File: sync_access_map.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.335.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 51,728 kB
  • sloc: cpp: 645,254; python: 12,203; sh: 24; makefile: 24; xml: 14
file content (317 lines) | stat: -rw-r--r-- 12,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/* Copyright (c) 2025 The Khronos Group Inc.
 * Copyright (c) 2025 Valve Corporation
 * Copyright (c) 2025 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "sync_access_map.h"

namespace syncval {

void AccessMap::Assign(const AccessMap &other) {
    auto temp_copy(other.impl_map_);
    impl_map_.swap(temp_copy);
}

AccessMap::iterator AccessMap::LowerBound(ResourceAddress range_begin) {
    auto it = impl_map_.lower_bound(AccessRange(range_begin, range_begin));
    return it;
}

AccessMap::const_iterator AccessMap::LowerBound(ResourceAddress range_begin) const {
    auto it = impl_map_.lower_bound(AccessRange(range_begin, range_begin));
    return it;
}

AccessMap::iterator AccessMap::Erase(const iterator &pos) {
    assert(pos != end());
    return impl_map_.erase(pos);
}

void AccessMap::Erase(iterator first, iterator last) {
    auto current = first;
    while (current != last) {
        assert(current != end());
        current = impl_map_.erase(current);
    }
}

AccessMap::iterator AccessMap::Insert(const_iterator hint, const AccessRange &range, const AccessState &access_state) {
    bool hint_open;
    const_iterator impl_next = hint;
    if (impl_map_.empty()) {
        hint_open = true;
    } else if (impl_next == impl_map_.cbegin()) {
        hint_open = range.strictly_less(impl_next->first);
    } else if (impl_next == impl_map_.cend()) {
        auto impl_prev = impl_next;
        --impl_prev;
        hint_open = range.strictly_greater(impl_prev->first);
    } else {
        auto impl_prev = impl_next;
        --impl_prev;
        hint_open = range.strictly_greater(impl_prev->first) && range.strictly_less(impl_next->first);
    }

    if (!hint_open) {
        // Hint was unhelpful, fall back to the non-hinted version
        auto plain_insert = Insert(range, access_state);
        return plain_insert.first;
    }

    auto impl_insert = impl_map_.insert(impl_next, {range, access_state});
    return iterator(impl_insert);
}

std::pair<AccessMap::iterator, bool> AccessMap::Insert(const AccessRange &range, const AccessState &access_state) {
    if (!range.non_empty()) {
        return std::make_pair(end(), false);
    }
    // Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
    // we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
    auto lower = LowerBound(range.begin);
    if (lower == end() || !lower->first.intersects(range)) {
        // range is not even partially overlapped, and lower is strictly > than key
        return {impl_map_.emplace_hint(lower, range, access_state), true};
    }
    // We don't replace
    return {lower, false};
}

AccessMap::iterator AccessMap::Split(const iterator split_it, const index_type &index) {
    const auto range = split_it->first;

    if (!range.includes(index)) {
        return split_it;  // If we don't have a valid split point, just return the iterator
    }

    AccessRange lower_range(range.begin, index);

    if (lower_range.empty()) {
        // This is a noop, we're keeping the upper half which is the same as split_it
        return split_it;
    }

    // Save the contents and erase
    auto value = split_it->second;
    auto next_it = impl_map_.erase(split_it);

    AccessRange upper_range(index, range.end);
    assert(!upper_range.empty());  // Upper range cannot be empty

    // Copy value to the upper range
    // NOTE: we insert from upper to lower because that's what emplace_hint can do in constant time
    assert(impl_map_.find(upper_range) == impl_map_.end());
    next_it = impl_map_.emplace_hint(next_it, std::make_pair(upper_range, value));

    // Move value to the lower range (we can move since the upper range already got a copy of value)
    assert(impl_map_.find(lower_range) == impl_map_.end());
    next_it = impl_map_.emplace_hint(next_it, std::make_pair(lower_range, std::move(value)));

    // Iterator to the beginning of the lower range
    return next_it;
}

AccessMap::iterator Split(AccessMap::iterator in, AccessMap &map, const AccessRange &range) {
    assert(in != map.end());  // Not designed for use with invalid iterators...
    const AccessRange in_range = in->first;
    const AccessRange split_range = in_range & range;

    if (split_range.empty()) {
        return map.end();
    }
    auto pos = in;
    if (split_range.begin != in_range.begin) {
        pos = map.Split(pos, split_range.begin);
        ++pos;
    }
    if (split_range.end != in_range.end) {
        pos = map.Split(pos, split_range.end);
    }
    return pos;
}

void UpdateRangeValue(AccessMap &map, const AccessRange &range, const AccessState &access_state) {
    AccessMapLocator pos(map, range.begin);
    while (range.includes(pos.index)) {
        if (!pos.inside_lower_bound_range) {
            // Fill in the leading space (or in the case of pos at end the trailing space)
            const auto start = pos.index;
            auto it = pos.lower_bound;
            const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
            map.Insert(it, AccessRange(start, limit), access_state);
            // We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
            // will fix this (and move the state to valid)
            pos.Seek(limit);
        }
        // Note that after the "fill" operation pos may have become valid so we check again
        if (pos.inside_lower_bound_range) {
            // "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
            // Point just past the end of this section,  if it's within the given range, it will get filled next iteration
            // ++pos could move us past the end of range (which would exit the loop) so we don't use it.
            pos.Seek(pos.lower_bound->first.end);
        }
    }
}

void Consolidate(AccessMap &map) {
    using It = AccessMap::iterator;

    It current = map.begin();
    const It map_end = map.end();

    // To be included in a merge range there must be no gap in the AccessRange space, and the mapped_type values must match
    auto can_merge = [](const It &last, const It &cur) {
        return cur->first.begin == last->first.end && cur->second == last->second;
    };

    while (current != map_end) {
        // Establish a trival merge range at the current location, advancing current. Merge range is inclusive of merge_last
        const It merge_first = current;
        It merge_last = current;
        ++current;

        // Expand the merge range as much as possible
        while (current != map_end && can_merge(merge_last, current)) {
            merge_last = current;
            ++current;
        }

        // Current isn't in the active merge range. If there is a non-trivial merge range, we resolve it here.
        if (merge_first != merge_last) {
            // IFF there is more than one range in (merge_first, merge_last)  <- again noting the *inclusive* last
            // Create a new Val spanning (first, last), substitute it for the multiple entries.

            const AccessRange merged_range(merge_first->first.begin, merge_last->first.end);
            AccessState access = merge_last->second;

            // Note that current points to merge_last + 1, and is valid even if at map_end for these operations
            map.Erase(merge_first, current);

            map.Insert(current, merged_range, std::move(access));
        }
    }
}

template <typename TAccessMap>
TAccessMapLocator<TAccessMap>::TAccessMapLocator(TAccessMap &map, index_type index) : map_(&map), index(index) {
    lower_bound = LowerBoundForIndex(index);
    inside_lower_bound_range = InsideLowerBoundRange();
}

template <typename TAccessMap>
TAccessMapLocator<TAccessMap>::TAccessMapLocator(TAccessMap &map, index_type index, const iterator &index_lower_bound)
    : map_(&map), index(index), lower_bound(index_lower_bound) {
    assert(LowerBoundForIndex(index) == index_lower_bound);
    inside_lower_bound_range = InsideLowerBoundRange();
}

template <typename TAccessMap>
void TAccessMapLocator<TAccessMap>::Seek(index_type seek_to) {
    if (TrySeekLocal(seek_to)) {
        return;
    }
    index = seek_to;
    lower_bound = LowerBoundForIndex(seek_to);  // Expensive part
    inside_lower_bound_range = InsideLowerBoundRange();
}

template <typename TAccessMap>
bool TAccessMapLocator<TAccessMap>::TrySeekLocal(index_type seek_to) {
    auto is_lower_than = [this](AccessMap::index_type index, const auto &it) { return it == map_->end() || index < it->first.end; };

    // Already here
    if (index == seek_to) {
        return true;
    }
    // The optimization is only for forward movement
    if (index < seek_to) {
        // Check if the current range is still a valid lower bound
        if (is_lower_than(seek_to, lower_bound)) {
            assert(lower_bound == LowerBoundForIndex(seek_to));
            index = seek_to;
            inside_lower_bound_range = InsideLowerBoundRange();
            return true;
        }
        // Check if the next range is a valid lower bound
        auto next_it = lower_bound;
        ++next_it;
        if (is_lower_than(seek_to, next_it)) {
            assert(next_it == LowerBoundForIndex(seek_to));
            index = seek_to;
            lower_bound = next_it;
            inside_lower_bound_range = InsideLowerBoundRange();
            return true;
        }
    }
    return false;  // Need to re-search lower bound
}

template <typename TAccessMap>
AccessMap::index_type TAccessMapLocator<TAccessMap>::DistanceToEdge() const {
    if (lower_bound == map_->end()) {
        return 0;
    }
    const index_type edge = inside_lower_bound_range ? lower_bound->first.end : lower_bound->first.begin;
    return edge - index;
}

// Explicit instantiation of const and non-const locators
template class TAccessMapLocator<AccessMap>;
template class TAccessMapLocator<const AccessMap>;

void ParallelIterator::OnCurrentRangeModified(const iterator &new_lower_bound) {
    // Only map A can be modified, map B is constant
    pos_A = AccessMapLocator(map_A_, range.begin, new_lower_bound);
    range.end = range.begin + ComputeDelta();
}

void ParallelIterator::SeekAfterModification(index_type index) {
    // Destination map locator must be reinitialized after modification.
    // Seek() (potentially more efficient) can only be used when there is no modification.
    pos_A = AccessMapLocator(map_A_, index);

    pos_B.Seek(index);
    range = AccessRange(index, index + ComputeDelta());
}

void ParallelIterator::NextRange() {
    const index_type start = range.end;
    const index_type delta = range.distance();
    assert(delta != 0);  // Trying to increment past end

    pos_A.Seek(pos_A.index + delta);
    pos_B.Seek(pos_B.index + delta);

    range = AccessRange(start, start + ComputeDelta());
    assert(pos_A.index == start);
    assert(pos_B.index == start);
}

ParallelIterator::index_type ParallelIterator::ComputeDelta() {
    const index_type delta_A = pos_A.DistanceToEdge();
    const index_type delta_B = pos_B.DistanceToEdge();

    // If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
    if (delta_A == 0) {  // lower A is at end
        return delta_B;
    } else if (delta_B == 0) {  // lower B is at end
        return delta_A;
    } else {
        // Use the nearest edge, s.t. over this range A and B are both constant
        return std::min(delta_A, delta_B);
    }
}

}  // namespace syncval