1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/* Copyright (c) 2019-2025 The Khronos Group Inc.
* Copyright (c) 2019-2025 Valve Corporation
* Copyright (c) 2019-2025 LunarG, Inc.
* Copyright (C) 2019-2025 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#pragma once
#include <cstddef>
#include <variant>
#include <vector>
#include "containers/range.h"
#include "containers/range_map.h"
#include "containers/small_range_map.h"
#include "containers/small_vector.h"
#include "vulkan/vulkan.h"
namespace vvl {
class Image;
} // namespace vvl
namespace subresource_adapter {
class RangeEncoder;
using IndexType = uint64_t; // TODO: just update to 32 bit, but before collect memory usage stats, perf stats
using IndexRange = vvl::range<IndexType>;
// Interface for aspect specific traits objects (now isolated in the cpp file)
class AspectParameters {
public:
virtual ~AspectParameters() {}
static const AspectParameters* Get(VkImageAspectFlags);
virtual VkImageAspectFlags AspectMask() const = 0;
virtual uint32_t AspectCount() const = 0;
virtual const VkImageAspectFlagBits* AspectBits() const = 0;
};
struct Subresource : public VkImageSubresource {
uint32_t aspect_index;
Subresource() : VkImageSubresource({0, 0, 0}), aspect_index(0) {}
Subresource(const Subresource& from) = default;
Subresource(const RangeEncoder& encoder, const VkImageSubresource& subres);
Subresource(VkImageAspectFlags aspect_mask_, uint32_t mip_level_, uint32_t array_layer_, uint32_t aspect_index_)
: VkImageSubresource({aspect_mask_, mip_level_, array_layer_}), aspect_index(aspect_index_) {}
Subresource(VkImageAspectFlagBits aspect_, uint32_t mip_level_, uint32_t array_layer_, uint32_t aspect_index_)
: Subresource(static_cast<VkImageAspectFlags>(aspect_), mip_level_, array_layer_, aspect_index_) {}
Subresource& operator=(const Subresource&) = default;
};
// Subresource is encoded in (from slowest varying to fastest)
// aspect_index
// mip_level_index
// array_layer_index
// into continuous index ranges
class RangeEncoder {
public:
static constexpr uint32_t kMaxSupportedAspect = 4;
// The default constructor for default iterators
RangeEncoder()
: limits_(),
full_range_(),
mip_size_(0),
aspect_size_(0),
aspect_bits_(nullptr),
encode_function_(nullptr),
decode_function_(nullptr),
lower_bound_function_(nullptr),
lower_bound_with_start_function_(nullptr),
aspect_base_{0, 0, 0} {}
// Create the encoder suitable to the full range (aspect mask *must* be canonical)
explicit RangeEncoder(const VkImageSubresourceRange& full_range)
: RangeEncoder(full_range, AspectParameters::Get(full_range.aspectMask)) {}
RangeEncoder(const RangeEncoder& from) = default;
inline bool InRange(const VkImageSubresource& subres) const {
return (subres.mipLevel < limits_.mipLevel) && (subres.arrayLayer < limits_.arrayLayer) &&
(subres.aspectMask & limits_.aspectMask);
}
inline bool InRange(const VkImageSubresourceRange& range) const {
return (range.baseMipLevel < limits_.mipLevel) && ((range.baseMipLevel + range.levelCount) <= limits_.mipLevel) &&
(range.baseArrayLayer < limits_.arrayLayer) && ((range.baseArrayLayer + range.layerCount) <= limits_.arrayLayer) &&
(range.aspectMask & limits_.aspectMask);
}
inline IndexType Encode(const Subresource& pos) const { return (this->*(encode_function_))(pos); }
inline IndexType Encode(const VkImageSubresource& subres) const { return Encode(Subresource(*this, subres)); }
Subresource Decode(const IndexType& index) const { return (this->*decode_function_)(index); }
inline Subresource BeginSubresource(const VkImageSubresourceRange& range) const {
if (!InRange(range)) {
return limits_;
}
const auto aspect_index = LowerBoundFromMask(range.aspectMask);
Subresource begin(aspect_bits_[aspect_index], range.baseMipLevel, range.baseArrayLayer, aspect_index);
return begin;
}
inline Subresource Begin() const {
Subresource begin(aspect_bits_[0], 0, 0, 0);
return begin;
}
// This version assumes the mask must have at least one bit matching limits_.aspectMask
// Suitable for getting a starting value from a range
inline uint32_t LowerBoundFromMask(VkImageAspectFlags mask) const {
assert(mask & limits_.aspectMask);
return (this->*(lower_bound_function_))(mask);
}
// This version allows for a mask that can (starting at start) not have any bits set matching limits_.aspectMask
// Suitable for seeking the *next* value for a range
inline uint32_t LowerBoundFromMask(VkImageAspectFlags mask, uint32_t start) const {
if (start < limits_.aspect_index) {
return (this->*(lower_bound_with_start_function_))(mask, start);
}
return limits_.aspect_index;
}
inline IndexType AspectSize() const { return aspect_size_; }
inline IndexType MipSize() const { return mip_size_; }
inline const Subresource& Limits() const { return limits_; }
inline const VkImageSubresourceRange& FullRange() const { return full_range_; }
inline IndexType SubresourceCount() const { return AspectSize() * Limits().aspect_index; }
inline VkImageAspectFlags AspectMask() const { return limits_.aspectMask; }
inline VkImageAspectFlagBits AspectBit(uint32_t aspect_index) const {
RANGE_ASSERT(aspect_index < limits_.aspect_index);
return aspect_bits_[aspect_index];
}
inline IndexType AspectBase(uint32_t aspect_index) const {
RANGE_ASSERT(aspect_index < limits_.aspect_index);
return aspect_base_[aspect_index];
}
inline VkImageSubresource MakeVkSubresource(const Subresource& subres) const {
VkImageSubresource vk_subres = {static_cast<VkImageAspectFlags>(aspect_bits_[subres.aspect_index]), subres.mipLevel,
subres.arrayLayer};
return vk_subres;
}
inline VkImageSubresource IndexToVkSubresource(const IndexType& index) const { return MakeVkSubresource(Decode(index)); }
protected:
RangeEncoder(const VkImageSubresourceRange& full_range, const AspectParameters* param);
void PopulateFunctionPointers();
IndexType Encode1AspectArrayOnly(const Subresource& pos) const;
IndexType Encode1AspectMipArray(const Subresource& pos) const;
IndexType Encode1AspectMipOnly(const Subresource& pos) const;
IndexType EncodeAspectArrayOnly(const Subresource& pos) const;
IndexType EncodeAspectMipArray(const Subresource& pos) const;
IndexType EncodeAspectMipOnly(const Subresource& pos) const;
// Use compiler to create the aspect count variants...
// For ranges that only have a single mip level...
template <uint32_t N>
Subresource DecodeAspectArrayOnly(const IndexType& index) const {
if constexpr (N > 2) {
if (index >= aspect_base_[2]) {
return Subresource(aspect_bits_[2], 0, static_cast<uint32_t>(index - aspect_base_[2]), 2);
}
} else if constexpr (N > 1) {
if (index >= aspect_base_[1]) {
return Subresource(aspect_bits_[1], 0, static_cast<uint32_t>(index - aspect_base_[1]), 1);
}
}
// NOTE: aspect_base_[0] is always 0... here and below
return Subresource(aspect_bits_[0], 0, static_cast<uint32_t>(index), 0);
}
// For ranges that only have a single array layer...
template <uint32_t N>
Subresource DecodeAspectMipOnly(const IndexType& index) const {
if constexpr (N > 2) {
if (index >= aspect_base_[2]) {
return Subresource(aspect_bits_[2], static_cast<uint32_t>(index - aspect_base_[2]), 0, 2);
}
} else if constexpr (N > 1) {
if (index >= aspect_base_[1]) {
return Subresource(aspect_bits_[1], static_cast<uint32_t>(index - aspect_base_[1]), 0, 1);
}
}
return Subresource(aspect_bits_[0], static_cast<uint32_t>(index), 0, 0);
}
// For ranges that only have both > 1 layer and level
template <uint32_t N>
Subresource DecodeAspectMipArray(const IndexType& index) const {
assert(limits_.aspect_index <= N);
uint32_t aspect_index = 0;
if constexpr (N > 2) {
if (index >= aspect_base_[2]) {
aspect_index = 2;
}
} else if constexpr (N > 1) {
if (index >= aspect_base_[1]) {
aspect_index = 1;
}
}
// aspect_base_[0] is always zero, so use the template to cheat
const IndexType base_index = index - ((N == 1) ? 0 : aspect_base_[aspect_index]);
const IndexType mip_level = base_index / mip_size_;
const IndexType mip_start = mip_level * mip_size_;
const IndexType array_offset = base_index - mip_start;
return Subresource(aspect_bits_[aspect_index], static_cast<uint32_t>(mip_level), static_cast<uint32_t>(array_offset),
aspect_index);
}
uint32_t LowerBoundImpl1(VkImageAspectFlags aspect_mask) const;
uint32_t LowerBoundImpl2(VkImageAspectFlags aspect_mask) const;
uint32_t LowerBoundImpl3(VkImageAspectFlags aspect_mask) const;
uint32_t LowerBoundWithStartImpl1(VkImageAspectFlags aspect_mask, uint32_t start) const;
uint32_t LowerBoundWithStartImpl2(VkImageAspectFlags aspect_mask, uint32_t start) const;
uint32_t LowerBoundWithStartImpl3(VkImageAspectFlags aspect_mask, uint32_t start) const;
Subresource limits_;
private:
VkImageSubresourceRange full_range_;
const size_t mip_size_;
const size_t aspect_size_;
const VkImageAspectFlagBits* const aspect_bits_;
IndexType (RangeEncoder::*encode_function_)(const Subresource&) const;
Subresource (RangeEncoder::*decode_function_)(const IndexType&) const;
uint32_t (RangeEncoder::*lower_bound_function_)(VkImageAspectFlags aspect_mask) const;
uint32_t (RangeEncoder::*lower_bound_with_start_function_)(VkImageAspectFlags aspect_mask, uint32_t start) const;
IndexType aspect_base_[kMaxSupportedAspect];
};
class SubresourceGenerator : public Subresource {
public:
SubresourceGenerator() : Subresource(), encoder_(nullptr), limits_(){};
SubresourceGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& range)
: Subresource(encoder.BeginSubresource(range)), encoder_(&encoder), limits_(range) {}
explicit SubresourceGenerator(const RangeEncoder& encoder)
: Subresource(encoder.Begin()), encoder_(&encoder), limits_(encoder.FullRange()) {}
const VkImageSubresourceRange& Limits() const { return limits_; }
// Seek functions are used by generators to force synchronization, as callers may have altered the position
// to iterater between calls to the generator increment or Seek functions
void SeekAspect(uint32_t seek_index) {
arrayLayer = limits_.baseArrayLayer;
mipLevel = limits_.baseMipLevel;
const auto aspect_index_limit = encoder_->Limits().aspect_index;
if (seek_index < aspect_index_limit) {
aspect_index = seek_index;
// Seeking to bit outside of the limit will set a "empty" subresource
aspectMask = encoder_->AspectBit(aspect_index) & limits_.aspectMask;
} else {
// This is an "end" tombstone
aspect_index = aspect_index_limit;
aspectMask = 0;
}
}
void SeekMip(uint32_t mip_level) {
arrayLayer = limits_.baseArrayLayer;
mipLevel = mip_level;
}
// Next and and ++ functions are for iteration from a base with the bounds, this may be additionally
// controlled/updated by an owning generator (like RangeGenerator using Seek functions)
inline void NextAspect() { SeekAspect(encoder_->LowerBoundFromMask(limits_.aspectMask, aspect_index + 1)); }
void NextMip() {
arrayLayer = limits_.baseArrayLayer;
mipLevel++;
if (mipLevel >= (limits_.baseMipLevel + limits_.levelCount)) {
NextAspect();
}
}
SubresourceGenerator& operator++() {
arrayLayer++;
if (arrayLayer >= (limits_.baseArrayLayer + limits_.layerCount)) {
NextMip();
}
return *this;
}
// General purpose and slow, when we have no other information to update the generator
void Seek(IndexType index) {
// skip forward past discontinuities
*static_cast<Subresource*>(this) = encoder_->Decode(index);
}
const VkImageSubresource& operator*() const { return *this; }
const VkImageSubresource* operator->() const { return this; }
private:
const RangeEncoder* encoder_;
const VkImageSubresourceRange limits_;
};
// Like an iterator for ranges...
class RangeGenerator {
public:
RangeGenerator() : encoder_(nullptr), isr_pos_(), pos_(), aspect_base_() {}
bool operator!=(const RangeGenerator& rhs) { return (pos_ != rhs.pos_) || (&encoder_ != &rhs.encoder_); }
explicit RangeGenerator(const RangeEncoder& encoder) : RangeGenerator(encoder, encoder.FullRange()) {}
RangeGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& subres_range);
const IndexRange& operator*() const { return pos_; }
const IndexRange* operator->() const { return &pos_; }
RangeGenerator& operator++();
private:
const RangeEncoder* encoder_;
SubresourceGenerator isr_pos_;
IndexRange pos_;
IndexRange aspect_base_;
uint32_t mip_count_ = 0;
uint32_t mip_index_ = 0;
uint32_t aspect_count_ = 0;
uint32_t aspect_index_ = 0;
};
class ImageRangeEncoder : public RangeEncoder {
public:
struct SubresInfo {
VkSubresourceLayout layout;
VkExtent3D extent;
SubresInfo(const VkSubresourceLayout& layout_, const VkExtent3D& extent_, const VkExtent3D& texel_extent,
double texel_size);
SubresInfo(const SubresInfo&);
SubresInfo() = default;
VkDeviceSize y_step_pitch;
VkDeviceSize z_step_pitch;
VkDeviceSize layer_span;
};
// The default constructor for default iterators
ImageRangeEncoder() {}
ImageRangeEncoder(const vvl::Image& image, const AspectParameters* param);
explicit ImageRangeEncoder(const vvl::Image& image);
ImageRangeEncoder(const ImageRangeEncoder& from) = default;
inline IndexType Encode2D(const VkSubresourceLayout& layout, uint32_t layer, uint32_t aspect_index,
const VkOffset3D& offset) const;
inline IndexType Encode3D(const VkSubresourceLayout& layout, uint32_t aspect_index, const VkOffset3D& offset) const;
void Decode(const VkImageSubresource& subres, const IndexType& encode, uint32_t& out_layer, VkOffset3D& out_offset) const;
inline uint32_t GetSubresourceIndex(uint32_t aspect_index, uint32_t mip_level) const {
return mip_level + (aspect_index ? (aspect_index * limits_.mipLevel) : 0U);
}
inline const SubresInfo& GetSubresourceInfo(uint32_t index) const { return subres_info_[index]; }
inline IndexType GetAspectSize(uint32_t aspect_index) const { return aspect_sizes_[aspect_index]; }
inline VkExtent2D GetAspectExtentDivisors(uint32_t aspect_index) const { return aspect_extent_divisors_[aspect_index]; }
inline const double& TexelSize(int aspect_index) const { return texel_sizes_[aspect_index]; }
inline bool IsLinearImage() const { return linear_image_; }
inline IndexType TotalSize() const { return total_size_; }
inline bool Is3D() const { return is_3_d_; }
inline bool IsInterleaveY() const { return y_interleave_; }
inline bool IsCompressed() const { return is_compressed_; }
const VkExtent3D& TexelBlockExtent() const { return texel_block_extent_; }
using SubresInfoVector = std::vector<SubresInfo>;
private:
std::vector<double> texel_sizes_;
SubresInfoVector subres_info_;
small_vector<IndexType, 4, uint32_t> aspect_sizes_;
small_vector<VkExtent2D, 4, uint32_t> aspect_extent_divisors_;
IndexType total_size_;
VkExtent3D texel_block_extent_;
bool is_3_d_;
bool linear_image_;
bool y_interleave_;
bool is_compressed_;
};
class ImageRangeGenerator {
public:
using RangeType = IndexRange;
ImageRangeGenerator(const ImageRangeGenerator&) = default;
ImageRangeGenerator() : encoder_(nullptr), subres_range_(), offset_(), extent_(), base_address_(), pos_() {}
ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range, const VkOffset3D& offset,
const VkExtent3D& extent, VkDeviceSize base_address, bool is_depth_sliced);
void SetInitialPosFullOffset(uint32_t layer, uint32_t aspect_index);
void SetInitialPosFullWidth(uint32_t layer, uint32_t aspect_index);
void SetInitialPosFullHeight(uint32_t layer, uint32_t aspect_index);
void SetInitialPosSomeDepth(uint32_t layer, uint32_t aspect_index);
void SetInitialPosFullDepth(uint32_t layer, uint32_t aspect_index);
void SetInitialPosAllLayers(uint32_t layer, uint32_t aspect_index);
void SetInitialPosOneAspect(uint32_t layer, uint32_t aspect_index);
void SetInitialPosAllSubres(uint32_t layer, uint32_t aspect_index);
void SetInitialPosSomeLayers(uint32_t layer, uint32_t aspect_index);
ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range, VkDeviceSize base_address,
bool is_depth_sliced);
inline const IndexRange& operator*() const { return pos_; }
inline const IndexRange* operator->() const { return &pos_; }
ImageRangeGenerator& operator++();
ImageRangeGenerator& operator=(const ImageRangeGenerator&) = default;
private:
bool Convert2DCompatibleTo3D();
void SetUpSubresInfo();
void SetUpIncrementerDefaults();
void SetUpSubresIncrementer();
void SetUpIncrementer(bool all_width, bool all_height, bool all_depth);
typedef void (ImageRangeGenerator::*SetInitialPosFn)(uint32_t, uint32_t);
inline void SetInitialPos(uint32_t layer, uint32_t aspect_index) { (this->*(set_initial_pos_fn_))(layer, aspect_index); }
VkOffset3D GetOffset(uint32_t aspect_index) const;
VkExtent3D GetExtent(uint32_t aspect_index) const;
const ImageRangeEncoder* encoder_;
VkImageSubresourceRange subres_range_;
VkOffset3D offset_;
VkExtent3D extent_;
VkDeviceSize base_address_;
uint32_t mip_index_ = 0U;
uint32_t incr_mip_ = 0U;
uint32_t aspect_index_ = 0U;
uint32_t subres_index_ = 0U;
const ImageRangeEncoder::SubresInfo* subres_info_ = nullptr;
SetInitialPosFn set_initial_pos_fn_ = nullptr;
IndexRange pos_;
struct IncrementerState {
// These should be invariant across subresources (mip/aspect)
uint32_t y_step = 0U;
uint32_t layer_z_step = 0U;
// These vary per mip at least...
uint32_t y_count = 0U;
uint32_t layer_z_count = 0U;
uint32_t y_index = 0U;
uint32_t layer_z_index = 0U;
IndexRange y_base = {0U, 0U};
IndexRange layer_z_base = {0U, 0U};
IndexType incr_y = 0U;
IndexType incr_layer_z = 0U;
void Set(uint32_t y_count_, uint32_t layer_z_count_, IndexType base, IndexType span, IndexType y_step, IndexType z_step);
};
IncrementerState incr_state_;
bool single_full_size_range_ = true;
bool is_depth_sliced_ = false;
};
// double wrapped map variants.. to avoid needing to templatize on the range map type. The underlying maps are available for
// use in performance sensitive places that are *already* templatized (for example update_range_value).
// In STL style. Note that N must be < uint8_t max
template <typename T, size_t N>
class BothRangeMap {
using SmallMap = sparse_container::small_range_map<IndexType, T, vvl::range<IndexType>, N>;
using SmallMapIterator = typename SmallMap::iterator;
using SmallMapConstIterator = typename SmallMap::const_iterator;
using BigMap = sparse_container::range_map<IndexType, T>;
using BigMapIterator = typename BigMap::iterator;
using BigMapConstIterator = typename BigMap::const_iterator;
public:
using index_type = IndexType;
using key_type = vvl::range<IndexType>;
using mapped_type = T;
using value_type = std::pair<const key_type, mapped_type>;
template <typename Value, typename SmallIt, typename BigIt>
class IteratorImpl {
public:
Value* operator->() const {
if (is_small_it_) {
return small_it_.operator->();
} else {
return big_it_.operator->();
}
}
Value& operator*() const {
if (is_small_it_) {
return small_it_.operator*();
} else {
return big_it_.operator*();
}
}
IteratorImpl& operator++() {
if (is_small_it_) {
small_it_.operator++();
} else {
big_it_.operator++();
}
return *this;
}
IteratorImpl& operator--() {
if (is_small_it_) {
small_it_.operator--();
} else {
big_it_.operator--();
}
return *this;
}
IteratorImpl& operator=(const IteratorImpl& other) {
is_small_it_ = other.is_small_it_;
small_it_ = other.small_it_;
big_it_ = other.big_it_;
return *this;
}
bool operator==(const IteratorImpl& other) const {
// It's enough just to compare both iterators.
return small_it_ == other.small_it_ && big_it_ == other.big_it_;
}
bool operator!=(const IteratorImpl& other) const { return !(*this == other); }
IteratorImpl() = default;
IteratorImpl(const IteratorImpl& other) = default;
IteratorImpl(const SmallIt& it) : is_small_it_(true), small_it_(it) {}
IteratorImpl(const BigIt& it) : is_small_it_(false), big_it_(it) {}
private:
friend BothRangeMap;
bool is_small_it_ = false;
SmallIt small_it_;
BigIt big_it_;
};
using iterator = IteratorImpl<value_type, SmallMapIterator, BigMapIterator>;
// TODO change const iterator to derived class if iterator -> const_iterator constructor is needed
using const_iterator = IteratorImpl<const value_type, SmallMapConstIterator, BigMapConstIterator>;
iterator begin() {
if (UsesSmallMap()) {
return iterator(GetSmallMap().begin());
} else {
return iterator(GetBigMap().begin());
}
}
const_iterator cbegin() const {
if (UsesSmallMap()) {
return const_iterator(GetSmallMap().begin());
} else {
return const_iterator(GetBigMap().begin());
}
}
const_iterator begin() const { return cbegin(); }
iterator end() {
if (UsesSmallMap()) {
return iterator(GetSmallMap().end());
} else {
return iterator(GetBigMap().end());
}
}
const_iterator cend() const {
if (UsesSmallMap()) {
return const_iterator(GetSmallMap().end());
} else {
return const_iterator(GetBigMap().end());
}
}
const_iterator end() const { return cend(); }
iterator find(const key_type& key) {
if (UsesSmallMap()) {
return iterator(GetSmallMap().find(key));
} else {
return iterator(GetBigMap().find(key));
}
}
const_iterator find(const key_type& key) const {
if (UsesSmallMap()) {
return const_iterator(GetSmallMap().find(key));
} else {
return const_iterator(GetBigMap().find(key));
}
}
iterator find(const index_type& index) {
if (UsesSmallMap()) {
return iterator(GetSmallMap().find(index));
} else {
return iterator(GetBigMap().find(index));
}
}
const_iterator find(const index_type& index) const {
if (UsesSmallMap()) {
return const_iterator(GetSmallMap().find(index));
} else {
return const_iterator(GetBigMap().find(index));
}
}
// TODO -- this is supposed to be a const_iterator, which is constructable from an iterator
void insert(const iterator& hint, const value_type& value) {
if (UsesSmallMap()) {
assert(hint.is_small_it_);
GetSmallMap().insert(hint.small_it_, value);
} else {
assert(!hint.is_small_it_);
GetBigMap().insert(hint.big_it_, value);
}
}
iterator lower_bound(const key_type& key) {
if (UsesSmallMap()) {
return iterator(GetSmallMap().lower_bound(key));
} else {
return iterator(GetBigMap().lower_bound(key));
}
}
const_iterator lower_bound(const key_type& key) const {
if (UsesSmallMap()) {
return const_iterator(GetSmallMap().lower_bound(key));
} else {
return const_iterator(GetBigMap().lower_bound(key));
}
}
template <typename Value>
iterator overwrite_range(const iterator& lower, Value&& value) {
if (UsesSmallMap()) {
assert(lower.is_small_it_);
return GetSmallMap().overwrite_range(lower.small_it_, std::forward<Value>(value));
} else {
assert(!lower.is_small_it_);
return GetBigMap().overwrite_range(lower.big_it_, std::forward<Value>(value));
}
}
// With power comes responsibility (🕷). You can get to the underlying maps, s.t. in inner loops, the "SmallMode" checks can be
// avoided per call, just be sure and Get the correct one.
const SmallMap& GetSmallMap() const {
assert(UsesSmallMap());
return std::get<SmallMap>(map_);
}
SmallMap& GetSmallMap() {
assert(UsesSmallMap());
return std::get<SmallMap>(map_);
}
const BigMap& GetBigMap() const {
assert(!UsesSmallMap());
return std::get<BigMap>(map_);
}
BigMap& GetBigMap() {
assert(!UsesSmallMap());
return std::get<BigMap>(map_);
}
BothRangeMap() = delete;
BothRangeMap(index_type limit) {
if (limit <= N) {
map_ = SmallMap(limit);
} else {
map_ = BigMap();
}
}
bool empty() const {
if (UsesSmallMap()) {
return GetSmallMap().empty();
} else {
return GetBigMap().empty();
}
}
size_t size() const {
if (UsesSmallMap()) {
return GetSmallMap().size();
} else {
return GetBigMap().size();
}
}
bool UsesSmallMap() const { return std::holds_alternative<SmallMap>(map_); }
private:
std::variant<SmallMap, BigMap> map_;
};
} // namespace subresource_adapter
|