }
public:
// The cached lower bound knows the parent map, and thus can tell us this...
inline bool at_end() const { return at_end(lower_bound_); }
// includes(index) is a convenience function to test if the index would be in the currently cached lower bound
bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); }
// The return is const because we are sharing the internal state directly.
const value_type &operator*() const { return pos_; }
const value_type *operator->() const { return &pos_; }
// Advance the cached location by 1
cached_lower_bound_impl &operator++() {
const index_type next = index_ + 1;
if (is_lower_than(next, lower_bound_)) {
update(next);
} else {
// if we're past pos_->second, next *must* be the new lower bound.
// NOTE: that next can't be past end, so lower_bound_ isn't end.
auto next_it = lower_bound_;
++next_it;
set_value(next, next_it);
// However we *must* not be past next.
RANGE_ASSERT(is_lower_than(next, next_it));
}
return *this;
}
// seek(index) updates lower_bound for index, updating lower_bound_ as needed.
cached_lower_bound_impl &seek(const index_type &seek_to) {
// Optimize seeking to forward
if (index_ == seek_to) {
// seek to self is a NOOP. To reset lower bound after a map change, use invalidate
} else if (index_ < seek_to) {
// See if the current or next ranges are the appropriate lower_bound... should be a common use case
if (is_lower_than(seek_to, lower_bound_)) {
// lower_bound_ is still the correct lower bound
update(seek_to);
} else {
// Look to see if the next range is the new lower_bound (and we aren't at end)
auto next_it = lower_bound_;
++next_it;
if (is_lower_than(seek_to, next_it)) {
// next_it is the correct new lower bound
set_value(seek_to, next_it);
} else {
// We don't know where we are... and we aren't going to walk the tree looking for seek_to.
set_value(seek_to, lower_bound(seek_to));
}
}
} else {
// General case... this is += so we're not implmenting optimized negative offset logic
set_value(seek_to, lower_bound(seek_to));
}
return *this;
}
// Advance the cached location by offset.
cached_lower_bound_impl &offset(const index_type &offset) {
const index_type next = index_ + offset;
return seek(next);
}
// invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations
// Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_
cached_lower_bound_impl &invalidate(index_type index) {
set_value(index, lower_bound(index));
return *this;
}
// For times when the application knows what it's done to the underlying map... (with assert in set_value)
cached_lower_bound_impl &invalidate(const iterator &hint, index_type index) {
set_value(index, hint);
return *this;
}
cached_lower_bound_impl &invalidate() { return invalidate(index_); }
// Allow a hint for a *valid* lower bound for current index
// TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...)
cached_lower_bound_impl &invalidate(const iterator &hint) {
if ((hint != end_) && hint->first.includes(index_)) {
auto index = index_; // by copy set modifies in place
set_value(index, hint);
} else {
invalidate();
}
return *this;
}
// The offset in index type to the next change (the end of the current range, or the transition from invalid to
// valid. If invalid and at_end, returns index_type(0)
index_type distance_to_edge() {
if (valid_) {
// Distance to edge of
return lower_bound_->first.end - index_;
} else if (at_end()) {
return index_type(0);
} else {
return lower_bound_->first.begin - index_;
}
}
Map &map() { return *map_; }
const Map &map() const { return *map_; }
// Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use.
cached_lower_bound_impl()
: map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {}
cached_lower_bound_impl(Map &map, const index_type &index)
: map_(&map),
end_(map.end()),
pos_(index_, lower_bound_, valid_),
index_(index),
lower_bound_(lower_bound(index)),
valid_(is_valid()) {}
};
template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type>
const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) {
if (clb->valid) {
return clb->lower_bound->second;
}
return default_value;
}
// Split a range into pieces bound by the intersection of the iterator's range and the supplied range
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range) {
assert(in != map.end()); // Not designed for use with invalid iterators...
const auto in_range = in->first;
const auto split_range = in_range & range;
if (split_range.empty()) return map.end();
auto pos = in;
if (split_range.begin != in_range.begin) {
pos = map.split(pos, split_range.begin);
++pos;
}
if (split_range.end != in_range.end) {
pos = map.split(pos, split_range.end);
}
return pos;
}
// Apply an operation over a range map, infilling where content is absent, updating where content is present.
// The passed pos must *either* be strictly less than range or *is* lower_bound (which may be end)
// Trims to range boundaries.
// infill op doesn't have to alter map, but mustn't invalidate iterators passed to it. (i.e. no erasure)
// infill data (default mapped value or other initial value) is contained with ops.
// update allows existing ranges to be updated (merged, whatever) based on data contained in ops. All iterators
// passed to update are already trimmed to fit within range.
template <typename RangeMap, typename InfillUpdateOps, typename Iterator = typename RangeMap::iterator>
Iterator infill_update_range(RangeMap &map, Iterator pos, const typename RangeMap::key_type &range, const InfillUpdateOps &ops) {
using KeyType = typename RangeMap::key_type;
using IndexType = typename RangeMap::index_type;
const auto end = map.end();
assert((pos == end) || (pos == map.lower_bound(range)) || pos->first.strictly_less(range));
if (range.empty()) return pos;
if (pos == end) {
// Only pass pos == end for range tail after last entry
assert(end == map.lower_bound(range));
} else if (pos->first.strictly_less(range)) {
// pos isn't lower_bound for range (it's less than range), however, if range is monotonically increasing it's likely
// the next entry in the map will be the lower bound.
// If the new (pos + 1) *isn't* stricly_less and pos is,
// (pos + 1) must be the lower_bound, otherwise we have to look for it O(log n)
++pos;
if ((pos != end) && pos->first.strictly_less(range)) {
pos = map.lower_bound(range);
}
assert(pos == map.lower_bound(range));
}
if ((pos != end) && (range.begin > pos->first.begin)) {
// lower bound starts before the range, trim and advance
pos = map.split(pos, range.begin);
++pos;
}
IndexType current_begin = range.begin;
while (pos != end && current_begin < range.end) {
if (current_begin < pos->first.begin) {
// The current_begin is pointing to the beginning of a gap to infill (we supply pos for "insert in front of" calls)
ops.infill(map, pos, KeyType(current_begin, std::min(range.end, pos->first.begin)));
// Advance current begin, but *not* pos as it's the next valid value. (infill shall not invalidate pos)
current_begin = pos->first.begin;
} else {
// The current_begin is pointing to the next existing value to update
assert(current_begin == pos->first.begin);
// We need to run the update operation on the valid portion of the current value.
// If this entry overlaps end-of-range we need to trim it to the range
if (pos->first.end > range.end) {
pos = map.split(pos, range.end);
}
// We have a valid fully contained range, apply update op
ops.update(pos);
// Advance the current location and map entry
current_begin = pos->first.end;
++pos;
}
}
// Fill to the end as needed
if (current_begin < range.end) {
ops.infill(map, pos, KeyType(current_begin, range.end));
}
return pos;
}
template <typename RangeMap, typename InfillUpdateOps>
void infill_update_range(RangeMap &map, const typename RangeMap::key_type &range, const InfillUpdateOps &ops) {
if (range.empty()) return;
auto pos = map.lower_bound(range);
infill_update_range(map, pos, range, ops);
}
// Parallel iterator
// Traverse to range maps over the the same range, but without assumptions of aligned ranges.
// ++ increments to the next point where on of the two maps changes range, giving a range over which the two
// maps do not transition ranges
template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type>
class parallel_iterator {
public:
using key_type = KeyType;
using index_type = typename key_type::index_type;
// The traits keep the iterator/const_interator consistent with the constness of the map.
using map_type_A = MapA;
using plain_map_type_A = typename std::remove_const<MapA>::type; // Allow instatiation with const or non-const Map
using key_type_A = typename plain_map_type_A::key_type;
using index_type_A = typename plain_map_type_A::index_type;
using iterator_A = const_correct_iterator<map_type_A>;
using lower_bound_A = cached_lower_bound_impl<map_type_A>;
using map_type_B = MapB;
using plain_map_type_B = typename std::remove_const<MapB>::type;
using key_type_B = typename plain_map_type_B::key_type;
using index_type_B = typename plain_map_type_B::index_type;
using iterator_B = const_correct_iterator<map_type_B>;
using lower_bound_B = cached_lower_bound_impl<map_type_B>;
// This is the value we'll always be returning, but the referenced object will be updated by the operations
struct value_type {
const key_type ⦥
const lower_bound_A &pos_A;
const lower_bound_B &pos_B;
value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_)
: range(range_), pos_A(pos_A_), pos_B(pos_B_) {}
};
private:
lower_bound_A pos_A_;
lower_bound_B pos_B_;
key_type range_;
value_type pos_;
index_type compute_delta() {
auto delta_A = pos_A_.distance_to_edge();
auto delta_B = pos_B_.distance_to_edge();
index_type delta_min;
// If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
if (delta_A == 0) { // lower A is at end
delta_min = static_cast<index_type>(delta_B);
} else if (delta_B == 0) { // lower B is at end
delta_min = static_cast<index_type>(delta_A);
} else {
// Neither are at end, use the nearest edge, s.t. over this range A and B are both constant
delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B));
}
return delta_min;
}
public:
// Default constructed object will report range empty (for end checks), but otherwise is unsafe to use
parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {}
parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index)
: pos_A_(map_A, static_cast<index_type_A>(index)),
pos_B_(map_B, static_cast<index_type_B>(index)),
range_(index, index + compute_delta()),
pos_(range_, pos_A_, pos_B_) {}
// Advance to the next spot one of the two maps changes
parallel_iterator &operator++() {
const auto start = range_.end; // we computed this the last time we set range
const auto delta = range_.distance(); // we computed this the last time we set range
RANGE_ASSERT(delta != 0); // Trying to increment past end
pos_A_.offset(static_cast<index_type_A>(delta));
pos_B_.offset(static_cast<index_type_B>(delta));
range_ = key_type(start, start + compute_delta()); // find the next boundary (must be after offset)
RANGE_ASSERT(pos_A_->index == start);
RANGE_ASSERT(pos_B_->index == start);
return *this;
}
// Seeks to a specific index in both maps reseting range. Cannot guarantee range.begin is on edge boundary,
/// but range.end will be. Lower bound objects assumed to invalidate their cached lower bounds on seek.
parallel_iterator &seek(const index_type &index) {
pos_A_.seek(static_cast<index_type_A>(index));
pos_B_.seek(static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
RANGE_ASSERT(pos_A_->index == index);
RANGE_ASSERT(pos_A_->index == pos_B_->index);
return *this;
}
// Invalidates the lower_bound caches, reseting range. Cannot guarantee range.begin is on edge boundary,
// but range.end will be.
parallel_iterator &invalidate() {
const index_type start = range_.begin;
seek(start);
return *this;
}
parallel_iterator &invalidate_A() {
const index_type index = range_.begin;
pos_A_.invalidate(static_cast<index_type_A>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_A(const iterator_A &hint) {
const index_type index = range_.begin;
pos_A_.invalidate(hint, static_cast<index_type_A>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_B() {
const index_type index = range_.begin;
pos_B_.invalidate(static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_B(const iterator_B &hint) {
const index_type index = range_.begin;
pos_B_.invalidate(hint, static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &trim_A() {
if (pos_A_->valid && (range_ != pos_A_->lower_bound->first)) {
split(pos_A_->lower_bound, pos_A_.map(), range_);
invalidate_A();
}
return *this;
}
// The return is const because we are sharing the internal state directly.
const value_type &operator*() const { return pos_; }
const value_type *operator->() const { return &pos_; }
};
template <typename DstRangeMap, typename SrcRangeMap, typename Updater,
typename SourceIterator = typename SrcRangeMap::const_iterator>
void splice(DstRangeMap &to, const SrcRangeMap &from, SourceIterator begin, SourceIterator end, const Updater &updater) {
if (from.empty() || (begin == end) || (begin == from.cend())) return; // nothing to merge.
using ParallelIterator = parallel_iterator<DstRangeMap, const SrcRangeMap>;
using Key = typename SrcRangeMap::key_type;
using CachedLowerBound = cached_lower_bound_impl<DstRangeMap>;
using ConstCachedLowerBound = cached_lower_bound_impl<const SrcRangeMap>;
ParallelIterator par_it(to, from, begin->first.begin);
while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) {
const Key &range = par_it->range;
const CachedLowerBound &to_lb = par_it->pos_A;
const ConstCachedLowerBound &from_lb = par_it->pos_B;
if (from_lb->valid) {
auto read_it = from_lb->lower_bound;
auto write_it = to_lb->lower_bound;
// Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span
// transitions between map entries or between valid and invalid ranges)
if (to_lb->valid) {
if (write_it->first == range) {
// if the source and destination ranges match we can overwrite everything
updater.update(write_it->second, read_it->second);
} else {
// otherwise we need to split the destination range.
auto value_to_update = write_it->second; // intentional copy
updater.update(value_to_update, read_it->second);
auto intersected_range = write_it->first & range;
to.overwrite_range(to_lb->lower_bound, std::make_pair(intersected_range, value_to_update));
par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know.
}
} else {
// Insert into the gap.
auto opt = updater.insert(read_it->second);
if (opt) {
to.insert(write_it, std::make_pair(range, std::move(*opt)));
par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know.
}
}
}
++par_it; // next range over which both 'to' and 'from' stay constant
}
}
// And short hand for "from begin to end"
template <typename DstRangeMap, typename SrcRangeMap, typename Updater>
void splice(DstRangeMap &to, const SrcRangeMap &from, const Updater &updater) {
splice(to, from, from.cbegin(), from.cend(), updater);
}
template <typename T>
struct update_prefer_source {
bool update(T &dst, const T &src) const {
if (dst != src) {
dst = src;
return true;
}
return false;
}
std::optional<T> insert(const T &src) const { return std::optional<T>(vvl::in_place, src); }
};
template <typename T>
struct update_prefer_dest {
bool update([[maybe_unused]] T &dst, [[maybe_unused]] const T &src) const { return false; }
std::optional<T> insert(const T &src) const { return std::optional<T>(vvl::in_place, src); }
};
template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter, [[maybe_unused]] SourceIterator begin,
[[maybe_unused]] SourceIterator end) {
if (arbiter == value_precedence::prefer_source) {
return splice(to, from, from.cbegin(), from.cend(), update_prefer_source<typename RangeMap::mapped_type>());
} else {
return splice(to, from, from.cbegin(), from.cend(), update_prefer_dest<typename RangeMap::mapped_type>());
}
}
// And short hand for "from begin to end"
template <typename RangeMap>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter) {
return splice(to, from, arbiter, from.cbegin(), from.cend());
}
template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type>
bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) {
using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<Map>;
CachedLowerBound pos(map, range.begin);
bool updated = false;
while (range.includes(pos->index)) {
if (!pos->valid) {
if (precedence == value_precedence::prefer_source) {
// We can convert this into and overwrite...
map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
return true;
}
// Fill in the leading space (or in the case of pos at end the trailing space
const auto start = pos->index;
auto it = pos->lower_bound;
const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
map.insert(it, std::make_pair(Range(start, limit), value));
// We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
// will fix this (and move the state to valid)
pos.seek(limit);
updated = true;
}
// Note that after the "fill" operation pos may have become valid so we check again
if (pos->valid) {
if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) {
// We've found a place where we're changing the value, at this point might as well simply over write the range
// and be done with it. (save on later merge operations....)
pos.seek(range.begin);
map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
return true;
} else {
// "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
// Point just past the end of this section, if it's within the given range, it will get filled next iteration
// ++pos could move us past the end of range (which would exit the loop) so we don't use it.
pos.seek(pos->lower_bound->first.end);
}
}
}
return updated;
}
// combines directly adjacent ranges with equal RangeMap::mapped_type .
template <typename RangeMap>
void consolidate(RangeMap &map) {
using Value = typename RangeMap::value_type;
using Key = typename RangeMap::key_type;
using It = typename RangeMap::iterator;
It current = map.begin();
const It map_end = map.end();
// To be included in a merge range there must be no gap in the Key space, and the mapped_type values must match
auto can_merge = [](const It &last, const It &cur) {
return cur->first.begin == last->first.end && cur->second == last->second;
};
while (current != map_end) {
// Establish a trival merge range at the current location, advancing current. Merge range is inclusive of merge_last
const It merge_first = current;
It merge_last = current;
++current;
// Expand the merge range as much as possible
while (current != map_end && can_merge(merge_last, current)) {
merge_last = current;
++current;
}
// Current isn't in the active merge range. If there is a non-trivial merge range, we resolve it here.
if (merge_first != merge_last) {
// IFF there is more than one range in (merge_first, merge_last) <- again noting the *inclusive* last
// Create a new Val spanning (first, last), substitute it for the multiple entries.
Value merged_value = std::make_pair(Key(merge_first->first.begin, merge_last->first.end), merge_last->second);
// Note that current points to merge_last + 1, and is valid even if at map_end for these operations
map.erase(merge_first, current);
map.insert(current, std::move(merged_value));
}
}
}
} // namespace sparse_container
|