1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/* Copyright (c) 2015-2025 The Khronos Group Inc.
* Copyright (c) 2015-2025 Valve Corporation
* Copyright (c) 2015-2025 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>
#include <utility>
// A vector class with "small string optimization" -- meaning that the class contains a fixed working store for N elements.
// Useful in in situations where the needed size is unknown, but the typical size is known If size increases beyond the
// fixed capacity, a dynamically allocated working store is created.
//
// NOTE: Unlike std::vector which only requires T to be CopyAssignable and CopyConstructable, small_vector requires T to be
// MoveAssignable and MoveConstructable
// NOTE: Unlike std::vector, iterators are invalidated by move assignment between small_vector objects effectively the
// "small string" allocation functions as an incompatible allocator.
template <typename T, size_t N, typename SizeType = uint32_t>
class small_vector {
public:
using value_type = T;
using reference = value_type &;
using const_reference = const value_type &;
using pointer = value_type *;
using const_pointer = const value_type *;
using iterator = pointer;
using const_iterator = const_pointer;
using size_type = SizeType;
static const size_type kSmallCapacity = N;
static const size_type kMaxCapacity = std::numeric_limits<size_type>::max();
static_assert(N <= kMaxCapacity, "size must be less than size_type::max");
small_vector() : size_(0), capacity_(N), working_store_(GetSmallStore()) {}
small_vector(std::initializer_list<T> list) : size_(0), capacity_(N), working_store_(GetSmallStore()) { PushBackFrom(list); }
small_vector(const small_vector &other) : size_(0), capacity_(N), working_store_(GetSmallStore()) { PushBackFrom(other); }
small_vector(small_vector &&other) : size_(0), capacity_(N), working_store_(GetSmallStore()) {
if (other.large_store_) {
MoveLargeStore(other);
} else {
PushBackFrom(std::move(other));
}
// Per the spec, when constructing from other, other is guaranteed to be empty after the constructor runs
other.clear();
}
small_vector(size_type size, const value_type &value = value_type()) : size_(0), capacity_(N), working_store_(GetSmallStore()) {
if (size > 0) {
reserve(size);
auto dest = GetWorkingStore();
for (size_type i = 0; i < size; i++) {
new (&dest[i]) value_type(value);
}
size_ = size;
}
}
~small_vector() {
clear();
delete[] large_store_;
}
bool operator==(const small_vector &rhs) const {
if (size_ != rhs.size_) return false;
auto value = begin();
for (const auto &rh_value : rhs) {
if (!(*value == rh_value)) {
return false;
}
++value;
}
return true;
}
bool operator!=(const small_vector &rhs) const { return !(*this == rhs); }
small_vector &operator=(const small_vector &other) {
if (this != &other) {
if (other.size_ > capacity_) {
// Calling reserve would move construct and destroy all current contents, so just clear them before calling
// PushBackFrom (which does a reserve vs. the now empty this)
clear();
PushBackFrom(other);
} else {
// The copy will fit into the current allocation
auto dest = GetWorkingStore();
auto source = other.GetWorkingStore();
const auto overlap = std::min(size_, other.size_);
// Copy assign anywhere we have objects in this
// Note: usually cheaper than destruct/construct
for (size_type i = 0; i < overlap; i++) {
dest[i] = source[i];
}
// Copy construct anywhere we *don't* have objects in this
for (size_type i = overlap; i < other.size_; i++) {
new (dest + i) value_type(source[i]);
}
// Any entries in this past other_size_ must be cleaned up...
for (size_type i = other.size_; i < size_; i++) {
dest[i].~value_type();
}
size_ = other.size_;
}
}
return *this;
}
small_vector &operator=(small_vector &&other) {
if (this != &other) {
// Note: move assign doesn't require other to become empty (as does move construction)
// so we'll leave other alone except in the large store case, while moving the object
// *in* the vector from other
if (other.large_store_) {
// Moving the other large store intact is probably best, even if we have to destroy everything in this.
clear();
MoveLargeStore(other);
} else if (other.size_ > capacity_) {
// If we'd have to reallocate, just clean up minimally and copy normally
clear();
PushBackFrom(std::move(other));
} else {
// The copy will fit into the current allocation
auto dest = GetWorkingStore();
auto source = other.GetWorkingStore();
const auto overlap = std::min(size_, other.size_);
// Move assign where we have objects in this
// Note: usually cheaper than destruct/construct
for (size_type i = 0; i < overlap; i++) {
dest[i] = std::move(source[i]);
}
// Move construct where we *don't* have objects in this
for (size_type i = overlap; i < other.size_; i++) {
new (dest + i) value_type(std::move(source[i]));
}
// Any entries in this past other_size_ must be cleaned up...
for (size_type i = other.size_; i < size_; i++) {
dest[i].~value_type();
}
size_ = other.size_;
}
}
return *this;
}
reference operator[](size_type pos) {
assert(pos < size_);
return GetWorkingStore()[pos];
}
const_reference operator[](size_type pos) const {
assert(pos < size_);
return GetWorkingStore()[pos];
}
// Like std::vector:: calling front or back on an empty container causes undefined behavior
reference front() {
assert(size_ > 0);
return GetWorkingStore()[0];
}
const_reference front() const {
assert(size_ > 0);
return GetWorkingStore()[0];
}
reference back() {
assert(size_ > 0);
return GetWorkingStore()[size_ - 1];
}
const_reference back() const {
assert(size_ > 0);
return GetWorkingStore()[size_ - 1];
}
bool empty() const { return size_ == 0; }
template <class... Args>
reference emplace_back(Args &&...args) {
assert(size_ < kMaxCapacity);
reserve(size_ + 1);
new (GetWorkingStore() + size_) value_type(args...);
size_++;
return back();
}
// Note: probably should update this to reflect C++23 ranges
template <typename Container>
void PushBackFrom(const Container &from) {
assert(from.size() <= kMaxCapacity);
assert(size_ <= kMaxCapacity - from.size());
const size_type new_size = size_ + static_cast<size_type>(from.size());
reserve(new_size);
auto dest = GetWorkingStore() + size_;
for (const auto &element : from) {
new (dest) value_type(element);
++dest;
}
size_ = new_size;
}
template <typename Container>
void PushBackFrom(Container &&from) {
assert(from.size() < kMaxCapacity);
const size_type new_size = size_ + static_cast<size_type>(from.size());
reserve(new_size);
auto dest = GetWorkingStore() + size_;
for (auto &element : from) {
new (dest) value_type(std::move(element));
++dest;
}
size_ = new_size;
}
bool Contains(const T &value) const { return std::find(cbegin(), cend(), value) != cend(); }
void reserve(size_type new_cap) {
// Since this can't shrink, if we're growing we're newing
if (new_cap > capacity_) {
assert(capacity_ >= kSmallCapacity);
auto new_store = new BackingStore[new_cap];
auto working_store = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
new (new_store[i].data) value_type(std::move(working_store[i]));
working_store[i].~value_type();
}
delete[] large_store_;
large_store_ = new_store;
assert(new_cap > kSmallCapacity);
capacity_ = new_cap;
}
UpdateWorkingStore();
// No shrink here.
}
void clear() {
// Keep clear minimal to optimize reset functions for enduring objects
// more work is deferred until destruction (freeing of large_store for example)
// and we intentionally *aren't* shrinking. Callers that desire shrink semantics
// can call shrink_to_fit.
auto working_store = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
working_store[i].~value_type();
}
size_ = 0;
}
void resize(size_type count) {
struct ValueInitTag { // tag to request value-initialization
explicit ValueInitTag() = default;
};
Resize(count, ValueInitTag{});
}
void resize(size_type count, const value_type &value) { Resize(count, value); }
void shrink_to_fit() {
if (size_ == 0) {
// shrink resets to small when empty
capacity_ = kSmallCapacity;
delete[] large_store_;
large_store_ = nullptr;
UpdateWorkingStore();
} else if ((capacity_ > kSmallCapacity) && (capacity_ > size_)) {
auto source = GetWorkingStore();
// Keep the source from disappearing until the end of the function
auto old_store = large_store_;
large_store_ = nullptr;
assert(!large_store_);
if (size_ < kSmallCapacity) {
capacity_ = kSmallCapacity;
} else {
large_store_ = new BackingStore[size_];
capacity_ = size_;
}
UpdateWorkingStore();
auto dest = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
dest[i] = std::move(source[i]);
source[i].~value_type();
}
delete[] old_store;
}
}
inline iterator begin() { return GetWorkingStore(); }
inline const_iterator cbegin() const { return GetWorkingStore(); }
inline const_iterator begin() const { return GetWorkingStore(); }
inline iterator end() { return GetWorkingStore() + size_; }
inline const_iterator cend() const { return GetWorkingStore() + size_; }
inline const_iterator end() const { return GetWorkingStore() + size_; }
inline size_type size() const { return size_; }
auto capacity() const { return capacity_; }
inline pointer data() { return GetWorkingStore(); }
inline const_pointer data() const { return GetWorkingStore(); }
protected:
inline const_pointer ComputeWorkingStore() const {
assert(large_store_ || (capacity_ == kSmallCapacity));
const BackingStore *store = large_store_ ? large_store_ : small_store_;
return &store->object;
}
inline pointer ComputeWorkingStore() {
assert(large_store_ || (capacity_ == kSmallCapacity));
BackingStore *store = large_store_ ? large_store_ : small_store_;
return &store->object;
}
void UpdateWorkingStore() { working_store_ = ComputeWorkingStore(); }
inline const_pointer GetWorkingStore() const {
DbgWorkingStoreCheck();
return working_store_;
}
inline pointer GetWorkingStore() {
DbgWorkingStoreCheck();
return working_store_;
}
inline pointer GetSmallStore() { return &small_store_->object; }
union BackingStore {
BackingStore() {}
~BackingStore() {}
uint8_t data[sizeof(value_type)];
value_type object;
};
size_type size_ = 0;
size_type capacity_ = 0;
BackingStore small_store_[N]{};
// Even an empty std::unique_ptr can be costly to construct,
// so use a raw pointer
BackingStore *large_store_ = nullptr;
value_type *working_store_ = nullptr;
#ifndef NDEBUG
void DbgWorkingStoreCheck() const { assert(ComputeWorkingStore() == working_store_); };
#else
void DbgWorkingStoreCheck() const {};
#endif
private:
void MoveLargeStore(small_vector &other) {
assert(other.large_store_);
assert(other.capacity_ > kSmallCapacity);
// In move operations, from a small vector with a large store, we can move from it
delete[] large_store_;
large_store_ = other.large_store_;
other.large_store_ = nullptr;
capacity_ = other.capacity_;
size_ = other.size_;
UpdateWorkingStore();
// We've stolen other's large store, must leave it in a valid state
other.size_ = 0;
other.capacity_ = kSmallCapacity;
other.UpdateWorkingStore();
}
template <typename T2>
void Resize(size_type new_size, const T2 &value) {
if (new_size < size_) {
auto working_store = GetWorkingStore();
for (size_type i = new_size; i < size_; i++) {
working_store[i].~value_type();
}
size_ = new_size;
} else if (new_size > size_) {
reserve(new_size);
// if T2 != T and T is not DefaultInsertable, new values will be undefined
if constexpr (std::is_same_v<T2, T> || std::is_default_constructible_v<T>) {
for (size_type i = size_; i < new_size; ++i) {
if constexpr (std::is_same_v<T2, T>) {
emplace_back(value_type(value));
} else if constexpr (std::is_default_constructible_v<T>) {
emplace_back(value_type());
}
}
assert(size() == new_size);
} else {
size_ = new_size;
}
}
}
};
|