1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* Copyright (c) 2025 The Khronos Group Inc.
* Copyright (c) 2025 Valve Corporation
* Copyright (c) 2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sync_barrier.h"
#include "utils/sync_utils.h"
#include <vulkan/utility/vk_struct_helper.hpp>
static VkAccessFlags2 ExpandAccessFlags(VkAccessFlags2 access_mask) {
VkAccessFlags2 expanded = access_mask;
if (access_mask & VK_ACCESS_2_SHADER_READ_BIT) {
expanded = expanded & ~VK_ACCESS_2_SHADER_READ_BIT;
expanded |= kShaderReadExpandBits;
}
if (access_mask & VK_ACCESS_2_SHADER_WRITE_BIT) {
expanded = expanded & ~VK_ACCESS_2_SHADER_WRITE_BIT;
expanded |= kShaderWriteExpandBits;
}
return expanded;
}
template <typename Flags, typename Map>
static SyncAccessFlags AccessScopeImpl(Flags flag_mask, const Map &map) {
SyncAccessFlags scope;
for (const auto &[flag_bits2, sync_access_flags] : map) {
if (flag_mask < flag_bits2) {
break;
}
if (flag_mask & flag_bits2) {
scope |= sync_access_flags;
}
}
return scope;
}
static SyncAccessFlags AccessScopeByStage(VkPipelineStageFlags2 stages) {
return AccessScopeImpl(stages, syncAccessMaskByStageBit());
}
static SyncAccessFlags AccessScopeByAccess(VkAccessFlags2 accesses) {
SyncAccessFlags sync_accesses = AccessScopeImpl(ExpandAccessFlags(accesses), syncAccessMaskByAccessBit());
// The above access expansion replaces SHADER_READ meta access with atomic accesses as defined by the specification.
// ACCELERATION_STRUCTURE_BUILD and MICROMAP_BUILD stages are special in a way that they use SHADER_READ access directly.
// It is an implementation detail of how SHADER_READ is used by the driver, and we cannot make assumption about specific
// atomic accesses. If we make such assumption then it can be a problem when after applying synchronization we won't be
// able to get full SHADER_READ access back, but only a subset of accesses, for example, only SHADER_STORAGE_READ.
// It would mean we made (incorrect) assumption how the driver represents SHADER_READ in the context of AS build.
//
// Handle special cases that use non-expanded meta accesses.
if (accesses & VK_ACCESS_2_SHADER_READ_BIT) {
sync_accesses |= SYNC_ACCELERATION_STRUCTURE_BUILD_SHADER_READ_BIT;
sync_accesses |= SYNC_MICROMAP_BUILD_EXT_SHADER_READ_BIT;
}
return sync_accesses;
}
static VkPipelineStageFlags2 RelatedPipelineStages(
VkPipelineStageFlags2 stage_mask,
const vvl::unordered_map<VkPipelineStageFlagBits2, VkPipelineStageFlags2> &earlier_or_later_stages) {
VkPipelineStageFlags2 unscanned = stage_mask;
VkPipelineStageFlags2 related = 0;
for (const auto &[stage, related_stages] : earlier_or_later_stages) {
if (stage & unscanned) {
related |= related_stages;
unscanned &= ~stage;
if (!unscanned) {
break;
}
}
}
return related;
}
static VkPipelineStageFlags2 WithEarlierPipelineStages(VkPipelineStageFlags2 stage_mask) {
return stage_mask | RelatedPipelineStages(stage_mask, syncLogicallyEarlierStages());
}
static VkPipelineStageFlags2 WithLaterPipelineStages(VkPipelineStageFlags2 stage_mask) {
return stage_mask | RelatedPipelineStages(stage_mask, syncLogicallyLaterStages());
}
static SyncAccessFlags AccessScope(const SyncAccessFlags &stage_scope, VkAccessFlags2 accesses) {
SyncAccessFlags access_scope = stage_scope & AccessScopeByAccess(accesses);
// Special case. AS copy operations (e.g., vkCmdCopyAccelerationStructureKHR) can be synchronized using
// the ACCELERATION_STRUCTURE_COPY stage, but it's also valid to use ACCELERATION_STRUCTURE_BUILD stage.
// Internally, AS copy accesses are represented via ACCELERATION_STRUCTURE_COPY stage. The logic below
// ensures that a barrier using ACCELERATION_STRUCTURE_BUILD stage can also protect accesses on
// ACCELERATION_STRUCTURE_COPY stage.
if (access_scope[SYNC_ACCELERATION_STRUCTURE_BUILD_ACCELERATION_STRUCTURE_READ]) {
access_scope.set(SYNC_ACCELERATION_STRUCTURE_COPY_ACCELERATION_STRUCTURE_READ);
}
if (access_scope[SYNC_ACCELERATION_STRUCTURE_BUILD_ACCELERATION_STRUCTURE_WRITE]) {
access_scope.set(SYNC_ACCELERATION_STRUCTURE_COPY_ACCELERATION_STRUCTURE_WRITE);
}
return access_scope;
}
namespace syncval {
SyncExecScope SyncExecScope::MakeSrc(VkQueueFlags queue_flags, VkPipelineStageFlags2 mask_param,
VkPipelineStageFlags2 disabled_feature_mask) {
const VkPipelineStageFlags2 expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags, disabled_feature_mask);
SyncExecScope result;
result.mask_param = mask_param;
result.exec_scope = WithEarlierPipelineStages(expanded_mask);
result.valid_accesses = AccessScopeByStage(expanded_mask);
// ALL_COMMANDS stage includes all accesses performed by the gpu, not only accesses defined by the stages
if (mask_param & VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT) {
result.valid_accesses |= SYNC_IMAGE_LAYOUT_TRANSITION_BIT;
}
return result;
}
SyncExecScope SyncExecScope::MakeDst(VkQueueFlags queue_flags, VkPipelineStageFlags2 mask_param) {
const VkPipelineStageFlags2 expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags);
SyncExecScope result;
result.mask_param = mask_param;
result.exec_scope = WithLaterPipelineStages(expanded_mask);
result.valid_accesses = AccessScopeByStage(expanded_mask);
// ALL_COMMANDS stage includes all accesses performed by the gpu, not only accesses defined by the stages
if (mask_param & VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT) {
result.valid_accesses |= SYNC_IMAGE_LAYOUT_TRANSITION_BIT;
}
return result;
}
bool SyncExecScope::operator==(const SyncExecScope &other) const {
return mask_param == other.mask_param && exec_scope == other.exec_scope && valid_accesses == other.valid_accesses;
}
size_t SyncExecScope::Hash() const {
hash_util::HashCombiner hc;
hc << mask_param;
hc << exec_scope;
valid_accesses.HashCombine(hc);
return hc.Value();
}
SyncBarrier::SyncBarrier(const SyncExecScope &src_exec, const SyncExecScope &dst_exec)
: src_exec_scope(src_exec), dst_exec_scope(dst_exec) {}
SyncBarrier::SyncBarrier(const SyncExecScope &src_exec, const SyncExecScope &dst_exec, const SyncBarrier::AllAccess &)
: src_exec_scope(src_exec),
src_access_scope(src_exec.valid_accesses),
dst_exec_scope(dst_exec),
dst_access_scope(dst_exec.valid_accesses) {}
SyncBarrier::SyncBarrier(const SyncExecScope &src_exec, VkAccessFlags2 src_access_mask, const SyncExecScope &dst_exec,
VkAccessFlags2 dst_access_mask)
: src_exec_scope(src_exec),
src_access_scope(AccessScope(src_exec.valid_accesses, src_access_mask)),
original_src_access(src_access_mask),
dst_exec_scope(dst_exec),
dst_access_scope(AccessScope(dst_exec.valid_accesses, dst_access_mask)),
original_dst_access(dst_access_mask) {}
SyncBarrier::SyncBarrier(VkQueueFlags queue_flags, const VkSubpassDependency2 &subpass) {
const auto barrier = vku::FindStructInPNextChain<VkMemoryBarrier2>(subpass.pNext);
if (barrier) {
auto src = SyncExecScope::MakeSrc(queue_flags, barrier->srcStageMask);
src_exec_scope = src;
src_access_scope = AccessScope(src.valid_accesses, barrier->srcAccessMask);
original_src_access = barrier->srcAccessMask;
auto dst = SyncExecScope::MakeDst(queue_flags, barrier->dstStageMask);
dst_exec_scope = dst;
dst_access_scope = AccessScope(dst.valid_accesses, barrier->dstAccessMask);
original_dst_access = barrier->dstAccessMask;
} else {
auto src = SyncExecScope::MakeSrc(queue_flags, subpass.srcStageMask);
src_exec_scope = src;
src_access_scope = AccessScope(src.valid_accesses, subpass.srcAccessMask);
original_src_access = subpass.srcAccessMask;
auto dst = SyncExecScope::MakeDst(queue_flags, subpass.dstStageMask);
dst_exec_scope = dst;
dst_access_scope = AccessScope(dst.valid_accesses, subpass.dstAccessMask);
original_dst_access = subpass.dstAccessMask;
}
}
SyncBarrier::SyncBarrier(const std::vector<SyncBarrier> &barriers) {
// Merge each barrier
for (const SyncBarrier &barrier : barriers) {
// Note that after merge, only the exec_scope and access_scope fields are fully valid
// TODO: Do we need to update any of the other fields? Merging has limited application.
src_exec_scope.exec_scope |= barrier.src_exec_scope.exec_scope;
src_access_scope |= barrier.src_access_scope;
dst_exec_scope.exec_scope |= barrier.dst_exec_scope.exec_scope;
dst_access_scope |= barrier.dst_access_scope;
}
}
bool SyncBarrier::operator==(const SyncBarrier &other) const {
return (src_exec_scope == other.src_exec_scope) && (src_access_scope == other.src_access_scope) &&
(dst_exec_scope == other.dst_exec_scope) && (dst_access_scope == other.dst_access_scope);
}
size_t SyncBarrier::Hash() const {
hash_util::HashCombiner hc;
hc << src_exec_scope.Hash();
src_access_scope.HashCombine(hc);
hc << dst_exec_scope.Hash();
dst_access_scope.HashCombine(hc);
return hc.Value();
}
} // namespace syncval
|