1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
|
/* Copyright (c) 2025 The Khronos Group Inc.
* Copyright (c) 2025 Valve Corporation
* Copyright (c) 2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "containers/range.h"
#include <array>
#include <limits>
#include <utility>
namespace sparse_container {
// The an array based small ordered map for range keys for use as the range map "ImplMap" as an alternate to std::map
//
// Assumes RangeKey::index_type is unsigned (TBD is it useful to generalize to unsigned?)
// Assumes RangeKey implements begin, end, < and (TBD) from template range above
template <typename Key, typename T, typename RangeKey = vvl::range<Key>, size_t N = 64, typename SmallIndex = uint8_t>
class small_range_map {
using SmallRange = vvl::range<SmallIndex>;
public:
using mapped_type = T;
using key_type = RangeKey;
using value_type = std::pair<const key_type, mapped_type>;
using index_type = typename key_type::index_type;
using size_type = SmallIndex;
template <typename Map_, typename Value_>
struct IteratorImpl {
public:
using Map = Map_;
using Value = Value_;
friend Map;
Value *operator->() const { return map_->get_value(pos_); }
Value &operator*() const { return *(map_->get_value(pos_)); }
IteratorImpl &operator++() {
pos_ = map_->next_range(pos_);
return *this;
}
IteratorImpl &operator--() {
pos_ = map_->prev_range(pos_);
return *this;
}
IteratorImpl &operator=(const IteratorImpl &other) {
map_ = other.map_;
pos_ = other.pos_;
return *this;
}
bool operator==(const IteratorImpl &other) const {
if (at_end() && other.at_end()) {
return true; // all ends are equal
}
return (map_ == other.map_) && (pos_ == other.pos_);
}
bool operator!=(const IteratorImpl &other) const { return !(*this == other); }
// At end()
IteratorImpl() : map_(nullptr), pos_(N) {}
IteratorImpl(const IteratorImpl &other) : map_(other.map_), pos_(other.pos_) {}
// Raw getters to allow for const_iterator conversion below
Map *get_map() const { return map_; }
SmallIndex get_pos() const { return pos_; }
bool at_end() const { return (map_ == nullptr) || (pos_ >= map_->get_limit()); }
protected:
IteratorImpl(Map *map, SmallIndex pos) : map_(map), pos_(pos) {}
private:
Map *map_;
SmallIndex pos_; // the begin of the current small_range
};
using iterator = IteratorImpl<small_range_map, value_type>;
// The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
class const_iterator : public IteratorImpl<const small_range_map, const value_type> {
using Base = IteratorImpl<const small_range_map, const value_type>;
friend small_range_map;
public:
const_iterator(const iterator &it) : Base(it.get_map(), it.get_pos()) {}
const_iterator() : Base() {}
private:
const_iterator(const small_range_map *map, SmallIndex pos) : Base(map, pos) {}
};
iterator begin() {
// Either ranges of 0 is valid and begin is 0 and begin *or* it's invalid an points to the first valid range (or end)
return iterator(this, ranges_[0].begin);
}
const_iterator cbegin() const { return const_iterator(this, ranges_[0].begin); }
const_iterator begin() const { return cbegin(); }
iterator end() { return iterator(); }
const_iterator cend() const { return const_iterator(); }
const_iterator end() const { return cend(); }
void clear() {
const SmallRange clear_range(limit_, 0);
for (SmallIndex i = 0; i < limit_; ++i) {
auto &range = ranges_[i];
if (range.begin == i) {
// Clean up the backing store
destruct_value(i);
}
range = clear_range;
}
size_ = 0;
}
// Find entry with an exact key match (uncommon use case)
iterator find(const key_type &key) {
RANGE_ASSERT(in_bounds(key));
if (key.begin < limit_) {
const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
const auto &range = ranges_[small_begin];
if (range.begin == small_begin) {
const auto small_end = static_cast<SmallIndex>(key.end);
if (range.end == small_end) return iterator(this, small_begin);
}
}
return end();
}
const_iterator find(const key_type &key) const {
RANGE_ASSERT(in_bounds(key));
if (key.begin < limit_) {
const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
const auto &range = ranges_[small_begin];
if (range.begin == small_begin) {
const auto small_end = static_cast<SmallIndex>(key.end);
if (range.end == small_end) return const_iterator(this, small_begin);
}
}
return end();
}
iterator find(const index_type &index) {
if (index < get_limit()) {
const SmallIndex small_index = static_cast<SmallIndex>(index);
const auto &range = ranges_[small_index];
if (range.valid()) {
return iterator(this, range.begin);
}
}
return end();
}
const_iterator find(const index_type &index) const {
if (index < get_limit()) {
const SmallIndex small_index = static_cast<SmallIndex>(index);
const auto &range = ranges_[small_index];
if (range.valid()) {
return const_iterator(this, range.begin);
}
}
return end();
}
size_type size() const { return size_; }
bool empty() const { return 0 == size_; }
iterator erase(const_iterator pos) {
RANGE_ASSERT(pos.map_ == this);
return erase_impl(pos.get_pos());
}
iterator erase(iterator pos) {
RANGE_ASSERT(pos.map_ == this);
return erase_impl(pos.get_pos());
}
// Must be called with rvalue or lvalue of value_type
template <typename Value>
iterator emplace(Value &&value) {
const auto &key = value.first;
RANGE_ASSERT(in_bounds(key));
if (key.begin >= limit_) return end(); // Invalid key (end is checked in "is_open")
const SmallRange range(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
if (is_open(key)) {
// This needs to be the fast path, but I don't see how we can avoid the sanity checks above
for (auto i = range.begin; i < range.end; ++i) {
ranges_[i] = range;
}
// Update the next information for the previous unused slots (as stored in begin invalidly)
auto prev = range.begin;
while (prev > 0) {
--prev;
if (ranges_[prev].valid()) break;
ranges_[prev].begin = range.begin;
}
// Placement new into the storage interpreted as Value
construct_value(range.begin, value_type(std::forward<Value>(value)));
auto next = range.end;
// update the previous range information for the next unsed slots (as stored in end invalidly)
while (next < limit_) {
// End is exclusive... increment *after* update
if (ranges_[next].valid()) break;
ranges_[next].end = range.end;
++next;
}
return iterator(this, range.begin);
} else {
// Can't insert into occupied ranges.
// if ranges_[key.begin] is valid then this is the collision (starting at .begin
// if it's invalid .begin points to the overlapping entry from is_open (or end if key was out of range)
return iterator(this, ranges_[range.begin].begin);
}
}
// As hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
template <typename Value>
iterator emplace_hint([[maybe_unused]] const const_iterator &hint, Value &&value) {
// We have direct access so we can drop the hint
return emplace(std::forward<Value>(value));
}
template <typename Value>
iterator emplace_hint([[maybe_unused]] const iterator &hint, Value &&value) {
// We have direct access so we can drop the hint
return emplace(std::forward<Value>(value));
}
// Again, hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
iterator insert([[maybe_unused]] const const_iterator &hint, const value_type &value) { return emplace(value); }
iterator insert([[maybe_unused]] const iterator &hint, const value_type &value) { return emplace(value); }
std::pair<iterator, bool> insert(const value_type &value) {
const auto &key = value.first;
RANGE_ASSERT(in_bounds(key));
if (key.begin >= limit_) return std::make_pair(end(), false); // Invalid key, not inserted.
if (is_open(key)) {
return std::make_pair(emplace(value), true);
}
// If invalid we point to the subsequent range that collided, if valid begin is the start of the valid range
const auto &collision_begin = ranges_[key.begin].begin;
RANGE_ASSERT(ranges_[collision_begin].valid());
return std::make_pair(iterator(this, collision_begin), false);
}
iterator split(const iterator whole_it, const index_type &index) {
const auto &key = whole_it->first;
if (!key.includes(index)) {
return whole_it; // If we don't have a valid split point, just return the iterator
}
const auto small_key = make_small_range(key);
key_type lower_key(key.begin, index);
if (lower_key.empty()) {
return whole_it; // this is a noop we're keeping the upper half which is the same as whole_it;
}
// Upper range cannot be empty (because the split point is included)
const auto small_lower_key = make_small_range(lower_key);
const SmallRange small_upper_key{small_lower_key.end, small_key.end};
// Note: create the upper section before the lower, as processing the lower may erase it
RANGE_ASSERT(!small_upper_key.empty());
const key_type upper_key{lower_key.end, key.end};
construct_value(small_upper_key.begin, std::make_pair(upper_key, get_value(small_key.begin)->second));
for (auto i = small_upper_key.begin; i < small_upper_key.end; ++i) {
ranges_[i] = small_upper_key;
}
resize_value(small_key.begin, lower_key.end);
rerange_end(small_lower_key.begin, small_lower_key.end, small_lower_key.end);
SmallIndex split_index = small_lower_key.begin;
return iterator(this, split_index);
}
// For the value.first range rewrite the range...
template <typename Value>
iterator overwrite_range(Value &&value) {
const auto &key = value.first;
// Small map only has a restricted range supported
RANGE_ASSERT(in_bounds(key));
if (key.end > get_limit()) {
return end();
}
const auto small_key = make_small_range(key);
clear_out_range(small_key, /* valid clear range */ true);
construct_value(small_key.begin, std::forward<Value>(value));
return iterator(this, small_key.begin);
}
// We don't need a hint...
template <typename Value>
iterator overwrite_range([[maybe_unused]] const iterator &hint, Value &&value) {
return overwrite_range(std::forward<Value>(value));
}
// For the range erase all contents within range, trimming any overlapping ranges
iterator erase_range(const key_type &range) {
// Small map only has a restricted range supported
RANGE_ASSERT(in_bounds(range));
if (range.end > get_limit() || range.empty()) {
return end();
}
const auto empty = clear_out_range(make_small_range(range), /* valid clear range */ false);
return iterator(this, empty.end);
}
template <typename Iterator>
iterator erase(const Iterator &first, const Iterator &last) {
RANGE_ASSERT(this == first.map_);
RANGE_ASSERT(this == last.map_);
auto first_pos = !first.at_end() ? first.pos_ : limit_;
auto last_pos = !last.at_end() ? last.pos_ : limit_;
RANGE_ASSERT(first_pos <= last_pos);
const SmallRange clear_me(first_pos, last_pos);
if (!clear_me.empty()) {
const SmallRange empty_range(find_empty_left(clear_me), last_pos);
clear_and_set_range(empty_range.begin, empty_range.end, make_invalid_range(empty_range));
}
return iterator(this, last_pos);
}
iterator lower_bound(const key_type &key) { return iterator(this, lower_bound_impl(this, key)); }
const_iterator lower_bound(const key_type &key) const { return const_iterator(this, lower_bound_impl(this, key)); }
iterator upper_bound(const key_type &key) { return iterator(this, upper_bound_impl(this, key)); }
const_iterator upper_bound(const key_type &key) const { return const_iterator(this, upper_bound_impl(this, key)); }
small_range_map(index_type limit = N) : size_(0), limit_(static_cast<SmallIndex>(limit)) {
RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
init_range();
}
// Only valid for empty maps
void set_limit(size_t limit) {
RANGE_ASSERT(size_ == 0);
RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
limit_ = static_cast<SmallIndex>(limit);
init_range();
}
inline index_type get_limit() const { return static_cast<index_type>(limit_); }
private:
inline bool in_bounds(index_type index) const { return index < get_limit(); }
inline bool in_bounds(const RangeKey &key) const { return key.begin < get_limit() && key.end <= get_limit(); }
inline SmallRange make_small_range(const RangeKey &key) const {
RANGE_ASSERT(in_bounds(key));
return SmallRange(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
}
inline SmallRange make_invalid_range(const SmallRange &key) const { return SmallRange(key.end, key.begin); }
bool is_open(const key_type &key) const {
// Remebering that invalid range.begin is the beginning the next used range.
const auto small_key = make_small_range(key);
const auto &range = ranges_[small_key.begin];
return range.invalid() && small_key.end <= range.begin;
}
// Only call this with a valid beginning index
iterator erase_impl(SmallIndex erase_index) {
RANGE_ASSERT(erase_index == ranges_[erase_index].begin);
auto &range = ranges_[erase_index];
destruct_value(erase_index);
// Need to update the ranges to accommodate the erasure
SmallIndex prev = 0; // This is correct for the case erase_index is 0....
if (erase_index != 0) {
prev = prev_range(erase_index);
// This works if prev is valid or invalid, because the invalid end will be either 0 (and correct) or the end of the
// prior valid range and the valid end will be the end of the previous range (and thus correct)
prev = ranges_[prev].end;
}
auto next = next_range(erase_index);
// We have to be careful of next == limit_...
if (next < limit_) {
next = ranges_[next].begin;
}
// Rewrite both adjoining and newly empty entries
SmallRange infill(next, prev);
for (auto i = prev; i < next; ++i) {
ranges_[i] = infill;
}
return iterator(this, next);
}
// This implements the "range lower bound logic" directly on the ranges
template <typename Map>
static SmallIndex lower_bound_impl(Map *const that, const key_type &key) {
if (!that->in_bounds(key.begin)) return that->limit_;
// If range is invalid, then begin points to the next valid (or end) with must be the lower bound
// If range is valid, the begin points to a the lowest range that interects key
const auto lb = that->ranges_[static_cast<SmallIndex>(key.begin)].begin;
return lb;
}
template <typename Map>
static SmallIndex upper_bound_impl(Map *that, const key_type &key) {
const auto limit = that->get_limit();
if (key.end >= limit) return that->limit_; // at end
const auto &end_range = that->ranges_[key.end];
// If range is invalid, then begin points to the next valid (or end) with must be the upper bound (key < range because
auto ub = end_range.begin;
// If range is valid, the begin points to a range that may interects key, which is be upper iff range.begin == key.end
if (end_range.valid() && (key.end > end_range.begin)) {
// the ub candidate *intersects* the key, so we have to go to the next range.
ub = that->next_range(end_range.begin);
}
return ub;
}
// This is and inclusive "inuse", the entry itself
SmallIndex find_inuse_right(const SmallRange &range) const {
if (range.end >= limit_) return limit_;
// if range is valid, begin is the first use (== range.end), else it's the first used after the invalid range
return ranges_[range.end].begin;
}
// This is an exclusive "inuse", the end of the previous range
SmallIndex find_inuse_left(const SmallRange &range) const {
if (range.begin == 0) return 0;
// if range is valid, end is the end of the first use (== range.begin), else it's the end of the in use range before the
// invalid range
return ranges_[range.begin - 1].end;
}
SmallRange find_empty(const SmallRange &range) const { return SmallRange(find_inuse_left(range), find_inuse_right(range)); }
// Clear out the given range, trimming as needed. The clear_range can be set as valid or invalid
SmallRange clear_out_range(const SmallRange &clear_range, bool valid_clear_range) {
// By copy to avoid reranging side affect
auto first_range = ranges_[clear_range.begin];
// fast path for matching ranges...
if (first_range == clear_range) {
// clobber the existing value
destruct_value(clear_range.begin);
if (valid_clear_range) {
return clear_range; // This is the overwrite fastpath for matching range
} else {
const auto empty_range = find_empty(clear_range);
rerange(empty_range, make_invalid_range(empty_range));
return empty_range;
}
}
SmallRange empty_left(clear_range.begin, clear_range.begin);
SmallRange empty_right(clear_range.end, clear_range.end);
// The clearout is entirely within a single extant range, trim and set.
if (first_range.valid() && first_range.includes(clear_range)) {
// Shuffle around first_range, three cases...
if (first_range.begin < clear_range.begin) {
// We have a lower trimmed area to preserve.
resize_value(first_range.begin, clear_range.begin);
rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
if (first_range.end > clear_range.end) {
// And an upper portion of first that needs to copy from the lower
construct_value(clear_range.end, std::make_pair(key_type(clear_range.end, first_range.end),
get_value(first_range.begin)->second));
rerange_begin(clear_range.end, first_range.end, clear_range.end);
} else {
RANGE_ASSERT(first_range.end == clear_range.end);
empty_right.end = find_inuse_right(clear_range);
}
} else {
RANGE_ASSERT(first_range.end > clear_range.end);
RANGE_ASSERT(first_range.begin == clear_range.begin);
// Only an upper trimmed area to preserve, so move the first range value to the upper trim zone.
resize_value_right(first_range, clear_range.end);
rerange_begin(clear_range.end, first_range.end, clear_range.end);
empty_left.begin = find_inuse_left(clear_range);
}
} else {
if (first_range.valid()) {
if (first_range.begin < clear_range.begin) {
// Trim left.
RANGE_ASSERT(first_range.end < clear_range.end); // we handled the "includes" case above
resize_value(first_range.begin, clear_range.begin);
rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
}
} else {
empty_left.begin = find_inuse_left(clear_range);
}
// rewrite excluded portion of final range
if (clear_range.end < limit_) {
const auto &last_range = ranges_[clear_range.end];
if (last_range.valid()) {
// for a valid adjoining range we don't have to change empty_right, but we may have to trim
if (last_range.begin < clear_range.end) {
resize_value_right(last_range, clear_range.end);
rerange_begin(clear_range.end, last_range.end, clear_range.end);
}
} else {
// Note: invalid ranges "begin" and the next inuse range (or end)
empty_right.end = last_range.begin;
}
}
}
const SmallRange empty(empty_left.begin, empty_right.end);
// Clear out the contents
for (auto i = empty.begin; i < empty.end; ++i) {
const auto &range = ranges_[i];
if (range.begin == i) {
RANGE_ASSERT(range.valid());
// Clean up the backing store
destruct_value(i);
}
}
// Rewrite the ranges
if (valid_clear_range) {
rerange_begin(empty_left.begin, empty_left.end, clear_range.begin);
rerange(clear_range, clear_range);
rerange_end(empty_right.begin, empty_right.end, clear_range.end);
} else {
rerange(empty, make_invalid_range(empty));
}
RANGE_ASSERT(empty.end == limit_ || ranges_[empty.end].valid());
RANGE_ASSERT(empty.begin == 0 || ranges_[empty.begin - 1].valid());
return empty;
}
void init_range() {
const SmallRange init_val(limit_, 0);
for (SmallIndex i = 0; i < limit_; ++i) {
ranges_[i] = init_val;
in_use_[i] = false;
}
}
value_type *get_value(SmallIndex index) {
RANGE_ASSERT(index < limit_); // Must be inbounds
return reinterpret_cast<value_type *>(&(key_values_[index]));
}
const value_type *get_value(SmallIndex index) const {
RANGE_ASSERT(index < limit_); // Must be inbounds
RANGE_ASSERT(index == ranges_[index].begin); // Must be the record at begin
return reinterpret_cast<const value_type *>(&(key_values_[index]));
}
template <typename Value>
void construct_value(SmallIndex index, Value &&value) {
RANGE_ASSERT(!in_use_[index]);
new (get_value(index)) value_type(std::forward<Value>(value));
in_use_[index] = true;
++size_;
}
void destruct_value(SmallIndex index) {
// there are times when the range and destruct logic clash... allow for double attempted deletes
if (in_use_[index]) {
RANGE_ASSERT(size_ > 0);
--size_;
get_value(index)->~value_type();
in_use_[index] = false;
}
}
// No need to move around the value, when just the key is moving
// Use the destructor/placement new just in case of a complex key with range's semantics
// Note: Call resize before rewriting ranges_
void resize_value(SmallIndex current_begin, index_type new_end) {
// Destroy and rewrite the key in place
RANGE_ASSERT(ranges_[current_begin].end != new_end);
key_type new_key(current_begin, new_end);
key_type *key = const_cast<key_type *>(&get_value(current_begin)->first);
key->~key_type();
new (key) key_type(new_key);
}
inline void rerange_end(SmallIndex old_begin, SmallIndex new_end, SmallIndex new_end_value) {
for (auto i = old_begin; i < new_end; ++i) {
ranges_[i].end = new_end_value;
}
}
inline void rerange_begin(SmallIndex new_begin, SmallIndex old_end, SmallIndex new_begin_value) {
for (auto i = new_begin; i < old_end; ++i) {
ranges_[i].begin = new_begin_value;
}
}
inline void rerange(const SmallRange &range, const SmallRange &range_value) {
for (auto i = range.begin; i < range.end; ++i) {
ranges_[i] = range_value;
}
}
// for resize right need both begin and end...
void resize_value_right(const SmallRange ¤t_range, index_type new_begin) {
// Use move semantics for (potentially) heavyweight mapped_type's
RANGE_ASSERT(current_range.begin != new_begin);
// Move second from it's current location and update the first at the same time
construct_value(static_cast<SmallIndex>(new_begin),
std::make_pair(key_type(new_begin, current_range.end), std::move(get_value(current_range.begin)->second)));
destruct_value(current_range.begin);
}
// Now we can walk a range and rewrite it cleaning up any live contents
void clear_and_set_range(SmallIndex rewrite_begin, SmallIndex rewrite_end, const SmallRange &new_range) {
for (auto i = rewrite_begin; i < rewrite_end; ++i) {
auto &range = ranges_[i];
if (i == range.begin) {
destruct_value(i);
}
range = new_range;
}
}
SmallIndex next_range(SmallIndex current) const {
SmallIndex next = ranges_[current].end;
// If the next range is invalid, skip to the next range, which *must* be (or be end)
if ((next < limit_) && ranges_[next].invalid()) {
// For invalid ranges, begin is the beginning of the next range
next = ranges_[next].begin;
RANGE_ASSERT(next == limit_ || ranges_[next].valid());
}
return next;
}
SmallIndex prev_range(SmallIndex current) const {
if (current == 0) {
return 0;
}
auto prev = current - 1;
if (ranges_[prev].valid()) {
// For valid ranges, the range denoted by begin (as that's where the backing store keeps values
prev = ranges_[prev].begin;
} else if (prev != 0) {
// Invalid but not off the front, we can recur (only once) from the end of the prev range to get the answer
// For invalid ranges this is the end of the previous range
prev = prev_range(ranges_[prev].end);
}
return prev;
}
friend iterator;
friend const_iterator;
// Stores range boundaries only
// open ranges, stored as inverted, invalid range (begining of next, end of prev]
// inuse(begin, end) for all entries on (begin, end]
SmallIndex size_;
SmallIndex limit_;
std::array<SmallRange, N> ranges_;
std::array<std::pair<key_type, mapped_type>, N> key_values_;
std::array<bool, N> in_use_;
};
} // namespace sparse_container
|