1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/* Copyright (c) 2015-2017, 2019-2025 The Khronos Group Inc.
* Copyright (c) 2015-2017, 2019-2025 Valve Corporation
* Copyright (c) 2015-2017, 2019-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <utility>
#include "custom_containers.h"
// This is a wrapper around unordered_map that optimizes for the common case
// of only containing a small number of elements. The first N elements are stored
// inline in the object and don't require hashing or memory (de)allocation.
template <typename Key, typename value_type, typename inner_container_type, typename value_type_helper, int N>
class small_container {
protected:
bool small_data_allocated[N];
value_type small_data[N];
inner_container_type inner_cont;
value_type_helper helper;
public:
small_container() {
for (int i = 0; i < N; ++i) {
small_data_allocated[i] = false;
}
}
class iterator {
typedef typename inner_container_type::iterator inner_iterator;
friend class small_container<Key, value_type, inner_container_type, value_type_helper, N>;
small_container<Key, value_type, inner_container_type, value_type_helper, N> *parent;
int index;
inner_iterator it;
public:
iterator() {}
iterator operator++() {
if (index < N) {
index++;
while (index < N && !parent->small_data_allocated[index]) {
index++;
}
if (index < N) {
return *this;
}
it = parent->inner_cont.begin();
return *this;
}
++it;
return *this;
}
bool operator==(const iterator &other) const {
if ((index < N) != (other.index < N)) {
return false;
}
if (index < N) {
return (index == other.index);
}
return it == other.it;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
value_type &operator*() const {
if (index < N) {
return parent->small_data[index];
}
return *it;
}
value_type *operator->() const {
if (index < N) {
return &parent->small_data[index];
}
return &*it;
}
};
class const_iterator {
typedef typename inner_container_type::const_iterator inner_iterator;
friend class small_container<Key, value_type, inner_container_type, value_type_helper, N>;
const small_container<Key, value_type, inner_container_type, value_type_helper, N> *parent;
int index;
inner_iterator it;
public:
const_iterator() {}
const_iterator operator++() {
if (index < N) {
index++;
while (index < N && !parent->small_data_allocated[index]) {
index++;
}
if (index < N) {
return *this;
}
it = parent->inner_cont.begin();
return *this;
}
++it;
return *this;
}
bool operator==(const const_iterator &other) const {
if ((index < N) != (other.index < N)) {
return false;
}
if (index < N) {
return (index == other.index);
}
return it == other.it;
}
bool operator!=(const const_iterator &other) const { return !(*this == other); }
const value_type &operator*() const {
if (index < N) {
return parent->small_data[index];
}
return *it;
}
const value_type *operator->() const {
if (index < N) {
return &parent->small_data[index];
}
return &*it;
}
};
iterator begin() {
iterator it;
it.parent = this;
// If index 0 is allocated, return it, otherwise use operator++ to find the first
// allocated element.
it.index = 0;
if (small_data_allocated[0]) {
return it;
}
++it;
return it;
}
iterator end() {
iterator it;
it.parent = this;
it.index = N;
it.it = inner_cont.end();
return it;
}
const_iterator begin() const {
const_iterator it;
it.parent = this;
// If index 0 is allocated, return it, otherwise use operator++ to find the first
// allocated element.
it.index = 0;
if (small_data_allocated[0]) {
return it;
}
++it;
return it;
}
const_iterator end() const {
const_iterator it;
it.parent = this;
it.index = N;
it.it = inner_cont.end();
return it;
}
bool contains(const Key &key) const {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
return true;
}
}
// check size() first to avoid hashing key unnecessarily.
if (inner_cont.size() == 0) {
return false;
}
return inner_cont.find(key) != inner_cont.end();
}
typename inner_container_type::size_type count(const Key &key) const { return contains(key) ? 1 : 0; }
std::pair<iterator, bool> insert(const value_type &value) {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], value)) {
iterator it;
it.parent = this;
it.index = i;
return std::make_pair(it, false);
}
}
// check size() first to avoid hashing key unnecessarily.
auto iter = inner_cont.size() > 0 ? inner_cont.find(helper.get_key(value)) : inner_cont.end();
if (iter != inner_cont.end()) {
iterator it;
it.parent = this;
it.index = N;
it.it = iter;
return std::make_pair(it, false);
} else {
for (int i = 0; i < N; ++i) {
if (!small_data_allocated[i]) {
small_data_allocated[i] = true;
helper.assign(small_data[i], value);
iterator it;
it.parent = this;
it.index = i;
return std::make_pair(it, true);
}
}
iter = inner_cont.insert(value).first;
iterator it;
it.parent = this;
it.index = N;
it.it = iter;
return std::make_pair(it, true);
}
}
typename inner_container_type::size_type erase(const Key &key) {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
small_data_allocated[i] = false;
return 1;
}
}
return inner_cont.erase(key);
}
typename inner_container_type::size_type size() const {
auto size = inner_cont.size();
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i]) {
size++;
}
}
return size;
}
bool empty() const {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i]) {
return false;
}
}
return inner_cont.size() == 0;
}
void clear() {
for (int i = 0; i < N; ++i) {
small_data_allocated[i] = false;
}
inner_cont.clear();
}
};
// Helper function objects to compare/assign/get keys in small_unordered_set/map.
// This helps to abstract away whether value_type is a Key or a pair<Key, T>.
template <typename MapType>
class value_type_helper_map {
using PairType = typename MapType::value_type;
using Key = typename std::remove_const<typename PairType::first_type>::type;
public:
bool compare_equal(const PairType &lhs, const Key &rhs) const { return lhs.first == rhs; }
bool compare_equal(const PairType &lhs, const PairType &rhs) const { return lhs.first == rhs.first; }
void assign(PairType &lhs, const PairType &rhs) const {
// While the const_cast may be unsatisfactory, we are using small_data as
// stand-in for placement new and a small-block allocator, so the const_cast
// is minimal, contained, valid, and allows operators * and -> to avoid copies
const_cast<Key &>(lhs.first) = rhs.first;
lhs.second = rhs.second;
}
Key get_key(const PairType &value) const { return value.first; }
};
template <typename Key>
class value_type_helper_set {
public:
bool compare_equal(const Key &lhs, const Key &rhs) const { return lhs == rhs; }
void assign(Key &lhs, const Key &rhs) const { lhs = rhs; }
Key get_key(const Key &value) const { return value; }
};
template <typename Key, typename T, int N = 1>
class small_unordered_map : public small_container<Key, typename vvl::unordered_map<Key, T>::value_type, vvl::unordered_map<Key, T>,
value_type_helper_map<vvl::unordered_map<Key, T>>, N> {
public:
T &operator[](const Key &key) {
for (int i = 0; i < N; ++i) {
if (this->small_data_allocated[i] && this->helper.compare_equal(this->small_data[i], key)) {
return this->small_data[i].second;
}
}
auto iter = this->inner_cont.find(key);
if (iter != this->inner_cont.end()) {
return iter->second;
} else {
for (int i = 0; i < N; ++i) {
if (!this->small_data_allocated[i]) {
this->small_data_allocated[i] = true;
this->helper.assign(this->small_data[i], {key, T()});
return this->small_data[i].second;
}
}
return this->inner_cont[key];
}
}
};
template <typename Key, int N = 1>
class small_unordered_set : public small_container<Key, Key, vvl::unordered_set<Key>, value_type_helper_set<Key>, N> {};
|