File: sync_access_state.h

package info (click to toggle)
vulkan-validationlayers 1.4.328.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,412 kB
  • sloc: cpp: 615,223; python: 12,115; sh: 24; makefile: 20; xml: 14
file content (602 lines) | stat: -rw-r--r-- 28,889 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/* Copyright (c) 2019-2025 The Khronos Group Inc.
 * Copyright (c) 2019-2025 Valve Corporation
 * Copyright (c) 2019-2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once
#include "sync/sync_common.h"

class ResourceAccessState;
struct WriteState;
struct ReadState;
struct ResourceFirstAccess;

namespace syncval_stats {
struct AccessContextStats;
}  // namespace syncval_stats

// NOTE: the attachement read flag is put *only* in the access scope and not in the exect scope, since the ordering
//       rules apply only to this specific access for this stage, and not the stage as a whole. The ordering detection
//       also reflects this special case for read hazard detection (using access instead of exec scope)
constexpr VkPipelineStageFlags2 kColorAttachmentExecScope = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
const SyncAccessFlags kColorAttachmentAccessScope =
    SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_BIT |
    SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
    SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE_BIT |
    SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT;  // Note: this is intentionally not in the exec scope
constexpr VkPipelineStageFlags2 kDepthStencilAttachmentExecScope =
    VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT;
const SyncAccessFlags kDepthStencilAttachmentAccessScope =
    SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
    SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
    SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT;  // Note: this is intentionally not in the exec scope
constexpr VkPipelineStageFlags2 kRasterAttachmentExecScope = kDepthStencilAttachmentExecScope | kColorAttachmentExecScope;
const SyncAccessFlags kRasterAttachmentAccessScope = kDepthStencilAttachmentAccessScope | kColorAttachmentAccessScope;

enum SyncHazard {
    NONE = 0,
    READ_AFTER_WRITE,
    WRITE_AFTER_READ,
    WRITE_AFTER_WRITE,
    READ_RACING_WRITE,
    WRITE_RACING_WRITE,
    WRITE_RACING_READ,
    WRITE_AFTER_PRESENT,  // Once presented, an image may not be used until acquired
    READ_AFTER_PRESENT,
    PRESENT_AFTER_READ,  // Must be unreferenced and visible to present
    PRESENT_AFTER_WRITE,
};

enum class SyncOrdering : uint8_t {
    kOrderingNone = 0,
    kNonAttachment = kOrderingNone,
    kColorAttachment = 1,
    kDepthStencilAttachment = 2,
    kRaster = 3,
    kNumOrderings = 4,
};

struct SyncFlag {
    enum : uint32_t {
        kLoadOp = 0x01,
        kStoreOp = 0x02,
        kPresent = 0x04,
        kMarker = 0x08,
    };
};
using SyncFlags = uint32_t;

const char *string_SyncHazardVUID(SyncHazard hazard);

struct SyncHazardInfo {
    bool is_write = false;
    bool is_prior_write = false;
    bool is_racing_hazard = false;

    bool IsWrite() const { return is_write; }
    bool IsRead() const { return !is_write; }
    bool IsPriorWrite() const { return is_prior_write; }
    bool IsPriorRead() const { return !is_prior_write; }
    bool IsRacingHazard() const { return is_racing_hazard; }
};
SyncHazardInfo GetSyncHazardInfo(SyncHazard hazard);

class HazardResult {
  public:
    struct HazardState {
        std::unique_ptr<const ResourceAccessState> access_state;
        std::unique_ptr<const ResourceFirstAccess> recorded_access;
        SyncAccessIndex access_index = std::numeric_limits<SyncAccessIndex>::max();
        SyncAccessIndex prior_access_index;
        ResourceUsageTag tag = ResourceUsageTag();
        uint32_t handle_index = vvl::kNoIndex32;
        SyncHazard hazard = NONE;
        HazardState(const ResourceAccessState *access_state, const SyncAccessInfo &usage_info, SyncHazard hazard,
                    SyncAccessIndex prior_access_index, ResourceUsageTagEx tag_ex);
    };

    static HazardResult HazardVsPriorWrite(const ResourceAccessState *access_state, const SyncAccessInfo &usage_info,
                                           SyncHazard hazard, const WriteState &prior_write);
    static HazardResult HazardVsPriorRead(const ResourceAccessState *access_state, const SyncAccessInfo &usage_info,
                                          SyncHazard hazard, const ReadState &prior_read);

    void AddRecordedAccess(const ResourceFirstAccess &first_access);

    bool IsHazard() const { return state_.has_value() && NONE != state_->hazard; }
    bool IsWAWHazard() const;
    ResourceUsageTag Tag() const {
        assert(state_);
        return state_->tag;
    }
    ResourceUsageTagEx TagEx() const {
        assert(state_);
        return ResourceUsageTagEx{state_->tag, state_->handle_index};
    }
    SyncHazard Hazard() const {
        assert(state_);
        return state_->hazard;
    }
    const std::unique_ptr<const ResourceFirstAccess> &RecordedAccess() const {
        assert(state_);
        return state_->recorded_access;
    }
    const HazardState &State() const {
        assert(state_);
        return state_.value();
    }

  private:
    std::optional<HazardState> state_;
};

struct SyncExecScope {
    VkPipelineStageFlags2 mask_param = 0;  // the xxxStageMask parameter passed by the caller
    VkPipelineStageFlags2 exec_scope = 0;  // all earlier or later stages that would be affected by a barrier using this scope.
    SyncAccessFlags valid_accesses;        // all valid accesses that can be used with this scope.

    static SyncExecScope MakeSrc(VkQueueFlags queue_flags, VkPipelineStageFlags2 src_stage_mask,
                                 const VkPipelineStageFlags2 disabled_feature_mask = 0);
    static SyncExecScope MakeDst(VkQueueFlags queue_flags, VkPipelineStageFlags2 src_stage_mask);
};

struct SemaphoreScope : SyncExecScope {
    SemaphoreScope(QueueId qid, const SyncExecScope &exec_scope) : SyncExecScope(exec_scope), queue(qid) {}
    SemaphoreScope() = default;
    QueueId queue;
};

struct SyncBarrier {
    struct AllAccess {};
    SyncExecScope src_exec_scope;
    SyncAccessFlags src_access_scope;
    SyncExecScope dst_exec_scope;
    SyncAccessFlags dst_access_scope;

    SyncBarrier() = default;
    SyncBarrier(const SyncExecScope &src_exec, const SyncExecScope &dst_exec);
    SyncBarrier(const SyncExecScope &src_exec, const SyncExecScope &dst_exec, const AllAccess &);
    SyncBarrier(const SyncExecScope &src_exec, VkAccessFlags2 src_access_mask, const SyncExecScope &dst_exec,
                VkAccessFlags2 dst_access_mask);
    SyncBarrier(VkQueueFlags queue_flags, const VkSubpassDependency2 &barrier);
    SyncBarrier(const std::vector<SyncBarrier> &barriers);
};

// Defines the source scope of the barrier.
// ReadState and WriteState have InBarrierSourceScope() that checks if corresponding access is in the barrier source scope.
struct BarrierScope {
    VkPipelineStageFlagBits2 src_exec_scope;
    SyncAccessFlags src_access_scope;

    // Scope queue is used to include accesses only from the specific queue.
    // The check against queue scope is unified for all cases. During record time the scope queue
    // has default value (Invalid). This matches how the queue member of read/write accesses is
    // initialized during recording, so (access_queue == scope_queue) evaluates to true during record time.
    QueueId scope_queue = kQueueIdInvalid;

    // The tag is needed for the event scope logic. The scope tag is defined by the "set event" command.
    // The check against scope tag is unified for all cases. For non event code the scope tag is uint64-max
    // value, so (access_tag < scope_tag) evaluates to true for non event code.
    ResourceUsageTag scope_tag = kInvalidTag;

    BarrierScope(const SyncBarrier &barrier, QueueId scope_queue = kQueueIdInvalid, ResourceUsageTag scope_tag = kInvalidTag);
};

struct ResourceFirstAccess {
    const SyncAccessInfo *usage_info;
    ResourceUsageTag tag;
    uint32_t handle_index;
    SyncOrdering ordering_rule;
    SyncFlags flags;

    ResourceFirstAccess(const SyncAccessInfo &usage_info, ResourceUsageTagEx tag_ex, SyncOrdering ordering_rule, SyncFlags flags)
        : usage_info(&usage_info), tag(tag_ex.tag), handle_index(tag_ex.handle_index), ordering_rule(ordering_rule), flags(flags) {}
    bool operator==(const ResourceFirstAccess &rhs) const {
        return (tag == rhs.tag) && (usage_info == rhs.usage_info) && (ordering_rule == rhs.ordering_rule) && flags == rhs.flags;
    }
    ResourceUsageTagEx TagEx() const { return {tag, handle_index}; }
};

using QueueId = uint32_t;
struct OrderingBarrier {
    VkPipelineStageFlags2 exec_scope;
    SyncAccessFlags access_scope;
    OrderingBarrier() = default;
    OrderingBarrier(const OrderingBarrier &) = default;
    OrderingBarrier(VkPipelineStageFlags2 es, SyncAccessFlags as) : exec_scope(es), access_scope(as) {}
    OrderingBarrier &operator=(const OrderingBarrier &) = default;
    OrderingBarrier &operator|=(const OrderingBarrier &rhs) {
        exec_scope |= rhs.exec_scope;
        access_scope |= rhs.access_scope;
        return *this;
    }
    bool operator==(const OrderingBarrier &rhs) const {
        return (exec_scope == rhs.exec_scope) && (access_scope == rhs.access_scope);
    }
};

const OrderingBarrier &GetOrderingRules(SyncOrdering ordering_enum);

using ResourceUsageTagSet = CachedInsertSet<ResourceUsageTag, 4>;

// Mutliple read operations can be simlutaneously (and independently) synchronized,
// given the only the second execution scope creates a dependency chain, we have to track each,
// but only up to one per pipeline stage (as another read from the *same* stage become more recent,
// and applicable one for hazard detection
struct ReadState {
    VkPipelineStageFlagBits2 stage;     // The stage of this read
    SyncAccessIndex access_index;       // TODO: Revisit whether this needs to support multiple reads per stage
    VkPipelineStageFlags2 barriers;     // all applicable barriered stages
    VkPipelineStageFlags2 sync_stages;  // reads known to have happened after this
    ResourceUsageTag tag;
    uint32_t handle_index;
    QueueId queue;

    void Set(VkPipelineStageFlagBits2 stage, SyncAccessIndex access_index, ResourceUsageTagEx tag_ex);

    ResourceUsageTagEx TagEx() const { return {tag, handle_index}; }
    bool operator==(const ReadState &rhs) const {
        return (stage == rhs.stage) && (access_index == rhs.access_index) && (barriers == rhs.barriers) &&
               (sync_stages == rhs.sync_stages) && (tag == rhs.tag) && (queue == rhs.queue);
    }
    bool IsReadBarrierHazard(VkPipelineStageFlags2 src_exec_scope) const {
        // If the read stage is not in the src sync scope
        // *AND* not execution chained with an existing sync barrier (that's the or)
        // then the barrier access is unsafe (R/W after R)
        return (src_exec_scope & (stage | barriers)) == 0;
    }
    bool IsReadBarrierHazard(QueueId barrier_queue, VkPipelineStageFlags2 src_exec_scope,
                             const SyncAccessFlags &src_access_scope) const {
        // If the read stage is not in the src sync scope
        // *AND* not execution chained with an existing sync barrier (that's the or)
        // then the barrier access is unsafe (R/W after R)
        VkPipelineStageFlags2 queue_ordered_stage = (queue == barrier_queue) ? stage : VK_PIPELINE_STAGE_2_NONE;

        // Current implementation relies on TOP_OF_PIPE constant due to the fact that it's non-zero value
        // and AND-ing with it can create execution dependency when it's necessary. When NONE constant is
        // used, which equals to zero, then AND-ing with it always results in 0 which means "no barrier",
        // so it's not possible to use NONE internally in equivalent way to TOP_OF_PIPE.
        // Replace NONE with TOP_OF_PIPE in the scenarios where they are equivalent.
        //
        // If we update implementation to get rid of deprecated TOP_OF_PIPE/BOTTOM_OF_PIPE then we must
        // invert the condition below and exchange TOP_OF_PIPE and NONE roles, so deprecated stages would
        // not propagate into implementation internals.
        if (src_exec_scope == VK_PIPELINE_STAGE_2_NONE && src_access_scope.none()) {
            src_exec_scope = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
        }

        return (src_exec_scope & (queue_ordered_stage | barriers)) == 0;
    }
    bool ReadOrDependencyChainInSourceScope(QueueId queue, VkPipelineStageFlags2 src_exec_scope) const;
    bool InBarrierSourceScope(const BarrierScope &barrier_scope) const;
};

static_assert(std::is_trivially_copyable_v<ReadState>);

struct WriteState {
    SyncAccessIndex access_index;
    SyncFlags flags;

    // Union of applicable barrier masks since last write
    SyncAccessFlags barriers;

    // Accumulates the dstStages of barriers if they chain
    VkPipelineStageFlags2 dependency_chain;

    ResourceUsageTag tag;
    uint32_t handle_index;
    QueueId queue;

    void Set(SyncAccessIndex access_index, ResourceUsageTagEx tag_ex, SyncFlags flags);
    void SetQueueId(QueueId id);
    void MergeBarriers(const WriteState &other);

    bool operator==(const WriteState &rhs) const;

    bool DependencyChainInSourceScope(VkPipelineStageFlags2 src_exec_scope) const;
    bool WriteInSourceScope(const SyncAccessFlags &src_access_scope) const;
    bool WriteOrDependencyChainInSourceScope(QueueId queue_id, VkPipelineStageFlags2 src_exec_scope,
                                             const SyncAccessFlags &src_access_scope) const;
    bool InBarrierSourceScope(const BarrierScope &barrier_scope) const;

    bool IsWriteHazard(const SyncAccessInfo &usage_info) const;
    bool IsWriteBarrierHazard(QueueId queue_id, VkPipelineStageFlags2 src_exec_scope,
                              const SyncAccessFlags &src_access_scope) const;

    bool IsOrdered(const OrderingBarrier &ordering, QueueId queue_id) const;
    bool IsLoadOp() const { return flags & SyncFlag::kLoadOp; }
    bool IsPresent() const { return flags & SyncFlag::kPresent; }

    ResourceUsageTagEx TagEx() const { return {tag, handle_index}; }
};

static_assert(std::is_trivially_copyable_v<WriteState>);

enum class PendingBarrierType : uint8_t { ReadAccessBarrier, WriteAccessBarrier, LayoutTransition };

struct PendingBarrierInfo {
    PendingBarrierType type;
    uint32_t index;  // indexes array determined by 'type'
    ResourceAccessState *access_state;
};

struct PendingReadBarrier {
    VkPipelineStageFlags2 barriers;
    uint32_t last_reads_index;  // indexes ResourceAccessState::last_reads
};

struct PendingWriteBarrier {
    SyncAccessFlags barriers;
    VkPipelineStageFlags2 dependency_chain;
};

struct PendingLayoutTransition {
    OrderingBarrier ordering;
    uint32_t handle_index;
};

// PendingBarriers stores the results of independent barrier applications, so the applied barriers
// do not interact (for example, they do not create execution dependencies between themselves).
// Apply() stores the final result in the access state. Independent barrier application is required
// by various sync APIs, such as vkCmdPipelineBarrier.
//
// A naive approach to applying a set of independent barriers is to apply them directly to the access
// state one at a time. This creates dependencies. PendingBarriers solves this by delaying updates to
// the access state until all barriers have been processed.
struct PendingBarriers {
    std::vector<PendingBarrierInfo> infos;
    std::vector<PendingReadBarrier> read_barriers;
    std::vector<PendingWriteBarrier> write_barriers;
    std::vector<PendingLayoutTransition> layout_transitions;

    // Store result of barrier application as PendingBarriers state
    void AddReadBarrier(ResourceAccessState *access_state, uint32_t last_reads_index, const SyncBarrier &barrier);
    void AddWriteBarrier(ResourceAccessState *access_state, const SyncBarrier &barrier);
    void AddLayoutTransition(ResourceAccessState *access_state, const SyncBarrier &barrier,
                             uint32_t layout_transition_handle_index);

    // Update accesss state with collected barriers
    void Apply(const ResourceUsageTag exec_tag);
};

class ResourceAccessState {
  public:
    HazardResult DetectHazard(const SyncAccessInfo &usage_info) const;
    HazardResult DetectMarkerHazard() const;

    HazardResult DetectHazard(const SyncAccessInfo &usage_info, const OrderingBarrier &ordering, SyncFlags flags,
                              QueueId queue_id) const;
    HazardResult DetectHazard(const ResourceAccessState &recorded_use, QueueId queue_id, const ResourceUsageRange &tag_range) const;

    HazardResult DetectAsyncHazard(const SyncAccessInfo &usage_info, ResourceUsageTag start_tag, QueueId queue_id) const;
    HazardResult DetectAsyncHazard(const ResourceAccessState &recorded_use, const ResourceUsageRange &tag_range,
                                   ResourceUsageTag start_tag, QueueId queue_id) const;

    HazardResult DetectBarrierHazard(const SyncAccessInfo &usage_info, QueueId queue_id, VkPipelineStageFlags2 source_exec_scope,
                                     const SyncAccessFlags &source_access_scope) const;
    HazardResult DetectBarrierHazard(const SyncAccessInfo &usage_info, const ResourceAccessState &scope_state,
                                     VkPipelineStageFlags2 source_exec_scope, const SyncAccessFlags &source_access_scope,
                                     QueueId event_queue, ResourceUsageTag event_tag) const;

    void Update(const SyncAccessInfo &usage_info, SyncOrdering ordering_rule, ResourceUsageTagEx tag_ex, SyncFlags flags = 0);
    void SetWrite(SyncAccessIndex access_index, ResourceUsageTagEx tag_ex, SyncFlags flags = 0);
    void ClearWrite();
    void ClearRead();
    void ClearFirstUse();
    void Resolve(const ResourceAccessState &other);

    // Apply a single barrier to the access state
    void ApplyBarrier(const BarrierScope &barrier_scope, const SyncBarrier &barrier, bool layout_transition = false,
                      uint32_t layout_transition_handle_index = vvl::kNoIndex32,
                      ResourceUsageTag layout_transition_tag = kInvalidTag);

    // Store the result of barrier application in PendingBarriers.
    // Does not update the access state (as ApplyBarrier does).
    // Used for applying multiple barriers independently.
    void CollectPendingBarriers(const BarrierScope &barrier_scope, const SyncBarrier &barrier, bool layout_transition,
                                uint32_t layout_transition_handle_index, PendingBarriers &pending_barriers);

    // Apply pending barriers to the access state.
    // Called after all barrier application results are collected in PendingBarriers.
    void ApplyPendingReadBarrier(const PendingReadBarrier &read_barrier, ResourceUsageTag tag);
    void ApplyPendingWriteBarrier(const PendingWriteBarrier &write_barrier);
    void ApplyPendingLayoutTransition(const PendingLayoutTransition &layout_transition, ResourceUsageTag layout_transition_tag);

    void ApplySemaphore(const SemaphoreScope &signal, const SemaphoreScope wait);

    struct WaitQueueTagPredicate {
        QueueId queue;
        ResourceUsageTag tag;
        bool operator()(const ReadState &read_access) const;       // Read access predicate
        bool operator()(const ResourceAccessState &access) const;  // Write access predicate
    };
    friend WaitQueueTagPredicate;

    struct WaitTagPredicate {
        ResourceUsageTag tag;
        bool operator()(const ReadState &read_access) const;       // Read access predicate
        bool operator()(const ResourceAccessState &access) const;  // Write access predicate
    };
    friend WaitTagPredicate;

    struct WaitAcquirePredicate {
        ResourceUsageTag present_tag;
        ResourceUsageTag acquire_tag;
        bool operator()(const ReadState &read_access) const;       // Read access predicate
        bool operator()(const ResourceAccessState &access) const;  // Write access predicate
    };
    friend WaitAcquirePredicate;

    // Clear read/write accesses that satisfy the predicate
    // (predicate says which accesses should be considered synchronized).
    // Return true if all accesses were cleared and access state is empty
    template <typename Predicate>
    bool ClearPredicatedAccesses(Predicate &predicate);

    bool FirstAccessInTagRange(const ResourceUsageRange &tag_range) const;

    void OffsetTag(ResourceUsageTag offset);
    ResourceAccessState();

    bool HasWriteOp() const { return last_write.has_value(); }
    bool IsLastWriteOp(SyncAccessIndex access_index) const {
        return last_write.has_value() && last_write->access_index == access_index;
    }
    ResourceUsageTag LastWriteTag() const { return last_write.has_value() ? last_write->tag : ResourceUsageTag(0); }
    const WriteState &LastWrite() const;
    bool operator==(const ResourceAccessState &rhs) const {
        const bool write_same = (read_execution_barriers == rhs.read_execution_barriers) &&
                                (input_attachment_read == rhs.input_attachment_read) && (last_write == rhs.last_write);

        const bool read_write_same = write_same && (last_read_stages == rhs.last_read_stages) && (last_reads == rhs.last_reads);

        const bool same = read_write_same && (first_accesses_ == rhs.first_accesses_) &&
                          (first_read_stages_ == rhs.first_read_stages_) &&
                          (first_write_layout_ordering_ == rhs.first_write_layout_ordering_);

        return same;
    }
    bool operator!=(const ResourceAccessState &rhs) const { return !(*this == rhs); }
    VkPipelineStageFlags2 GetReadBarriers(SyncAccessIndex access_index) const;
    SyncAccessFlags GetWriteBarriers() const { return last_write.has_value() ? last_write->barriers : SyncAccessFlags(); }
    void SetQueueId(QueueId id);

    bool IsWriteBarrierHazard(QueueId queue_id, VkPipelineStageFlags2 src_exec_scope,
                              const SyncAccessFlags &src_access_scope) const;
    void Normalize();
    void GatherReferencedTags(ResourceUsageTagSet &used) const;

    void UpdateStats(syncval_stats::AccessContextStats &stats) const;

  private:
    static constexpr VkPipelineStageFlags2 kInvalidAttachmentStage = ~VkPipelineStageFlags2(0);
    bool IsRAWHazard(const SyncAccessInfo &usage_info) const;

    static bool IsReadHazard(VkPipelineStageFlags2 stage_mask, const VkPipelineStageFlags2 barriers) {
        return stage_mask != (stage_mask & barriers);
    }

    bool IsReadHazard(VkPipelineStageFlags2 stage_mask, const ReadState &read_access) const {
        return IsReadHazard(stage_mask, read_access.barriers);
    }
    VkPipelineStageFlags2 GetOrderedStages(QueueId queue_id, const OrderingBarrier &ordering, SyncFlags flags) const;

    void UpdateFirst(ResourceUsageTagEx tag_ex, const SyncAccessInfo &usage_info, SyncOrdering ordering_rule, SyncFlags flags = 0);
    void TouchupFirstForLayoutTransition(ResourceUsageTag tag, const OrderingBarrier &layout_ordering);
    void MergeReads(const ResourceAccessState &other);

    // TODO: Add a NONE (zero) enum to SyncStageAccessFlags for input_attachment_read and last_write

    // With reads, each must be "safe" relative to it's prior write, so we need only
    // save the most recent write operation (as anything *transitively* unsafe would arleady
    // be included
    // SyncStageAccessFlags write_barriers;              // union of applicable barrier masks since last write
    // VkPipelineStageFlags2 write_dependency_chain;  // intiially zero, but accumulating the dstStages of barriers if they
    // chain. ResourceUsageTag write_tag; QueueId write_queue;
    std::optional<WriteState> last_write;  // only the most recent write

    VkPipelineStageFlags2 last_read_stages;
    VkPipelineStageFlags2 read_execution_barriers;

    // NOTE: default capacity is set to 2. A single read is the most common case.
    // Two reads occur sometimes and more than two is rare in practice.
    // Syncval performance is sensitive to memory usage (there are many access objects).
    // The early tests show that capacity of 1 can further improve performance and in some
    // apps reduced memory bandwidth outweight the cost of additional allocations.
    // More testing is needed.
    using ReadStates = small_vector<ReadState, 2, uint32_t>;

    ReadStates last_reads;

    // TODO Input Attachment cleanup for multiple reads in a given stage
    // Tracks whether the fragment shader read is input attachment read
    bool input_attachment_read;

    // Reserve capacity for 2 first accesses, more than that is not very common
    using FirstAccesses = small_vector<ResourceFirstAccess, 2>;

    FirstAccesses first_accesses_;
    VkPipelineStageFlags2 first_read_stages_;
    OrderingBarrier first_write_layout_ordering_;
    bool first_access_closed_;
};
using ResourceAccessStateFunction = std::function<void(ResourceAccessState *)>;
using ResourceAccessRangeMap = sparse_container::range_map<ResourceAddress, ResourceAccessState>;
using ResourceRangeMergeIterator = sparse_container::parallel_iterator<ResourceAccessRangeMap, const ResourceAccessRangeMap>;

template <typename Predicate>
bool ResourceAccessState::ClearPredicatedAccesses(Predicate &predicate) {
    VkPipelineStageFlags2 sync_reads = VK_PIPELINE_STAGE_2_NONE;

    // Use the predicate to build a mask of the read stages we are synchronizing
    // Use the sync_stages to also detect reads known to be before any synchronized reads (first pass)
    for (const auto &read_access : last_reads) {
        if (predicate(read_access)) {
            // If we know this stage is before any stage we syncing, or if the predicate tells us that we are waited for..
            sync_reads |= read_access.stage;
        }
    }

    // Now that we know the reads directly in scopejust need to go over the list again to pick up the "known earlier" stages.
    // NOTE: sync_stages is "deep" catching all stages synchronized after it because we forward barriers
    uint32_t unsync_count = 0;
    for (const auto &read_access : last_reads) {
        if (0 != ((read_access.stage | read_access.sync_stages) & sync_reads)) {
            // This is redundant in the "stage" case, but avoids a second branch to get an accurate count
            sync_reads |= read_access.stage;
        } else {
            ++unsync_count;
        }
    }

    if (unsync_count) {
        if (sync_reads) {
            // When have some remaining unsynchronized reads, we have to rewrite the last_reads array.
            ReadStates unsync_reads;
            unsync_reads.reserve(unsync_count);
            VkPipelineStageFlags2 unsync_read_stages = VK_PIPELINE_STAGE_2_NONE;
            for (auto &read_access : last_reads) {
                if (0 == (read_access.stage & sync_reads)) {
                    unsync_reads.emplace_back(read_access);
                    unsync_read_stages |= read_access.stage;
                }
            }
            last_read_stages = unsync_read_stages;
            last_reads = std::move(unsync_reads);
        }
    } else {
        // Nothing remains (or it was empty to begin with)
        ClearRead();
    }

    bool all_clear = last_reads.empty();
    if (last_write.has_value()) {
        if (predicate(*this) || sync_reads) {
            // Clear any predicated write, or any the write from any any access with synchronized reads.
            // This could drop RAW detection, but only if the synchronized reads were RAW hazards, and given
            // MRR approach to reporting, this is consistent with other drops, especially since fixing the
            // RAW wit the sync_reads stages would preclude a subsequent RAW.
            ClearWrite();
        } else {
            all_clear = false;
        }
    }
    return all_clear;
}

// A helper function to apply multiple barriers.
// NOTE: That's for use cases when BarrierScope does not use queue id or tag (record time, not-event barriers).
// This can be extended if necessary to provide BarrierScope for each barrier.
void ApplyBarriers(ResourceAccessState &access_state, const std::vector<SyncBarrier> &barriers, bool layout_transition = false,
                   ResourceUsageTag layout_transition_tag = kInvalidTag);