1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/* Copyright (c) 2024-2025 The Khronos Group Inc.
* Copyright (c) 2024-2025 Valve Corporation
* Copyright (c) 2024-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sync_stats.h"
#if VVL_ENABLE_SYNCVAL_STATS != 0
#include "sync_commandbuffer.h"
#include "sync_validation.h"
#include "state_tracker/state_tracker.h"
#include <iostream>
namespace vvl {
// Until C++ 26 std::atomic<T>::fetch_max arrives
// https://en.cppreference.com/w/cpp/atomic/atomic/fetch_max
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p0493r5.pdf
template <typename T>
inline T atomic_fetch_max(std::atomic<T> ¤t_max, const T &value) noexcept {
T t = current_max.load();
while (!current_max.compare_exchange_weak(t, std::max(t, value)))
;
return t;
}
} // namespace vvl
namespace syncval_stats {
// NOTE: fetch_add/fetch_sub return value before increment/decrement.
// Our Add/Sub functions return new counter values, so they need to
// adjust result of the atomic function by adding/subtracting one.
void Value32::Update(uint32_t new_value) { u32.store(new_value); }
uint32_t Value32::Add(uint32_t n) { return u32.fetch_add(n) + 1; }
uint32_t Value32::Sub(uint32_t n) { return u32.fetch_sub(n) - 1; }
void Value64::Update(uint64_t new_value) { u64.store(new_value); }
uint64_t Value64::Add(uint64_t n) { return u64.fetch_add(n) + 1; }
uint64_t Value64::Sub(uint64_t n) { return u64.fetch_sub(n) - 1; }
void ValueMax32::Update(uint32_t new_value) {
value.Update(new_value);
vvl::atomic_fetch_max(max_value.u32, new_value);
}
void ValueMax32::Add(uint32_t n) {
uint32_t new_value = value.Add(n);
vvl::atomic_fetch_max(max_value.u32, new_value);
}
void ValueMax32::Sub(uint32_t n) { value.Sub(n); }
void ValueMax64::Update(uint64_t new_value) {
value.Update(new_value);
vvl::atomic_fetch_max(max_value.u64, new_value);
}
void ValueMax64::Add(uint64_t n) {
uint64_t new_value = value.Add(n);
vvl::atomic_fetch_max(max_value.u64, new_value);
}
void ValueMax64::Sub(uint64_t n) { value.Sub(n); }
Stats::~Stats() {
if (report_on_destruction) {
const std::string report = CreateReport();
std::cout << report;
}
}
void Stats::AddCommandBufferContext() { command_buffer_contexts.Add(1); }
void Stats::RemoveCommandBufferContext() { command_buffer_contexts.Sub(1); }
void Stats::AddQueueBatchContext() { queue_batch_contexts.Add(1); }
void Stats::RemoveQueueBatchContext() { queue_batch_contexts.Sub(1); }
void Stats::AddTimelineSignals(uint32_t count) { timeline_signals.Add(count); }
void Stats::RemoveTimelineSignals(uint32_t count) { timeline_signals.Sub(count); }
void Stats::AddUnresolvedBatch() { unresolved_batches.Add(1); }
void Stats::RemoveUnresolvedBatch() { unresolved_batches.Sub(1); }
void Stats::AddHandleRecord(uint32_t count) { handle_records.Add(count); }
void Stats::RemoveHandleRecord(uint32_t count) { handle_records.Sub(count); }
void AccessContextStats::UpdateMax(const AccessContextStats& cur_stats) {
#define UPDATE_MAX(field) field = std::max(field, cur_stats.field)
UPDATE_MAX(access_contexts);
UPDATE_MAX(access_states);
UPDATE_MAX(read_states);
UPDATE_MAX(write_states);
UPDATE_MAX(access_states_with_multiple_reads);
UPDATE_MAX(access_states_with_dynamic_allocations);
UPDATE_MAX(access_states_dynamic_allocation_size);
#undef UPDATE_MAX
}
void UpdateAccessMapStats(const ResourceAccessRangeMap& access_map, AccessContextStats& stats) {
stats.access_contexts += 1;
stats.access_states += (uint32_t)access_map.size();
for (const auto& entry : access_map) {
const ResourceAccessState& access_state = entry.second;
access_state.UpdateStats(stats);
}
}
void AccessStats::Update(SyncValidator& validator) {
std::unique_lock<std::mutex> lock(access_stats_mutex);
cb_access_stats = {};
queue_access_stats = {};
subpass_access_stats = {};
validator.device_state->ForEachShared<vvl::CommandBuffer>([this](std::shared_ptr<vvl::CommandBuffer> cb) {
const CommandBufferAccessContext* cb_access_context = syncval_state::AccessContext(*cb);
cb_access_context->UpdateStats(*this);
});
for (const auto& batch : validator.GetAllQueueBatchContexts()) {
const AccessContext& access_context = batch->GetAccessContext();
UpdateAccessMapStats(access_context.GetAccessStateMap(), queue_access_stats);
}
max_cb_access_stats.UpdateMax(cb_access_stats);
max_queue_access_stats.UpdateMax(queue_access_stats);
max_subpass_access_stats.UpdateMax(subpass_access_stats);
}
void Stats::UpdateAccessStats(SyncValidator& validator) { access_stats.Update(validator); }
void Stats::UpdateMemoryStats() {
#if defined(USE_MIMALLOC_STATS)
mi_stats_merge();
{
std::unique_lock<std::mutex> lock(mi_stats_mutex);
mi_stats_get(sizeof(mi_stats), &mi_stats);
}
#endif
}
void Stats::ReportOnDestruction() { report_on_destruction = true; }
std::string Stats::CreateReport() {
std::ostringstream ss;
ss << std::left;
auto print_common_stats = [&ss](const char* field_name, const ValueMax32& stat) {
ss << std::setw(32) << field_name;
ss << std::setw(12) << stat.value.u32 << stat.max_value.u32;
ss << "\n";
};
auto print_common_stats64 = [&ss](const char* field_name, uint64_t v1, uint64_t v2) {
ss << std::setw(32) << field_name;
ss << std::setw(12) << v1 << v2;
ss << "\n";
};
auto print_access_state_stats = [&ss](const char* context_type, const AccessContextStats& stats) {
ss << std::setw(15) << std::string(context_type) + "(" + std::to_string(stats.access_contexts) + ")";
ss << std::setw(10) << stats.read_states;
ss << std::setw(10) << stats.write_states;
ss << std::setw(16) << stats.access_states;
ss << std::setw(18) << stats.access_states_with_multiple_reads;
ss << std::setw(14) << stats.access_states_with_dynamic_allocations;
uint64_t access_state_objects_size = sizeof(ResourceAccessState) * stats.access_states;
ss << std::setw(16) << access_state_objects_size;
ss << std::setw(14) << stats.access_states_dynamic_allocation_size;
ss << "\n";
};
ss << "-----------------------\n";
ss << "Common stats count max_count\n";
ss << "-----------------------\n";
print_common_stats("CommandBufferAccessContext", command_buffer_contexts);
print_common_stats("QueueBatchContext", queue_batch_contexts);
print_common_stats("Timeline signal", timeline_signals);
print_common_stats("Unresolved batch", unresolved_batches);
print_common_stats("HandleRecord", handle_records);
uint64_t handle_record_memory = handle_records.value.u32 * sizeof(HandleRecord);
uint64_t handle_record_max_memory = handle_records.max_value.u32 * sizeof(HandleRecord);
print_common_stats64("HandleRecord bytes", handle_record_memory, handle_record_max_memory);
const char* access_stats_header =
"context reads writes access_states with_multi_read with_allocs size (bytes) alloc_size (bytes)\n";
ss << "\n";
ss << "-----------------------\n";
ss << "AccessState stats\n";
ss << "-----------------------\n";
ss << access_stats_header;
print_access_state_stats("CB", access_stats.cb_access_stats);
print_access_state_stats("Queue", access_stats.queue_access_stats);
print_access_state_stats("Subpass", access_stats.subpass_access_stats);
ss << "\n";
ss << "-----------------------\n";
ss << "MAX AccessState stats\n";
ss << "-----------------------\n";
ss << access_stats_header;
print_access_state_stats("CB", access_stats.max_cb_access_stats);
print_access_state_stats("Queue", access_stats.max_queue_access_stats);
print_access_state_stats("Subpass", access_stats.max_subpass_access_stats);
ss << "\n";
ss << "Max first accesses";
ss << ": CB: " << access_stats.cb_access_stats.max_first_accesses_size;
ss << ", Queue: " << access_stats.queue_access_stats.max_first_accesses_size;
ss << ", Subpass: " << access_stats.subpass_access_stats.max_first_accesses_size;
ss << "\n";
#if defined(USE_MIMALLOC_STATS)
// Print allocation counts (these are not reported by mi_stats_print_out)
ss << "\n";
ss << "malloc_normal_count: " << mi_stats.malloc_normal_count.total << "\n";
ss << "malloc_huge_count: " << mi_stats.malloc_huge_count.total << "\n";
ss << "\n";
// Print main mimalloc stats
mi_stats_print_out([](const char* msg, void* arg) { *static_cast<std::ostringstream*>(arg) << msg; }, &ss);
ss << "\n";
#endif
return ss.str();
}
} // namespace syncval_stats
#endif // VVL_ENABLE_SYNCVAL_STATS != 0
|