1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
* Copyright (c) 2015-2024 The Khronos Group Inc.
* Copyright (C) 2025 Arm Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*/
#include "../framework/layer_validation_tests.h"
#include "../framework/pipeline_helper.h"
#include "../framework/data_graph_objects.h"
#include <vector>
class PositiveTensor : public TensorTest {};
void TensorTest::InitBasicTensor() {
SetTargetApiVersion(VK_API_VERSION_1_4);
AddRequiredExtensions(VK_ARM_TENSORS_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::tensors);
RETURN_IF_SKIP(Init());
}
// Trivial rank 1 tensor
VkTensorDescriptionARM TensorTest::DefaultDesc() {
static std::vector<int64_t> dimensions{2};
static std::vector<int64_t> strides{1};
static VkTensorDescriptionARM desc = vku::InitStructHelper();
desc.tiling = VK_TENSOR_TILING_LINEAR_ARM;
desc.format = VK_FORMAT_R8_SINT;
desc.dimensionCount = 1;
desc.pDimensions = dimensions.data();
desc.pStrides = strides.data();
desc.usage = VK_TENSOR_USAGE_SHADER_BIT_ARM;
return desc;
}
// Tensor matching kMinimalTensorGlsl and GetSpirvBasicShader
VkTensorDescriptionARM TensorTest::TensorShaderDesc() {
static std::vector<int64_t> dimensions{2};
static VkTensorDescriptionARM desc = vku::InitStructHelper();
desc.tiling = VK_TENSOR_TILING_LINEAR_ARM;
desc.format = VK_FORMAT_R32_SINT;
desc.dimensionCount = 1;
desc.pDimensions = dimensions.data();
desc.pStrides = nullptr;
desc.usage = VK_TENSOR_USAGE_SHADER_BIT_ARM;
return desc;
}
VkTensorCreateInfoARM TensorTest::DefaultCreateInfo(VkTensorDescriptionARM* desc) {
static VkTensorCreateInfoARM info = vku::InitStructHelper();
info.pDescription = desc;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
return info;
}
TEST_F(PositiveTensor, CreateTensor) {
TEST_DESCRIPTION("Create a tensor");
RETURN_IF_SKIP(InitBasicTensor());
auto desc = DefaultDesc();
auto info = DefaultCreateInfo(&desc);
vkt::Tensor tensor(*m_device, info);
}
TEST_F(PositiveTensor, ProtectedMemory) {
TEST_DESCRIPTION("Create a protected tensor");
AddRequiredFeature(vkt::Feature::protectedMemory);
RETURN_IF_SKIP(InitBasicTensor());
auto desc = DefaultDesc();
auto info = DefaultCreateInfo(&desc);
info.flags = VK_TENSOR_CREATE_PROTECTED_BIT_ARM;
vkt::Tensor tensor(*m_device, info);
tensor.BindToMem(VK_MEMORY_PROPERTY_PROTECTED_BIT);
}
TEST_F(PositiveTensor, DescriptorBuffer) {
TEST_DESCRIPTION("Create a tensor with replay capability");
AddRequiredFeature(vkt::Feature::descriptorBufferTensorDescriptors);
AddRequiredFeature(vkt::Feature::descriptorBufferCaptureReplay);
RETURN_IF_SKIP(InitBasicTensor());
auto desc = DefaultDesc();
auto info = DefaultCreateInfo(&desc);
info.flags = VK_TENSOR_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_ARM;
vkt::Tensor tensor(*m_device, info);
tensor.BindToMem();
VkTensorViewCreateInfoARM tensor_view_create_info = vku::InitStructHelper();
tensor_view_create_info.tensor = tensor.handle();
tensor_view_create_info.format = tensor.Format();
tensor_view_create_info.flags = VK_TENSOR_VIEW_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_ARM;
vkt::TensorView view(*m_device, tensor_view_create_info);
VkTensorViewCaptureDescriptorDataInfoARM tensor_capture_desc_data_info = vku::InitStructHelper();
tensor_capture_desc_data_info.tensorView = view.handle();
uint32_t data = 0;
vk::GetTensorViewOpaqueCaptureDescriptorDataARM(*m_device, &tensor_capture_desc_data_info, &data);
}
TEST_F(PositiveTensor, DispatchShaderGLSL) {
TEST_DESCRIPTION("Use a tensor in a GLSL shader");
AddRequiredFeature(vkt::Feature::shaderTensorAccess);
RETURN_IF_SKIP(InitBasicTensor());
VkTensorDescriptionARM desc = TensorShaderDesc();
VkTensorCreateInfoARM info = DefaultCreateInfo(&desc);
vkt::Tensor tensor(*m_device, info);
tensor.BindToMem();
VkTensorViewCreateInfoARM tensor_view_create_info = vku::InitStructHelper();
tensor_view_create_info.tensor = tensor.handle();
tensor_view_create_info.format = tensor.Format();
vkt::TensorView view(*m_device, tensor_view_create_info);
vkt::Buffer buffer(*m_device, tensor.GetMemoryReqs().memoryRequirements.size, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
CreateComputePipelineHelper pipe(*m_device);
pipe.cs_ = VkShaderObj::CreateFromGLSL(this, kMinimalTensorGlsl, VK_SHADER_STAGE_COMPUTE_BIT);
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_TENSOR_ARM, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr}};
pipe.dsl_bindings_.resize(bindings.size());
memcpy(pipe.dsl_bindings_.data(), bindings.data(), bindings.size() * sizeof(VkDescriptorSetLayoutBinding));
pipe.CreateComputePipeline();
pipe.descriptor_set_.WriteDescriptorTensorInfo(0, &view.handle());
pipe.descriptor_set_.WriteDescriptorBufferInfo(1, buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
pipe.descriptor_set_.UpdateDescriptorSets();
m_command_buffer.Begin();
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1,
&pipe.descriptor_set_.set_, 0, nullptr);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdDispatch(m_command_buffer.handle(), 1, 1, 1);
m_command_buffer.End();
m_default_queue->SubmitAndWait(m_command_buffer);
}
TEST_F(PositiveTensor, DispatchShaderSpirv) {
TEST_DESCRIPTION("Use a tensor in a Spir-V shader");
AddRequiredFeature(vkt::Feature::shaderTensorAccess);
RETURN_IF_SKIP(InitBasicTensor());
VkTensorDescriptionARM desc = TensorShaderDesc();
VkTensorCreateInfoARM info = DefaultCreateInfo(&desc);
vkt::Tensor tensor(*m_device, info);
tensor.BindToMem();
VkTensorViewCreateInfoARM tensor_view_create_info = vku::InitStructHelper();
tensor_view_create_info.tensor = tensor.handle();
tensor_view_create_info.format = tensor.Format();
vkt::TensorView view(*m_device, tensor_view_create_info);
vkt::Buffer buffer(*m_device, tensor.GetMemoryReqs().memoryRequirements.size, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
CreateComputePipelineHelper pipe(*m_device);
const std::string spirv_source = vkt::dg::DataGraphPipelineHelper::GetSpirvBasicShader();
pipe.cs_ = VkShaderObj(this, spirv_source.c_str(), VK_SHADER_STAGE_COMPUTE_BIT, SPV_ENV_VULKAN_1_4, SPV_SOURCE_ASM);
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_TENSOR_ARM, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr}};
pipe.dsl_bindings_.resize(bindings.size());
memcpy(pipe.dsl_bindings_.data(), bindings.data(), bindings.size() * sizeof(VkDescriptorSetLayoutBinding));
pipe.CreateComputePipeline();
pipe.descriptor_set_.WriteDescriptorTensorInfo(0, &view.handle());
pipe.descriptor_set_.WriteDescriptorBufferInfo(1, buffer, 0, VK_WHOLE_SIZE, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
pipe.descriptor_set_.UpdateDescriptorSets();
m_command_buffer.Begin();
vk::CmdBindDescriptorSets(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe.pipeline_layout_, 0, 1,
&pipe.descriptor_set_.set_, 0, nullptr);
vk::CmdBindPipeline(m_command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipe);
vk::CmdDispatch(m_command_buffer.handle(), 1, 1, 1);
m_command_buffer.End();
m_default_queue->SubmitAndWait(m_command_buffer);
}
TEST_F(PositiveTensor, DescriptorBindingUpdateAfterBindTensor) {
TEST_DESCRIPTION("Call UpdateAfterBind on tensors.");
SetTargetApiVersion(VK_API_VERSION_1_4);
AddRequiredExtensions(VK_ARM_TENSORS_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::tensors);
AddRequiredFeature(vkt::Feature::descriptorBindingStorageTensorUpdateAfterBind);
RETURN_IF_SKIP(Init());
VkDescriptorSetLayoutBinding binding{0, VK_DESCRIPTOR_TYPE_TENSOR_ARM, 1, VK_SHADER_STAGE_ALL, nullptr};
constexpr VkDescriptorBindingFlags flags = VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT;
VkDescriptorSetLayoutBindingFlagsCreateInfo flags_create_info = vku::InitStructHelper();
flags_create_info.bindingCount = 1;
flags_create_info.pBindingFlags = &flags;
VkDescriptorSetLayoutCreateInfo create_info = vku::InitStructHelper(&flags_create_info);
create_info.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT;
create_info.bindingCount = 1;
create_info.pBindings = &binding;
vkt::DescriptorSetLayout(*m_device, create_info);
}
TEST_F(PositiveTensor, WriteDescriptorSetTensorInfoNullViews) {
TEST_DESCRIPTION("Test writing a tensor descriptor with null tensor views");
AddRequiredExtensions(VK_EXT_ROBUSTNESS_2_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::nullDescriptor);
RETURN_IF_SKIP(InitBasicTensor());
vkt::Tensor tensor(*m_device);
tensor.BindToMem();
VkTensorViewCreateInfoARM tensor_view_create_info = vku::InitStructHelper();
tensor_view_create_info.tensor = tensor.handle();
tensor_view_create_info.format = tensor.Format();
vkt::TensorView view(*m_device, tensor_view_create_info);
constexpr uint32_t tensor_binding_count = 1;
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_TENSOR_ARM, tensor_binding_count, VK_SHADER_STAGE_ALL, nullptr},
});
std::vector<VkTensorViewARM> views = {VK_NULL_HANDLE};
VkWriteDescriptorSetTensorARM tensor_descriptor_write = vku::InitStructHelper();
tensor_descriptor_write.tensorViewCount = views.size();
tensor_descriptor_write.pTensorViews = views.data();
VkWriteDescriptorSet descriptor_write = vku::InitStructHelper(&tensor_descriptor_write);
descriptor_write.dstSet = descriptor_set.set_;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = tensor_binding_count;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_TENSOR_ARM;
vk::UpdateDescriptorSets(device(), 1, &descriptor_write, 0, NULL);
}
TEST_F(PositiveTensor, DescriptorTensorViewNull) {
TEST_DESCRIPTION("Descriptor buffer with null tensor views.");
AddRequiredExtensions(VK_EXT_ROBUSTNESS_2_EXTENSION_NAME);
AddRequiredExtensions(VK_EXT_DESCRIPTOR_BUFFER_EXTENSION_NAME);
AddRequiredFeature(vkt::Feature::nullDescriptor);
AddRequiredFeature(vkt::Feature::descriptorBuffer);
RETURN_IF_SKIP(InitBasicTensor());
VkPhysicalDeviceDescriptorBufferPropertiesEXT descriptor_buffer_properties = vku::InitStructHelper();
GetPhysicalDeviceProperties2(descriptor_buffer_properties);
uint8_t buffer[128];
VkDescriptorGetTensorInfoARM tensor_info = vku::InitStructHelper();
tensor_info.tensorView = VK_NULL_HANDLE;
VkDescriptorGetInfoEXT dgi = vku::InitStructHelper(&tensor_info);
dgi.type = VK_DESCRIPTOR_TYPE_TENSOR_ARM;
vk::GetDescriptorEXT(device(), &dgi, descriptor_buffer_properties.storageBufferDescriptorSize, &buffer);
}
|