1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
|
/* Copyright (c) 2018-2025 The Khronos Group Inc.
* Copyright (c) 2018-2025 Valve Corporation
* Copyright (c) 2018-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gpuav/resources/gpuav_vulkan_objects.h"
#include "gpuav/core/gpuav.h"
#include "generated/dispatch_functions.h"
#include "utils/math_utils.h"
#include <mutex>
#include <vulkan/utility/vk_struct_helper.hpp>
#include "profiling/profiling.h"
namespace gpuav {
namespace vko {
// Implementation for Descriptor Set Manager class
DescriptorSetManager::DescriptorSetManager(VkDevice device, uint32_t num_bindings_in_set)
: device(device), num_bindings_in_set(num_bindings_in_set) {}
DescriptorSetManager::~DescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
DispatchDestroyDescriptorPool(device, pool.first, nullptr);
}
desc_pool_map_.clear();
}
VkResult DescriptorSetManager::GetDescriptorSet(VkDescriptorPool *out_desc_pool, VkDescriptorSetLayout ds_layout,
VkDescriptorSet *out_desc_sets) {
std::vector<VkDescriptorSet> desc_sets;
VkResult result = GetDescriptorSets(1, out_desc_pool, ds_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result == VK_SUCCESS) {
*out_desc_sets = desc_sets[0];
}
return result;
}
VkResult DescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *out_pool, VkDescriptorSetLayout ds_layout,
std::vector<VkDescriptorSet> *out_desc_sets) {
std::lock_guard guard(lock_);
VkResult result = VK_SUCCESS;
VkDescriptorPool desc_pool_to_use = VK_NULL_HANDLE;
assert(count > 0);
if (count == 0) {
return result;
}
out_desc_sets->clear();
out_desc_sets->resize(count);
for (auto &[desc_pool, pool_tracker] : desc_pool_map_) {
if (pool_tracker.used + count < pool_tracker.size) {
desc_pool_to_use = desc_pool;
break;
}
}
if (desc_pool_to_use == VK_NULL_HANDLE) {
constexpr uint32_t kDefaultMaxSetsPerPool = 512;
const uint32_t max_sets = std::max(kDefaultMaxSetsPerPool, count);
// TODO: The logic to compute descriptor pool sizes should not be
// hardcoded like so, should be dynamic depending on the descriptor sets
// to be created. Not too dramatic as Vulkan will gracefully fail if there is a
// mismatch between this and created descriptor sets.
const std::array<VkDescriptorPoolSize, 2> pool_sizes = {{{
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
max_sets * num_bindings_in_set,
},
{
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC,
max_sets * num_bindings_in_set,
}}};
VkDescriptorPoolCreateInfo desc_pool_info = vku::InitStructHelper();
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = max_sets;
desc_pool_info.poolSizeCount = static_cast<uint32_t>(pool_sizes.size());
desc_pool_info.pPoolSizes = pool_sizes.data();
result = DispatchCreateDescriptorPool(device, &desc_pool_info, nullptr, &desc_pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[desc_pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[desc_pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, ds_layout);
VkDescriptorSetAllocateInfo desc_set_alloc_info = vku::InitStructHelper();
desc_set_alloc_info.descriptorPool = desc_pool_to_use;
desc_set_alloc_info.descriptorSetCount = count;
desc_set_alloc_info.pSetLayouts = desc_layouts.data();
result = DispatchAllocateDescriptorSets(device, &desc_set_alloc_info, out_desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*out_pool = desc_pool_to_use;
desc_pool_map_[desc_pool_to_use].used += count;
return result;
}
void DescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
std::lock_guard guard(lock_);
auto iter = desc_pool_map_.find(desc_pool);
assert(iter != desc_pool_map_.end());
if (iter == desc_pool_map_.end()) {
return;
}
VkResult result = DispatchFreeDescriptorSets(device, desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (desc_pool_map_[desc_pool].used == 0) {
DispatchDestroyDescriptorPool(device, desc_pool, nullptr);
desc_pool_map_.erase(desc_pool);
}
return;
}
void SharedResourcesCache::Clear() {
for (auto &[key, value] : shared_validation_resources_map_) {
auto &[object, destructor] = value;
destructor(object);
}
shared_validation_resources_map_.clear();
}
void *Buffer::GetMappedPtr() const { return mapped_ptr; }
void Buffer::FlushAllocation(VkDeviceSize offset, VkDeviceSize size) const {
VkResult result = vmaFlushAllocation(gpuav.vma_allocator_, allocation, offset, size);
if (result != VK_SUCCESS) {
gpuav.InternalVmaError(gpuav.device, result, "Unable to flush device memory.");
}
}
void Buffer::InvalidateAllocation(VkDeviceSize offset, VkDeviceSize size) const {
VkResult result = vmaInvalidateAllocation(gpuav.vma_allocator_, allocation, offset, size);
if (result != VK_SUCCESS) {
gpuav.InternalVmaError(gpuav.device, result, "Unable to invalidate device memory.");
}
}
bool Buffer::Create(const VkBufferCreateInfo *buffer_create_info, const VmaAllocationCreateInfo *allocation_create_info) {
VkResult result =
vmaCreateBuffer(gpuav.vma_allocator_, buffer_create_info, allocation_create_info, &buffer, &allocation, nullptr);
if (result != VK_SUCCESS) {
gpuav.InternalVmaError(gpuav.device, result, "Unable to allocate device memory for internal buffer.");
return false;
}
size = buffer_create_info->size;
if (buffer_create_info->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT) {
// After creating the buffer, get the address right away
device_address = gpuav.device_state->GetBufferDeviceAddressHelper(buffer, &gpuav.modified_extensions);
if (device_address == 0) {
gpuav.InternalVmaError(gpuav.device, VK_ERROR_UNKNOWN, "Failed to get address with DispatchGetBufferDeviceAddress.");
return false;
}
}
VkMemoryPropertyFlags mem_prop_flags = {};
vmaGetAllocationMemoryProperties(gpuav.vma_allocator_, allocation, &mem_prop_flags);
if (mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
result = vmaMapMemory(gpuav.vma_allocator_, allocation, &mapped_ptr);
if (result != VK_SUCCESS) {
mapped_ptr = nullptr;
gpuav.InternalVmaError(gpuav.device, result, "Unable to map device memory.");
return false;
}
}
#if defined(VVL_TRACY_GPU)
static_assert(VK_MAX_MEMORY_HEAPS <= 16u);
VmaBudget budgets[VK_MAX_MEMORY_HEAPS] = {};
vmaGetHeapBudgets(gpuav.vma_allocator_, budgets);
constexpr std::array<const char *, VK_MAX_MEMORY_HEAPS> heap_names = {
{"GPU Heap 0 (kB)", "GPU Heap 1 (kB)", "GPU Heap 2 (kB)", "GPU Heap 3 (kB)", "GPU Heap 4 (kB)", "GPU Heap 5 (kB)",
"GPU Heap 6 (kB)", "GPU Heap 7 (kB)", "GPU Heap 8 (kB)", "GPU Heap 9 (kB)", "GPU Heap 10 (kB)", "GPU Heap 11 (kB)",
"GPU Heap 12 (kB)", "GPU Heap 13 (kB)", "GPU Heap 14 (kB)", "GPU Heap 15 (kB)"}};
for (uint32_t heap_i = 0; heap_i < gpuav.phys_dev_mem_props.memoryHeapCount; ++heap_i) {
VVL_TracyPlot(heap_names[heap_i], int64_t(budgets[heap_i].statistics.blockBytes / 1024));
}
#endif
return true;
}
void Buffer::Destroy() {
if (buffer != VK_NULL_HANDLE) {
if (mapped_ptr != nullptr) {
vmaUnmapMemory(gpuav.vma_allocator_, allocation);
mapped_ptr = nullptr;
}
vmaDestroyBuffer(gpuav.vma_allocator_, buffer, allocation);
buffer = VK_NULL_HANDLE;
allocation = VK_NULL_HANDLE;
device_address = 0;
}
#if defined(VVL_TRACY_GPU)
static_assert(VK_MAX_MEMORY_HEAPS <= 16u);
VmaBudget budgets[VK_MAX_MEMORY_HEAPS] = {};
vmaGetHeapBudgets(gpuav.vma_allocator_, budgets);
constexpr std::array<const char *, VK_MAX_MEMORY_HEAPS> heap_names = {
{"GPU Heap 0 (kB)", "GPU Heap 1 (kB)", "GPU Heap 2 (kB)", "GPU Heap 3 (kB)", "GPU Heap 4 (kB)", "GPU Heap 5 (kB)",
"GPU Heap 6 (kB)", "GPU Heap 7 (kB)", "GPU Heap 8 (kB)", "GPU Heap 9 (kB)", "GPU Heap 10 (kB)", "GPU Heap 11 (kB)",
"GPU Heap 12 (kB)", "GPU Heap 13 (kB)", "GPU Heap 14 (kB)", "GPU Heap 15 (kB)"}};
for (uint32_t heap_i = 0; heap_i < gpuav.phys_dev_mem_props.memoryHeapCount; ++heap_i) {
VVL_TracyPlot(heap_names[heap_i], int64_t(budgets[heap_i].statistics.blockBytes / 1024));
}
#endif
}
void Buffer::Clear() const {
// Caller is in charge of calling Flush/Invalidate as needed
assert(mapped_ptr);
memset((uint8_t *)mapped_ptr, 0, static_cast<size_t>(size));
}
void BufferRange::Clear() const {
// Caller is in charge of calling Flush/Invalidate as needed
assert(offset_mapped_ptr);
memset((uint8_t *)offset_mapped_ptr, 0, static_cast<size_t>(size));
}
GpuResourcesManager::GpuResourcesManager(Validator &gpuav) : gpuav_(gpuav) {
{
VmaAllocationCreateInfo alloc_ci = {};
alloc_ci.usage = VMA_MEMORY_USAGE_AUTO;
alloc_ci.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
host_visible_buffer_cache_.Create(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
alloc_ci);
}
{
VmaAllocationCreateInfo alloc_ci = {};
alloc_ci.usage = VMA_MEMORY_USAGE_AUTO;
alloc_ci.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
host_cached_buffer_cache_.Create(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
alloc_ci);
}
{
VmaAllocationCreateInfo alloc_ci = {};
alloc_ci.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
if (gpuav.phys_dev_props.deviceType == VK_PHYSICAL_DEVICE_TYPE_CPU) {
alloc_ci.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
}
device_local_buffer_cache_.Create(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
alloc_ci);
}
{
VmaAllocationCreateInfo alloc_ci = {};
alloc_ci.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
if (gpuav.phys_dev_props.deviceType == VK_PHYSICAL_DEVICE_TYPE_CPU) {
alloc_ci.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
}
device_local_indirect_buffer_cache_.Create(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT,
alloc_ci);
}
{
VmaAllocationCreateInfo alloc_ci = {};
alloc_ci.usage = VMA_MEMORY_USAGE_AUTO;
alloc_ci.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
staging_buffer_cache_.Create(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
alloc_ci);
}
}
VkDescriptorSet GpuResourcesManager::GetManagedDescriptorSet(VkDescriptorSetLayout desc_set_layout) {
// Look for a descriptor set layout matching input,
// if found get or add an associated descriptor set
for (LayoutToSets &layout_to_sets : cache_layouts_to_sets_) {
if (layout_to_sets.desc_set_layout != desc_set_layout) {
continue;
}
if (layout_to_sets.first_available_desc_set == layout_to_sets.cached_descriptors.size()) {
CachedDescriptor cached_descriptor;
const VkResult result = gpuav_.desc_set_manager_->GetDescriptorSet(&cached_descriptor.desc_pool, desc_set_layout,
&cached_descriptor.desc_set);
if (result != VK_SUCCESS) {
return VK_NULL_HANDLE;
}
layout_to_sets.cached_descriptors.emplace_back(cached_descriptor);
}
assert(layout_to_sets.first_available_desc_set < layout_to_sets.cached_descriptors.size());
return layout_to_sets.cached_descriptors[layout_to_sets.first_available_desc_set++].desc_set;
}
// Did not find input descriptor set layout,
// add a new cache entry and just re-run search
LayoutToSets layout_to_sets;
layout_to_sets.desc_set_layout = desc_set_layout;
cache_layouts_to_sets_.emplace_back(layout_to_sets);
return GetManagedDescriptorSet(desc_set_layout);
}
// Arbitrary, big enough
constexpr VkDeviceSize buffer_address_alignment = 128;
vko::BufferRange GpuResourcesManager::GetHostVisibleBufferRange(VkDeviceSize size) {
// Kind of arbitrary, considered "big enough"
constexpr VkDeviceSize min_buffer_block_size = 4 * 1024;
// Buffers are used as storage buffers, align to corresponding limit
const VkDeviceSize alignment =
std::max<VkDeviceSize>(gpuav_.phys_dev_props.limits.minStorageBufferOffsetAlignment, buffer_address_alignment);
return host_visible_buffer_cache_.GetBufferRange(gpuav_, size, alignment, min_buffer_block_size);
}
vko::BufferRange GpuResourcesManager::GetHostCachedBufferRange(VkDeviceSize size) {
// Kind of arbitrary, considered "big enough"
constexpr VkDeviceSize min_buffer_block_size = 4 * 1024;
// Buffers are used as storage buffers, align to corresponding limit
const VkDeviceSize alignment =
std::max<VkDeviceSize>(gpuav_.phys_dev_props.limits.minStorageBufferOffsetAlignment, buffer_address_alignment);
return host_cached_buffer_cache_.GetBufferRange(gpuav_, size, alignment, min_buffer_block_size);
}
void GpuResourcesManager::FlushAllocation(const vko::BufferRange &buffer_range) {
vmaFlushAllocation(gpuav_.vma_allocator_, buffer_range.vma_alloc, 0, VK_WHOLE_SIZE);
}
void GpuResourcesManager::InvalidateAllocation(const vko::BufferRange &buffer_range) {
vmaInvalidateAllocation(gpuav_.vma_allocator_, buffer_range.vma_alloc, 0, VK_WHOLE_SIZE);
}
vko::BufferRange GpuResourcesManager::GetDeviceLocalBufferRange(VkDeviceSize size) {
// Kind of arbitrary, considered "big enough"
constexpr VkDeviceSize min_buffer_block_size = 4 * 1024;
// Buffers are used as storage buffers, align to corresponding limit
const VkDeviceSize alignment =
std::max<VkDeviceSize>(gpuav_.phys_dev_props.limits.minStorageBufferOffsetAlignment, buffer_address_alignment);
return device_local_buffer_cache_.GetBufferRange(gpuav_, size, alignment, min_buffer_block_size);
}
vko::BufferRange GpuResourcesManager::GetDeviceLocalIndirectBufferRange(VkDeviceSize size) {
// Kind of arbitrary, considered "big enough"
constexpr VkDeviceSize min_buffer_block_size = 4 * 1024;
// Buffers are used as storage buffers, align to corresponding limit
const VkDeviceSize alignment =
std::max<VkDeviceSize>(gpuav_.phys_dev_props.limits.minStorageBufferOffsetAlignment, buffer_address_alignment);
return device_local_indirect_buffer_cache_.GetBufferRange(gpuav_, size, alignment, min_buffer_block_size);
}
vko::BufferRange GpuResourcesManager::GetStagingBufferRange(VkDeviceSize size) {
// Kind of arbitrary, considered "big enough"
constexpr VkDeviceSize min_buffer_block_size = 4 * 1024;
// Buffers are used as storage buffers, align to corresponding limit
const VkDeviceSize alignment =
std::max<VkDeviceSize>(gpuav_.phys_dev_props.limits.minStorageBufferOffsetAlignment, buffer_address_alignment);
return staging_buffer_cache_.GetBufferRange(gpuav_, size, alignment, min_buffer_block_size);
}
void GpuResourcesManager::ReturnResources() {
for (LayoutToSets &layout_to_set : cache_layouts_to_sets_) {
layout_to_set.first_available_desc_set = 0;
}
host_visible_buffer_cache_.ReturnBuffers();
host_cached_buffer_cache_.ReturnBuffers();
device_local_buffer_cache_.ReturnBuffers();
device_local_indirect_buffer_cache_.ReturnBuffers();
staging_buffer_cache_.ReturnBuffers();
}
void GpuResourcesManager::DestroyResources() {
for (LayoutToSets &layout_to_set : cache_layouts_to_sets_) {
for (CachedDescriptor &cached_descriptor : layout_to_set.cached_descriptors) {
gpuav_.desc_set_manager_->PutBackDescriptorSet(cached_descriptor.desc_pool, cached_descriptor.desc_set);
}
layout_to_set.cached_descriptors.clear();
}
cache_layouts_to_sets_.clear();
host_visible_buffer_cache_.DestroyBuffers();
host_cached_buffer_cache_.DestroyBuffers();
device_local_buffer_cache_.DestroyBuffers();
device_local_indirect_buffer_cache_.DestroyBuffers();
staging_buffer_cache_.DestroyBuffers();
}
void GpuResourcesManager::BufferCache::Create(VkBufferUsageFlags buffer_usage_flags, const VmaAllocationCreateInfo allocation_ci) {
buffer_usage_flags_ = buffer_usage_flags;
allocation_ci_ = allocation_ci;
}
GpuResourcesManager::BufferCache::~BufferCache() { DestroyBuffers(); }
vko::BufferRange GpuResourcesManager::BufferCache::GetBufferRange(Validator &gpuav, VkDeviceSize byte_size, VkDeviceSize alignment,
VkDeviceSize min_buffer_block_byte_size) {
// Try to find a cached buffer block big enough to sub-allocate from it
if (total_available_byte_size_ >= byte_size) {
for (size_t i = 0; i < cached_buffers_blocks_.size(); ++i) {
const size_t cached_buffer_i = (next_avail_buffer_pos_hint_ + i) % cached_buffers_blocks_.size();
CachedBufferBlock &cached_buffer = cached_buffers_blocks_[cached_buffer_i];
// Is there enough space in the current cached buffer to fit the aligned sub-allocation?
const VkDeviceSize aligned_free_range_begin = Align(cached_buffer.used_range.end, alignment);
const vvl::range<VkDeviceSize> aligned_free_range = {aligned_free_range_begin, cached_buffer.total_range.end};
if (aligned_free_range.non_empty() && aligned_free_range.size() >= byte_size) {
// There is enough space, sub-allocate
const vvl::range<VkDeviceSize> returned_range = {aligned_free_range_begin, aligned_free_range_begin + byte_size};
assert(returned_range.non_empty());
const vvl::range<VkDeviceSize> pad_range = {cached_buffer.used_range.end, aligned_free_range.begin};
assert(pad_range.valid());
total_available_byte_size_ -= returned_range.size() + pad_range.size();
cached_buffer.used_range.end = returned_range.end;
// Heuristic: next call to the cache will ask for the same size and alignment.
// => If current block is big enough, hint at it. Else, hint at next block.
const vvl::range<VkDeviceSize> available_aligned_byte_range = {Align(cached_buffer.used_range.end, alignment),
cached_buffer.total_range.end};
if (available_aligned_byte_range.non_empty() && available_aligned_byte_range.size() >= byte_size) {
next_avail_buffer_pos_hint_ = cached_buffer_i;
} else {
next_avail_buffer_pos_hint_ = (cached_buffer_i + 1) % cached_buffers_blocks_.size();
}
uint8_t *offset_mapped_ptr = nullptr;
if (cached_buffer.buffer.GetMappedPtr()) {
offset_mapped_ptr = (uint8_t *)cached_buffer.buffer.GetMappedPtr() + returned_range.begin;
}
VkDeviceAddress offset_address = 0;
if (cached_buffer.buffer.Address()) {
offset_address = cached_buffer.buffer.Address() + returned_range.begin;
}
return {cached_buffer.buffer.VkHandle(),
returned_range.begin,
returned_range.size(),
offset_mapped_ptr,
offset_address,
cached_buffer.buffer.Allocation()};
}
}
}
// Did not find a cached buffer, create one, cache it and return its handle
Buffer buffer(gpuav);
VkBufferCreateInfo buffer_ci = vku::InitStructHelper();
buffer_ci.size = std::max(min_buffer_block_byte_size, byte_size);
buffer_ci.usage = buffer_usage_flags_;
const bool success = buffer.Create(&buffer_ci, &allocation_ci_);
if (!success) {
return {};
}
CachedBufferBlock cached_buffer_block{buffer, {0, buffer_ci.size}, {0, byte_size}};
cached_buffers_blocks_.emplace_back(cached_buffer_block);
total_available_byte_size_ += buffer_ci.size - byte_size;
return {buffer.VkHandle(),
cached_buffer_block.used_range.begin,
cached_buffer_block.used_range.size(),
cached_buffer_block.buffer.GetMappedPtr(),
cached_buffer_block.buffer.Address(),
cached_buffer_block.buffer.Allocation()};
}
void GpuResourcesManager::BufferCache::ReturnBuffers() {
total_available_byte_size_ = 0;
for (CachedBufferBlock &cached_buffer_block : cached_buffers_blocks_) {
cached_buffer_block.used_range = {0, 0};
total_available_byte_size_ += cached_buffer_block.total_range.size();
}
}
void GpuResourcesManager::BufferCache::DestroyBuffers() {
for (CachedBufferBlock &cached_buffer_block : cached_buffers_blocks_) {
cached_buffer_block.buffer.Destroy();
}
cached_buffers_blocks_.clear();
}
bool StagingBuffer::CanDeviceEverStage(Validator &gpuav) {
return gpuav.phys_dev_props.deviceType != VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
}
StagingBuffer::StagingBuffer(GpuResourcesManager &gpu_resources_manager, VkDeviceSize size, VkCommandBuffer cb)
: gpu_resources_manager(gpu_resources_manager) {
VVL_ZoneScoped;
// Never use staging buffer on integrated GPUs
if (gpu_resources_manager.gpuav_.phys_dev_props.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) {
device_buffer_range = gpu_resources_manager.GetHostCachedBufferRange(size);
host_buffer_range = device_buffer_range;
}
// On other types of GPUs, let VMA decide whether to stage or not
else {
device_buffer_range = gpu_resources_manager.GetStagingBufferRange(size);
}
vmaGetAllocationMemoryProperties(gpu_resources_manager.gpuav_.vma_allocator_, device_buffer_range.vma_alloc,
&device_buffer_mem_prop_flags);
if (device_buffer_mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
host_buffer_range = device_buffer_range;
} else {
VkBufferMemoryBarrier barrier_access_before_write = vku::InitStructHelper();
barrier_access_before_write.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
barrier_access_before_write.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier_access_before_write.buffer = device_buffer_range.buffer;
barrier_access_before_write.offset = device_buffer_range.offset;
barrier_access_before_write.size = device_buffer_range.size;
DispatchCmdPipelineBarrier(cb, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 1,
&barrier_access_before_write, 0, nullptr);
DispatchCmdFillBuffer(cb, device_buffer_range.buffer, device_buffer_range.offset, device_buffer_range.size, 0);
VkBufferMemoryBarrier barrier_access_after_write = vku::InitStructHelper();
barrier_access_after_write.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier_access_after_write.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
barrier_access_after_write.buffer = device_buffer_range.buffer;
barrier_access_after_write.offset = device_buffer_range.offset;
barrier_access_after_write.size = device_buffer_range.size;
DispatchCmdPipelineBarrier(cb, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 1,
&barrier_access_after_write, 0, nullptr);
// #ARNO_TODO reconsider using host cached memory
host_buffer_range = gpu_resources_manager.GetHostCachedBufferRange(size);
}
std::memset(host_buffer_range.offset_mapped_ptr, 0, (size_t)host_buffer_range.size);
gpu_resources_manager.FlushAllocation(host_buffer_range);
}
void StagingBuffer::CmdCopyDeviceToHost(VkCommandBuffer cb) const {
if (device_buffer_mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
// nothing to do
return;
}
// Dispatch a copy command, copying staging buffer device local memory to host visible
VkBufferMemoryBarrier barrier_read_after_write = vku::InitStructHelper();
barrier_read_after_write.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
barrier_read_after_write.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier_read_after_write.buffer = device_buffer_range.buffer;
barrier_read_after_write.offset = device_buffer_range.offset;
barrier_read_after_write.size = device_buffer_range.size;
DispatchCmdPipelineBarrier(cb, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 1,
&barrier_read_after_write, 0, nullptr);
VkBufferCopy copy = {};
copy.srcOffset = device_buffer_range.offset;
copy.dstOffset = host_buffer_range.offset;
copy.size = device_buffer_range.size;
DispatchCmdCopyBuffer(cb, device_buffer_range.buffer, host_buffer_range.buffer, 1, ©);
// No additional barrier, host_visible_range will be read on the host
// => will wait for cb's fence before reading.
}
CommandPool::CommandPool(Validator &gpuav, uint32_t queue_family_i, const Location &loc) : gpuav_(gpuav) {
VkCommandPoolCreateInfo cmd_pool_ci = vku::InitStructHelper();
cmd_pool_ci.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cmd_pool_ci.queueFamilyIndex = queue_family_i;
VkResult result = DispatchCreateCommandPool(gpuav_.device, &cmd_pool_ci, nullptr, &cmd_pool_);
if (result != VK_SUCCESS) {
gpuav_.InternalError(LogObjectList(), loc, "Failed to create command buffer pool");
}
VkCommandBufferAllocateInfo cmd_buf_ai = vku::InitStructHelper();
cmd_buf_ai.commandPool = cmd_pool_;
cmd_buf_ai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd_buf_ai.commandBufferCount = 512; // #ARNO_TODO do not hardcode commandBufferCount
cmd_buffers_.resize(cmd_buf_ai.commandBufferCount);
result = DispatchAllocateCommandBuffers(gpuav_.device, &cmd_buf_ai, cmd_buffers_.data());
if (result != VK_SUCCESS) {
gpuav_.InternalError(LogObjectList(), loc, "Failed to create command buffers");
}
for (VkCommandBuffer cb : cmd_buffers_) {
gpuav.vk_set_device_loader_data_(gpuav.device, cb);
}
fences_.resize(cmd_buf_ai.commandBufferCount);
for (VkFence &fence : fences_) {
VkFenceCreateInfo fence_ci = vku::InitStructHelper();
fence_ci.flags = VK_FENCE_CREATE_SIGNALED_BIT;
result = DispatchCreateFence(gpuav_.device, &fence_ci, nullptr, &fence);
if (result != VK_SUCCESS) {
gpuav_.InternalError(LogObjectList(), loc, "Failed to create fences");
}
}
}
CommandPool::~CommandPool() {
DispatchDestroyCommandPool(gpuav_.device, cmd_pool_, nullptr);
for (VkFence fence : fences_) {
DispatchDestroyFence(gpuav_.device, fence, nullptr);
}
}
std::pair<VkCommandBuffer, VkFence> CommandPool::GetCommandBuffer() {
VVL_ZoneScoped;
const size_t cb_i = cmd_buffer_ring_head_++ % cmd_buffers_.size();
VkResult result = DispatchWaitForFences(gpuav_.device, 1, &fences_[cb_i], VK_TRUE, UINT64_MAX);
if (result != VK_SUCCESS) {
gpuav_.InternalError(fences_[cb_i], Location(vvl::Func::Empty), "Failed to wait for fence");
return {VK_NULL_HANDLE, VK_NULL_HANDLE};
}
DispatchResetFences(gpuav_.device, 1, &fences_[cb_i]);
DispatchResetCommandBuffer(cmd_buffers_[cb_i], 0);
return {cmd_buffers_[cb_i], fences_[cb_i]};
}
} // namespace vko
} // namespace gpuav
|