1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
/* Copyright (c) 2025 The Khronos Group Inc.
* Copyright (c) 2025 Valve Corporation
* Copyright (c) 2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../framework/sync_val_tests.h"
#include <vulkan/utility/vk_format_utils.h>
#include <thread>
struct PositiveSyncValWsi : public VkSyncValTest {};
TEST_F(PositiveSyncValWsi, PresentAfterSubmit2AutomaticVisibility) {
TEST_DESCRIPTION("Waiting on the semaphore makes available image accesses visible to the presentation engine.");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
// this creates execution dependency with submit's wait semaphore, so layout
// transition does not start before image is acquired.
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition.srcAccessMask = 0;
// this creates execution dependency with submit's signal operation, so layout
// transition finishes before presentation starts.
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
// dstAccessMask makes accesses visible only to the device.
// Also, any writes to swapchain images that are made available, are
// automatically made visible to the presentation engine reads.
// This test checks that presentation engine accesses are not reported as hazards.
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition.image = swapchain_images[image_index];
layout_transition.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
layout_transition.subresourceRange.baseMipLevel = 0;
layout_transition.subresourceRange.levelCount = 1;
layout_transition.subresourceRange.baseArrayLayer = 0;
layout_transition.subresourceRange.layerCount = 1;
m_command_buffer.Begin();
m_command_buffer.Barrier(layout_transition);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, PresentAfterSubmitAutomaticVisibility) {
TEST_DESCRIPTION("Waiting on the semaphore makes available image accesses visible to the presentation engine.");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier layout_transition = vku::InitStructHelper();
layout_transition.srcAccessMask = 0;
// dstAccessMask makes accesses visible only to the device.
// Also, any writes to swapchain images that are made available, are
// automatically made visible to the presentation engine reads.
// This test checks that presentation engine accesses are not reported as hazards.
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition.image = swapchain_images[image_index];
layout_transition.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
layout_transition.subresourceRange.baseMipLevel = 0;
layout_transition.subresourceRange.levelCount = 1;
layout_transition.subresourceRange.baseArrayLayer = 0;
layout_transition.subresourceRange.layerCount = 1;
m_command_buffer.Begin();
vk::CmdPipelineBarrier(m_command_buffer, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, nullptr, 0, nullptr, 1, &layout_transition);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, PresentAfterSubmitNoneDstStage) {
TEST_DESCRIPTION("Test that QueueSubmit's signal semaphore behaves the same way as QueueSubmit2 with ALL_COMMANDS signal.");
AddSurfaceExtension();
SetTargetApiVersion(VK_API_VERSION_1_3);
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition.srcAccessMask = 0;
// Specify NONE as destination stage to detect issues during conversion SubmitInfo -> SubmitInfo2
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.dstAccessMask = 0;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition.image = swapchain_images[image_index];
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_command_buffer.Begin();
m_command_buffer.Barrier(layout_transition);
m_command_buffer.End();
// The goal of this test is to use QueueSubmit API (not QueueSubmit2) to
// ensure syncval correctly converts SubmitInfo to SubmitInfo2 with ALL_COMMANDS signal semaphore.
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_device->Wait();
}
TEST_F(PositiveSyncValWsi, ThreadedSubmitAndFenceWaitAndPresent) {
TEST_DESCRIPTION("https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/7250");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncValFramework());
RETURN_IF_SKIP(InitState());
RETURN_IF_SKIP(InitSwapchain());
const auto swapchain_images = m_swapchain.GetImages();
{
vkt::CommandBuffer cmd(*m_device, m_command_pool);
cmd.Begin();
for (VkImage image : swapchain_images) {
VkImageMemoryBarrier transition = vku::InitStructHelper();
transition.srcAccessMask = 0;
transition.dstAccessMask = 0;
transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
transition.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
transition.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
transition.image = image;
transition.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
transition.subresourceRange.baseMipLevel = 0;
transition.subresourceRange.levelCount = 1;
transition.subresourceRange.baseArrayLayer = 0;
transition.subresourceRange.layerCount = 1;
vk::CmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &transition);
}
cmd.End();
m_default_queue->Submit(cmd);
m_default_queue->Wait();
}
constexpr int N = 1'000;
std::mutex queue_mutex;
// Worker thread submits accesses and waits on the fence.
std::thread thread([&] {
const int size = 1024 * 128;
vkt::Buffer src(*m_device, size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst(*m_device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferCopy copy_info{};
copy_info.size = size;
vkt::Fence fence(*m_device);
for (int i = 0; i < N; i++) {
m_command_buffer.Begin();
vk::CmdCopyBuffer(m_command_buffer, src, dst, 1, ©_info);
m_command_buffer.End();
{
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Submit(m_command_buffer, fence);
}
vk::WaitForFences(device(), 1, &fence.handle(), VK_TRUE, kWaitTimeout);
vk::ResetFences(device(), 1, &fence.handle());
}
});
// Main thread submits empty batches and presents images
{
vkt::Semaphore acquire_semaphore(*m_device);
std::vector<vkt::Semaphore> submit_semaphores;
for (size_t i = 0; i < swapchain_images.size(); i++) {
submit_semaphores.emplace_back(*m_device);
}
vkt::Fence fence(*m_device);
for (int i = 0; i < N; i++) {
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
{
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Submit(vkt::no_cmd, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphores[image_index]), fence);
m_default_queue->Present(m_swapchain, image_index, submit_semaphores[image_index]);
}
vk::WaitForFences(device(), 1, &fence.handle(), VK_TRUE, kWaitTimeout);
vk::ResetFences(device(), 1, &fence.handle());
}
{
// We did not synchronize with the presentation request from the last iteration.
// Wait on the queue to ensure submit semaphore used by presentation request is not in use.
std::unique_lock<std::mutex> lock(queue_mutex);
m_default_queue->Wait();
}
}
thread.join();
}
TEST_F(PositiveSyncValWsi, WaitForFencesWithPresentBatches) {
TEST_DESCRIPTION("Check that WaitForFences applies tagged waits to present batches");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
const auto swapchain_images = m_swapchain.GetImages();
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
vkt::Semaphore acquire_semaphore2(*m_device);
vkt::Semaphore submit_semaphore2(*m_device);
vkt::Fence fence(*m_device);
vkt::Buffer buffer(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
vkt::Buffer src_buffer(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
vkt::Buffer dst_buffer(*m_device, 256, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
// Frame 0
{
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
m_command_buffer.Begin();
m_command_buffer.Copy(src_buffer, buffer);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore), vkt::Signal(submit_semaphore), fence);
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
}
// Frame 1
{
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore2, kWaitTimeout);
// TODO: Present should be able to accept semaphore from Acquire directly, but due to
// another bug we need this intermediate sumbit. Remove it and make present to wait
// on image_ready_semaphore semaphore when acquire->present direct synchronization is fixed.
m_default_queue->Submit(vkt::no_cmd, vkt::Wait(acquire_semaphore2), vkt::Signal(submit_semaphore2));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore2);
}
// Frame 2
{
// The goal of this test is to ensure that this wait is applied to the
// batches resulted from queue presentation operations. Those batches
// import accesses from regular submits.
vk::WaitForFences(*m_device, 1, &fence.handle(), VK_TRUE, kWaitTimeout);
m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout); // do not need to keep result
// If WaitForFences leaks accesses from present batches the following copy will cause submit time hazard.
m_command_buffer.Begin();
m_command_buffer.Copy(buffer, dst_buffer);
m_command_buffer.End();
m_default_queue->Submit(m_command_buffer, vkt::Wait(acquire_semaphore));
}
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, RecreateBuffer) {
TEST_DESCRIPTION("Recreate buffer on each simulation iteration. Use acquire fence synchronization approach.");
AddSurfaceExtension();
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
const auto swapchain_images = m_swapchain.GetImages();
std::vector<vkt::Fence> acquire_fences;
vkt::Fence current_fence(*m_device);
std::vector<vkt::CommandBuffer> command_buffers;
std::vector<vkt::Semaphore> submit_semaphores;
std::vector<vkt::Buffer> src_buffers(swapchain_images.size());
std::vector<vkt::Buffer> dst_buffers(swapchain_images.size());
for (VkImage image : swapchain_images) {
SetPresentImageLayout(image);
}
for (size_t i = 0; i < swapchain_images.size(); i++) {
acquire_fences.emplace_back(*m_device);
command_buffers.emplace_back(*m_device, m_command_pool);
submit_semaphores.emplace_back(*m_device);
}
// NOTE: This test can be used for manual inspection of memory usage.
// Increase frame count and observe that the test does not continuously allocate memory.
// Syncval should not track ranges of deleted resources.
const int frame_count = 100;
for (int i = 0; i < frame_count; i++) {
const uint32_t image_index = m_swapchain.AcquireNextImage(current_fence, kWaitTimeout);
current_fence.Wait(kWaitTimeout);
current_fence.Reset();
auto &src_buffer = src_buffers[image_index];
src_buffer.Destroy();
src_buffer = vkt::Buffer(*m_device, 1024, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
auto &dst_buffer = dst_buffers[image_index];
dst_buffer.Destroy();
dst_buffer = vkt::Buffer(*m_device, 1024, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
auto &command_buffer = command_buffers[image_index];
command_buffer.Begin();
command_buffer.Copy(src_buffer, dst_buffer);
command_buffer.End();
auto &submit_semaphore = submit_semaphores[image_index];
m_default_queue->Submit(command_buffer, vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
std::swap(acquire_fences[image_index], current_fence);
}
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, RecreateImage) {
TEST_DESCRIPTION("Recreate image on each simulation iteration. Use acquire fence synchronization approach.");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
constexpr uint32_t width = 256;
constexpr uint32_t height = 128;
constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
const auto swapchain_images = m_swapchain.GetImages();
std::vector<vkt::Fence> acquire_fences;
vkt::Fence current_fence(*m_device);
std::vector<vkt::CommandBuffer> command_buffers;
std::vector<vkt::Semaphore> submit_semaphores;
const vkt::Buffer src_buffer(*m_device, width * height * 4, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
std::vector<vkt::Image> dst_images(swapchain_images.size());
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
for (size_t i = 0; i < swapchain_images.size(); i++) {
acquire_fences.emplace_back(*m_device);
command_buffers.emplace_back(*m_device, m_command_pool);
submit_semaphores.emplace_back(*m_device);
}
// NOTE: This test can be used for manual inspection of memory usage.
// Increase frame count and observe that the test does not continuously allocate memory.
// Syncval should not track ranges of deleted resources.
const int frame_count = 100;
for (int i = 0; i < frame_count; i++) {
const uint32_t image_index = m_swapchain.AcquireNextImage(current_fence, kWaitTimeout);
current_fence.Wait(kWaitTimeout);
current_fence.Reset();
auto &dst_image = dst_images[image_index];
dst_image.Destroy();
dst_image = vkt::Image(*m_device, width, height, format, VK_IMAGE_USAGE_TRANSFER_DST_BIT);
VkBufferImageCopy region = {};
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageExtent = {width, height, 1};
VkImageMemoryBarrier2 layout_transition = vku::InitStructHelper();
layout_transition.srcStageMask = VK_PIPELINE_STAGE_2_NONE;
layout_transition.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
layout_transition.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
layout_transition.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
layout_transition.image = dst_image;
layout_transition.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
auto &command_buffer = command_buffers[image_index];
command_buffer.Begin();
command_buffer.Barrier(layout_transition);
vk::CmdCopyBufferToImage(command_buffer, src_buffer, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
command_buffer.End();
auto &submit_semaphore = submit_semaphores[image_index];
m_default_queue->Submit(command_buffer, vkt::Signal(submit_semaphore));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
std::swap(acquire_fences[image_index], current_fence);
}
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, ResyncWithSwapchain) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/10586
// Semaphore wait should not introduce unsynchronized swapchain accesses from internal
// queue access contexts if those acceses were properly synchronized.
TEST_DESCRIPTION("Try to introduce unsynchronized swapchain accesses after proper swapchain synchronization");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT));
const auto swapchain_images = m_swapchain.GetImages();
if (swapchain_images.size() != 2) {
GTEST_SKIP() << "The test requires swapchain with 2 images";
}
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
const VkImage swapchain_image0 = swapchain_images[0];
vkt::Semaphore acquire_semaphore0(*m_device);
vkt::Semaphore acquire_semaphore1(*m_device);
vkt::Semaphore acquire_semaphore2(*m_device);
vkt::Semaphore submit_semaphore0(*m_device);
vkt::Semaphore submit_semaphore1(*m_device);
// This semaphore is signaled when swapchain still uses image0
vkt::Semaphore semaphore(*m_device);
VkImageMemoryBarrier2 transition_swapchain_image0 = vku::InitStructHelper();
transition_swapchain_image0.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
transition_swapchain_image0.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
transition_swapchain_image0.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition_swapchain_image0.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition_swapchain_image0.image = swapchain_image0;
transition_swapchain_image0.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
const SurfaceInformation info = GetSwapchainInfo(m_surface.Handle());
const uint32_t width = info.surface_capabilities.minImageExtent.width;
const uint32_t height = info.surface_capabilities.minImageExtent.height;
const uint32_t format_size = vkuFormatTexelBlockSize(info.surface_formats[0].format);
vkt::Buffer buffer(*m_device, width * height * format_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferImageCopy copy_region{};
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageExtent = {width, height, 1};
// Frame 0
uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore0, kWaitTimeout);
if (image_index != 0) {
GTEST_SKIP() << "This test requires the first acquired image index is 0";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore0), vkt::Signal(submit_semaphore0));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore0);
// Signal semaphore when swapchain image0 can still be in use by the swapchain.
// If we immediately synchronize with this semaphore image0 can still be in use.
// If at first we synchronize with swapchain image0 and only then wait on this
// semaphore (maybe redundantly), then it changes nothing, image0 remains synchronized
// and it is safe to access it. This test recreates a regression scenario when binary
// semaphore wait imported unsynchronized swapchain accesses even though swapchain
// accesses were already synchronized.
m_default_queue->Submit2(vkt::no_cmd, vkt::Signal(semaphore));
// Frame 1
image_index = m_swapchain.AcquireNextImage(acquire_semaphore1, kWaitTimeout);
if (image_index != 1) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the second acquired image index is 1";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore1), vkt::Signal(submit_semaphore1));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore1);
// Frame 2. Re-acquire image0 that was presented in Frame0
image_index = m_swapchain.AcquireNextImage(acquire_semaphore2, kWaitTimeout);
if (image_index != 0) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the third acquired image index is 0";
}
// Explanation of what the following sequence does.
// Waiting on acquire_semaphore2 imports synchronized swapchain image0 accesses into queue context.
// The important point is that imported accesses are synchronized due to acquire semaphore wait
// In the next step we import image0 layout transition accesses from command buffer and this replaces
// synchronized swapchain accesses with image layout write accesses. Then Wait() synchronized all
// accesses on default queue. In our case this removes layout transition accesses from queue context
// (queue context gets empty).
m_command_buffer.Begin();
m_command_buffer.Barrier(transition_swapchain_image0);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore2));
// QueueWaitIdle filters synchronized swapchain accesses across queue contexts (including context associated with 'semaphore')
m_default_queue->Wait();
// The second sequence starts by importing accesses associated with semaphore wait (from queue context
// where this semaphore was signaled). Because this semaphore was signaled when swapchain image0
// accesses were not synchronized yet, there is a danger (with buggy implementation) that those
// unsynchronized accesses can be imported into queue context and they will hazard with subsequent copy
// operation. The goal of this test is to check that implementation correctly handles this.
// Please note, it is important the previous sequence clears queue context by doing Wait(). If queue context
// is not cleared and, for example, still contains layout transition accesses, then even in the case of
// regression the buggy unsynchronized accesses won't overwrite layout transition accesses (the latter have
// newer tags), so without Wait() the test won't be able to detect regression.
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, buffer, swapchain_image0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
m_command_buffer.End();
// Test semaphore wait does not import unsynchronized swapchain accesses
m_default_queue->Submit2(m_command_buffer, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, ResyncWithSwapchain2) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/10586
// This test is a variation of PositiveSyncValWsi.ResyncWithSwapchain that uses DeviceWaitIdle instead of QueueWaitIdle.
// Check comments in ResyncWithSwapchain for additional details.
TEST_DESCRIPTION("Try to introduce unsynchronized swapchain accesses after proper swapchain synchronization");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT));
const auto swapchain_images = m_swapchain.GetImages();
if (swapchain_images.size() != 2) {
GTEST_SKIP() << "The test requires swapchain with 2 images";
}
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
const VkImage swapchain_image0 = swapchain_images[0];
vkt::Semaphore acquire_semaphore0(*m_device);
vkt::Semaphore acquire_semaphore1(*m_device);
vkt::Semaphore acquire_semaphore2(*m_device);
vkt::Semaphore submit_semaphore0(*m_device);
vkt::Semaphore submit_semaphore1(*m_device);
// This semaphore is signaled when swapchain still uses image0
vkt::Semaphore semaphore(*m_device);
VkImageMemoryBarrier2 transition_swapchain_image0 = vku::InitStructHelper();
transition_swapchain_image0.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
transition_swapchain_image0.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
transition_swapchain_image0.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition_swapchain_image0.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition_swapchain_image0.image = swapchain_image0;
transition_swapchain_image0.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
const SurfaceInformation info = GetSwapchainInfo(m_surface.Handle());
const uint32_t width = info.surface_capabilities.minImageExtent.width;
const uint32_t height = info.surface_capabilities.minImageExtent.height;
const uint32_t format_size = vkuFormatTexelBlockSize(info.surface_formats[0].format);
vkt::Buffer buffer(*m_device, width * height * format_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferImageCopy copy_region{};
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageExtent = {width, height, 1};
// Frame 0
uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore0, kWaitTimeout);
if (image_index != 0) {
GTEST_SKIP() << "This test requires the first acquired image index is 0";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore0), vkt::Signal(submit_semaphore0));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore0);
m_default_queue->Submit2(vkt::no_cmd, vkt::Signal(semaphore));
// Frame 1
image_index = m_swapchain.AcquireNextImage(acquire_semaphore1, kWaitTimeout);
if (image_index != 1) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the second acquired image index is 1";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore1), vkt::Signal(submit_semaphore1));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore1);
// Frame 2. Re-acquire image0 that was presented in Frame0
image_index = m_swapchain.AcquireNextImage(acquire_semaphore2, kWaitTimeout);
if (image_index != 0) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the third acquired image index is 0";
}
m_command_buffer.Begin();
m_command_buffer.Barrier(transition_swapchain_image0);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore2));
// DeviceWaitIdle filters synchronized swapchain accesses across queue contexts
m_device->Wait();
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, buffer, swapchain_image0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
m_command_buffer.End();
// Test semaphore wait does not import unsynchronized swapchain accesses
m_default_queue->Submit2(m_command_buffer, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, ResyncWithSwapchain3) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/10586
// This test is a variation of PositiveSyncValWsi.ResyncWithSwapchain that uses timeline semaphore to sync queue.
// Check comments in ResyncWithSwapchain for additional details.
TEST_DESCRIPTION("Try to introduce unsynchronized swapchain accesses after proper swapchain synchronization");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
AddRequiredFeature(vkt::Feature::timelineSemaphore);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT));
const auto swapchain_images = m_swapchain.GetImages();
if (swapchain_images.size() != 2) {
GTEST_SKIP() << "The test requires swapchain with 2 images";
}
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
const VkImage swapchain_image0 = swapchain_images[0];
vkt::Semaphore acquire_semaphore0(*m_device);
vkt::Semaphore acquire_semaphore1(*m_device);
vkt::Semaphore acquire_semaphore2(*m_device);
vkt::Semaphore submit_semaphore0(*m_device);
vkt::Semaphore submit_semaphore1(*m_device);
vkt::Semaphore semaphore(*m_device);
vkt::Semaphore timeline(*m_device, VK_SEMAPHORE_TYPE_TIMELINE);
VkImageMemoryBarrier2 transition_swapchain_image0 = vku::InitStructHelper();
transition_swapchain_image0.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
transition_swapchain_image0.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
transition_swapchain_image0.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition_swapchain_image0.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition_swapchain_image0.image = swapchain_image0;
transition_swapchain_image0.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
const SurfaceInformation info = GetSwapchainInfo(m_surface.Handle());
const uint32_t width = info.surface_capabilities.minImageExtent.width;
const uint32_t height = info.surface_capabilities.minImageExtent.height;
const uint32_t format_size = vkuFormatTexelBlockSize(info.surface_formats[0].format);
vkt::Buffer buffer(*m_device, width * height * format_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferImageCopy copy_region{};
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageExtent = {width, height, 1};
// Frame 0
uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore0, kWaitTimeout);
if (image_index != 0) {
GTEST_SKIP() << "This test requires the first acquired image index is 0";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore0), vkt::Signal(submit_semaphore0));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore0);
m_default_queue->Submit2(vkt::no_cmd, vkt::Signal(semaphore));
// Frame 1
image_index = m_swapchain.AcquireNextImage(acquire_semaphore1, kWaitTimeout);
if (image_index != 1) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the second acquired image index is 1";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore1), vkt::Signal(submit_semaphore1));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore1);
// Frame 2. Re-acquire image0 that was presented in Frame0
image_index = m_swapchain.AcquireNextImage(acquire_semaphore2, kWaitTimeout);
if (image_index != 0) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the third acquired image index is 0";
}
m_command_buffer.Begin();
m_command_buffer.Barrier(transition_swapchain_image0);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore2), vkt::TimelineSignal(timeline, 1));
// WaitSemaphores filters synchronized swapchain accesses across queue contexts
timeline.Wait(1, kWaitTimeout);
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, buffer, swapchain_image0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
m_command_buffer.End();
// Test semaphore wait does not import unsynchronized swapchain accesses
m_default_queue->Submit2(m_command_buffer, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, ResyncWithSwapchain4) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/10586
// This test is a variation of PositiveSyncValWsi.ResyncWithSwapchain.
// This scenario synchronizes with 2 swapchain images.
// We need a swapchain with 3 images in order to acquire 2 images without blocking.
TEST_DESCRIPTION("Try to introduce unsynchronized swapchain accesses after proper swapchain synchronization");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSurface());
const SurfaceInformation surface_info = GetSwapchainInfo(m_surface.Handle());
if (surface_info.surface_capabilities.minImageCount > 3 || surface_info.surface_capabilities.maxImageCount < 3) {
GTEST_SKIP() << "Surface must support swapchains with 3 images";
}
VkSwapchainCreateInfoKHR swapchain_ci = GetDefaultSwapchainCreateInfo(
m_surface.Handle(), surface_info, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
swapchain_ci.minImageCount = 3;
vkt::Swapchain swapchain(*m_device, swapchain_ci);
const auto swapchain_images = swapchain.GetImages();
if (swapchain_images.size() != 3) {
GTEST_SKIP() << "The test requires swapchain with 3 images";
}
for (auto image : swapchain_images) {
SetPresentImageLayout(image);
}
const VkImage swapchain_image0 = swapchain_images[0];
vkt::Semaphore acquire_semaphore0(*m_device);
vkt::Semaphore acquire_semaphore1(*m_device);
vkt::Semaphore acquire_semaphore2(*m_device);
vkt::Semaphore acquire_semaphore3(*m_device);
vkt::Semaphore acquire_semaphore4(*m_device);
vkt::Semaphore submit_semaphore0(*m_device);
vkt::Semaphore submit_semaphore1(*m_device);
vkt::Semaphore submit_semaphore2(*m_device);
// This semaphore is signaled when swapchain still uses image0
vkt::Semaphore semaphore(*m_device);
VkImageMemoryBarrier2 transition_swapchain_image = vku::InitStructHelper();
transition_swapchain_image.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT;
transition_swapchain_image.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT;
transition_swapchain_image.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition_swapchain_image.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
transition_swapchain_image.image = swapchain_image0;
transition_swapchain_image.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
const uint32_t width = surface_info.surface_capabilities.minImageExtent.width;
const uint32_t height = surface_info.surface_capabilities.minImageExtent.height;
const uint32_t format_size = vkuFormatTexelBlockSize(surface_info.surface_formats[0].format);
vkt::Buffer buffer(*m_device, width * height * format_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
VkBufferImageCopy copy_region{};
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageExtent = {width, height, 1};
// Frame 0
uint32_t image_index = swapchain.AcquireNextImage(acquire_semaphore0, kWaitTimeout);
if (image_index != 0) {
GTEST_SKIP() << "This test requires the first acquired image index is 0";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore0), vkt::Signal(submit_semaphore0));
m_default_queue->Present(swapchain, image_index, submit_semaphore0);
m_default_queue->Submit2(vkt::no_cmd, vkt::Signal(semaphore));
// Frame 1
image_index = swapchain.AcquireNextImage(acquire_semaphore1, kWaitTimeout);
if (image_index != 1) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the second acquired image index is 1";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore1), vkt::Signal(submit_semaphore1));
m_default_queue->Present(swapchain, image_index, submit_semaphore1);
// Frame 2
image_index = swapchain.AcquireNextImage(acquire_semaphore2, kWaitTimeout);
if (image_index != 2) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the third acquired image index is 2";
}
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore2), vkt::Signal(submit_semaphore2));
m_default_queue->Present(swapchain, image_index, submit_semaphore2);
// Frame 3. Re-acquire image0 that was presented in Frame0.
// Also re-acquire image1 that was presented in Frame1.
image_index = swapchain.AcquireNextImage(acquire_semaphore3, kWaitTimeout);
if (image_index != 0) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the fourth acquired image index is 0";
}
uint32_t image_index2 = swapchain.AcquireNextImage(acquire_semaphore4, kWaitTimeout);
if (image_index2 != 1) {
m_default_queue->Wait();
GTEST_SKIP() << "This test requires the fifth acquired image index is 1";
}
m_command_buffer.Begin();
m_command_buffer.Barrier(transition_swapchain_image);
m_command_buffer.End();
// Import accesses from two swapchain images before applying command buffer accesses
// (layout transition of the first image). Test that implementation properly tracks
// multiple synchronized swapchain accesses (image0 and image1) accross all queue contexts
// where these accesses are registered.
m_default_queue->Submit2(vkt::no_cmd, vkt::Wait(acquire_semaphore3));
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore4));
// QueueWaitIdle filters synchronized swapchain accesses across queue contexts
m_default_queue->Wait();
m_command_buffer.Begin();
vk::CmdCopyBufferToImage(m_command_buffer, buffer, swapchain_image0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
m_command_buffer.End();
// Without proper tracking of multiple synchronized accesses the buggy implementation might remember only
// the last one (image1 accesses synced by acquire_semaphore4) and can forget about image0 accesses synced
// by acquire_semaphore3. By waiting on 'semaphore' that was signaled after image0 presentation we test
// that imlementation remembers that image0 accesses were already synced and does not import them as
// unsynchronized accesses (in that case they will hazard with command buffer copy operation).
m_default_queue->Submit2(m_command_buffer, vkt::Wait(semaphore));
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, PresentWithPrimaryLayoutTransitions) {
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier2 layout_transition_write = vku::InitStructHelper();
layout_transition_write.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_write.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition_write.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_write.dstAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
layout_transition_write.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition_write.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
layout_transition_write.image = swapchain_images[image_index];
layout_transition_write.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageMemoryBarrier2 layout_transition_present = vku::InitStructHelper();
layout_transition_present.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_present.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition_present.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_present.dstAccessMask = VK_ACCESS_2_NONE;
layout_transition_present.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
layout_transition_present.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition_present.image = swapchain_images[image_index];
layout_transition_present.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_command_buffer.Begin();
m_command_buffer.Barrier(layout_transition_write);
m_command_buffer.Barrier(layout_transition_present);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_default_queue->Wait();
}
TEST_F(PositiveSyncValWsi, PresentWithSecondaryLayoutTransitions) {
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/10693
TEST_DESCRIPTION("Test propagation of layout transition barriers in the context of submit time validation (ExecuteCommands)");
SetTargetApiVersion(VK_API_VERSION_1_3);
AddSurfaceExtension();
AddRequiredFeature(vkt::Feature::synchronization2);
RETURN_IF_SKIP(InitSyncVal());
RETURN_IF_SKIP(InitSwapchain());
vkt::Semaphore acquire_semaphore(*m_device);
vkt::Semaphore submit_semaphore(*m_device);
const auto swapchain_images = m_swapchain.GetImages();
const uint32_t image_index = m_swapchain.AcquireNextImage(acquire_semaphore, kWaitTimeout);
VkImageMemoryBarrier2 layout_transition_write = vku::InitStructHelper();
layout_transition_write.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_write.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition_write.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_write.dstAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
layout_transition_write.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
layout_transition_write.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
layout_transition_write.image = swapchain_images[image_index];
layout_transition_write.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageMemoryBarrier2 layout_transition_present = vku::InitStructHelper();
layout_transition_present.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_present.srcAccessMask = VK_ACCESS_2_NONE;
layout_transition_present.dstStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
layout_transition_present.dstAccessMask = VK_ACCESS_2_NONE;
layout_transition_present.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
layout_transition_present.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
layout_transition_present.image = swapchain_images[image_index];
layout_transition_present.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkt::CommandBuffer cmd_barrier_write(*m_device, m_command_pool, VK_COMMAND_BUFFER_LEVEL_SECONDARY);
cmd_barrier_write.Begin();
cmd_barrier_write.Barrier(layout_transition_write);
cmd_barrier_write.End();
vkt::CommandBuffer cmd_barrier_present(*m_device, m_command_pool, VK_COMMAND_BUFFER_LEVEL_SECONDARY);
cmd_barrier_present.Begin();
cmd_barrier_present.Barrier(layout_transition_present);
cmd_barrier_present.End();
m_command_buffer.Begin();
m_command_buffer.ExecuteCommands(cmd_barrier_write);
m_command_buffer.ExecuteCommands(cmd_barrier_present);
m_command_buffer.End();
m_default_queue->Submit2(m_command_buffer, vkt::Wait(acquire_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT),
vkt::Signal(submit_semaphore, VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT));
m_default_queue->Present(m_swapchain, image_index, submit_semaphore);
m_default_queue->Wait();
}
|