File: sync_hazard_detection.cpp

package info (click to toggle)
vulkan-validationlayers 1.4.341.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 54,356 kB
  • sloc: cpp: 675,478; python: 12,311; sh: 24; makefile: 24; xml: 14
file content (636 lines) | stat: -rw-r--r-- 31,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/* Copyright (c) 2026 The Khronos Group Inc.
 * Copyright (c) 2026 Valve Corporation
 * Copyright (c) 2026 LunarG, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "sync/sync_access_context.h"
#include "sync/sync_image.h"
#include "sync/sync_validation.h"
#include "state_tracker/buffer_state.h"

namespace syncval {

// Execute Action for each map entry in the generated ranges until it returns true
//
// Action is const w.r.t. map
// Action is allowed (assumed) to modify pos
// Action must not advance pos for ranges strictly < pos->first
// Action must handle range strictly less than pos->first correctly
// Action must handle pos == end correctly
// Action is assumed to only require invocation once per map entry
// Note: If Action invocations are heavyweight and inter-entry (gap) calls are not needed
//       add a template or function parameter to skip them. TBD.
template <typename Action>
bool ForEachEntryInRangesUntil(const AccessMap &map, ImageRangeGen &range_gen, Action &action) {
    using RangeType = ImageRangeGen::RangeType;
    using IndexType = RangeType::index_type;
    auto pos = map.LowerBound((*range_gen).begin);
    const auto end = map.end();
    IndexType skip_limit = 0;
    for (; range_gen->non_empty() && pos != end; ++range_gen) {
        RangeType range = *range_gen;
        // See if a prev pos has covered this range
        if (range.end <= skip_limit) {
            // Since the map is const, we needn't call action on the same pos again
            continue;
        }

        //  If the current range was *partially* covered be a previous pos, trim, such that Action is only
        //  called once for a given range (and pos)
        if (range.begin < skip_limit) {
            range.begin = skip_limit;
        }

        // Now advance pos as needed to match range
        if (pos->first.strictly_less(range)) {
            ++pos;
            if (pos == end) break;
            if (pos->first.strictly_less(range)) {
                pos = map.LowerBound(range.begin);
                if (pos == end) break;
            }
            assert(pos == map.LowerBound(range.begin));
        }

        // If the range intersects pos->first, consider Action performed for that map entry, and
        // make sure not to call Action for this pos for any subsequent ranges
        skip_limit = range.end > pos->first.begin ? pos->first.end : 0U;

        // Action is allowed to alter pos but shouldn't do so if range is strictly < pos->first
        if (action(range, end, pos)) return true;
    }

    // Action needs to handle the "at end " condition (and can be useful for recursive actions)
    for (; range_gen->non_empty(); ++range_gen) {
        if (action(*range_gen, end, pos)) return true;
    }

    return false;
}

template <typename DetectorRunner>
HazardResult DoDetect(const AccessContext &access_context, const AccessState &access_state, DetectorRunner detector_runner) {
    if (access_state.next_global_barrier_index < access_context.GetGlobalBarrierCount()) {
        AccessState new_access_state = AccessState::DefaultAccessState();
        new_access_state.Assign(access_state);
        access_context.ApplyGlobalBarriers(new_access_state);
        return detector_runner(new_access_state);
    } else {
        return detector_runner(access_state);
    }
}

class HazardDetector {
  public:
    HazardDetector(SyncAccessIndex access_index, const AccessContext &access_context)
        : access_info_(GetAccessInfo(access_index)), access_context_(access_context) {}

    HazardResult Detect(const AccessMap::const_iterator &pos) const {
        return DoDetect(access_context_, pos->second,
                        [this](const AccessState &access_state) { return access_state.DetectHazard(access_info_); });
    }

    HazardResult DetectAsync(const AccessMap::const_iterator &pos, ResourceUsageTag start_tag, QueueId queue_id) const {
        return DoDetect(access_context_, pos->second, [this, start_tag, queue_id](const AccessState &access_state) {
            return access_state.DetectAsyncHazard(access_info_, start_tag, queue_id);
        });
    }

  private:
    const SyncAccessInfo &access_info_;
    const AccessContext &access_context_;
};

class HazardDetectorWithOrdering {
  public:
    HazardDetectorWithOrdering(SyncAccessIndex access_index, SyncOrdering ordering, const AccessContext &access_context,
                               SyncFlags flags, bool detect_load_op_after_store_op_hazards)
        : access_info_(GetAccessInfo(access_index)),
          ordering_rule_(ordering),
          access_context_(access_context),
          flags_(flags),
          detect_load_op_after_store_op_hazards(detect_load_op_after_store_op_hazards) {}

    HazardResult Detect(const AccessMap::const_iterator &pos) const {
        const OrderingBarrier &ordering = GetOrderingRules(ordering_rule_);
        return DoDetect(access_context_, pos->second, [this, &ordering](const AccessState &access_state) {
            return access_state.DetectHazard(access_info_, ordering, flags_, kQueueIdInvalid,
                                             detect_load_op_after_store_op_hazards);
        });
    }

    HazardResult DetectAsync(const AccessMap::const_iterator &pos, ResourceUsageTag start_tag, QueueId queue_id) const {
        return DoDetect(access_context_, pos->second, [this, start_tag, queue_id](const AccessState &access_state) {
            return access_state.DetectAsyncHazard(access_info_, start_tag, queue_id);
        });
    }

  private:
    const SyncAccessInfo &access_info_;
    const SyncOrdering ordering_rule_;
    const AccessContext &access_context_;
    const SyncFlags flags_;
    const bool detect_load_op_after_store_op_hazards;
};

class HazardDetectFirstUse {
  public:
    HazardDetectFirstUse(const AccessState &recorded_use, QueueId queue_id, const ResourceUsageRange &tag_range,
                         const AccessContext &access_context, bool detect_load_op_after_store_op_hazards)
        : recorded_use_(recorded_use),
          queue_id_(queue_id),
          tag_range_(tag_range),
          access_context_(access_context),
          detect_load_op_after_store_op_hazards(detect_load_op_after_store_op_hazards) {}

    HazardResult Detect(const AccessMap::const_iterator &pos) const {
        return DoDetect(access_context_, pos->second, [this](const AccessState &access_state) {
            return access_state.DetectHazard(recorded_use_, queue_id_, tag_range_, detect_load_op_after_store_op_hazards);
        });
    }

    HazardResult DetectAsync(const AccessMap::const_iterator &pos, ResourceUsageTag start_tag, QueueId queue_id) const {
        return DoDetect(access_context_, pos->second, [this, start_tag, queue_id](const AccessState &access_state) {
            return access_state.DetectAsyncHazard(recorded_use_, tag_range_, start_tag, queue_id);
        });
    }

  private:
    const AccessState &recorded_use_;
    const QueueId queue_id_;
    const ResourceUsageRange &tag_range_;
    const AccessContext &access_context_;
    const bool detect_load_op_after_store_op_hazards;
};

struct HazardDetectorMarker {
    HazardDetectorMarker(const AccessContext &access_context) : access_context(access_context) {}

    HazardResult Detect(const AccessMap::const_iterator &pos) const {
        return DoDetect(access_context, pos->second,
                        [](const AccessState &access_state) { return access_state.DetectMarkerHazard(); });
    }

    HazardResult DetectAsync(const AccessMap::const_iterator &pos, ResourceUsageTag start_tag, QueueId queue_id) const {
        return DoDetect(access_context, pos->second, [start_tag, queue_id](const AccessState &access_state) {
            return access_state.DetectAsyncHazard(GetAccessInfo(SYNC_COPY_TRANSFER_WRITE), start_tag, queue_id);
        });
    }

    const AccessContext &access_context;
};

class BarrierHazardDetector {
  public:
    BarrierHazardDetector(const AccessContext &access_context, SyncAccessIndex access_index, VkPipelineStageFlags2 src_exec_scope,
                          SyncAccessFlags src_access_scope)
        : access_context_(access_context),
          access_info_(GetAccessInfo(access_index)),
          src_exec_scope_(src_exec_scope),
          src_access_scope_(src_access_scope) {}

    HazardResult Detect(const AccessMap::const_iterator &pos) const {
        return DoDetect(access_context_, pos->second, [this](const AccessState &access_state) {
            return access_state.DetectBarrierHazard(access_info_, kQueueIdInvalid, src_exec_scope_, src_access_scope_);
        });
    }

    HazardResult DetectAsync(const AccessMap::const_iterator &pos, ResourceUsageTag start_tag, QueueId queue_id) const {
        return DoDetect(access_context_, pos->second, [this, start_tag, queue_id](const AccessState &access_state) {
            return access_state.DetectAsyncHazard(access_info_, start_tag, queue_id);
        });
    }

  private:
    const AccessContext &access_context_;
    const SyncAccessInfo &access_info_;
    VkPipelineStageFlags2 src_exec_scope_;
    SyncAccessFlags src_access_scope_;
};

class EventBarrierHazardDetector {
  public:
    EventBarrierHazardDetector(SyncAccessIndex access_index, VkPipelineStageFlags2 src_exec_scope, SyncAccessFlags src_access_scope,
                               const AccessContext::ScopeMap &event_scope, QueueId queue_id, ResourceUsageTag scope_tag)
        : access_info_(GetAccessInfo(access_index)),
          src_exec_scope_(src_exec_scope),
          src_access_scope_(src_access_scope),
          event_scope_(event_scope),
          scope_queue_id_(queue_id),
          scope_tag_(scope_tag),
          scope_pos_(event_scope.begin()),
          scope_end_(event_scope.end()) {}

    HazardResult Detect(const AccessMap::const_iterator &pos) {
        // Need to piece together coverage of pos->first range:
        // Copy the range as we'll be chopping it up as needed
        AccessRange range = pos->first;
        const AccessState &access = pos->second;
        HazardResult hazard;

        bool in_scope = AdvanceScope(range);
        bool unscoped_tested = false;
        while (in_scope && !hazard.IsHazard()) {
            if (range.begin < ScopeBegin()) {
                if (!unscoped_tested) {
                    unscoped_tested = true;
                    hazard = access.DetectHazard(access_info_);
                }
                // Note: don't need to check for in_scope as AdvanceScope true means range and ScopeRange intersect.
                // Thus a [ ScopeBegin, range.end ) will be non-empty.
                range.begin = ScopeBegin();
            } else {  // in_scope implied that ScopeRange and range intersect
                hazard = access.DetectBarrierHazard(access_info_, ScopeState(), src_exec_scope_, src_access_scope_, scope_queue_id_,
                                                    scope_tag_);
                if (!hazard.IsHazard()) {
                    range.begin = ScopeEnd();
                    in_scope = AdvanceScope(range);  // contains a non_empty check
                }
            }
        }
        if (range.non_empty() && !hazard.IsHazard() && !unscoped_tested) {
            hazard = access.DetectHazard(access_info_);
        }
        return hazard;
    }

    HazardResult DetectAsync(const AccessMap::const_iterator &pos, ResourceUsageTag start_tag, QueueId queue_id) const {
        // Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
        return pos->second.DetectAsyncHazard(access_info_, start_tag, queue_id);
    }

  private:
    bool ScopeInvalid() const { return scope_pos_ == scope_end_; }
    bool ScopeValid() const { return !ScopeInvalid(); }
    void ScopeSeek(const AccessRange &range) { scope_pos_ = event_scope_.LowerBound(range.begin); }

    // Hiding away the std::pair grunge...
    ResourceAddress ScopeBegin() const { return scope_pos_->first.begin; }
    ResourceAddress ScopeEnd() const { return scope_pos_->first.end; }
    const AccessRange &ScopeRange() const { return scope_pos_->first; }
    const AccessState &ScopeState() const { return scope_pos_->second; }

    bool AdvanceScope(const AccessRange &range) {
        // Note: non_empty is (valid && !empty), so don't change !non_empty to empty...
        if (!range.non_empty()) return false;
        if (ScopeInvalid()) return false;

        if (ScopeRange().strictly_less(range)) {
            ScopeSeek(range);
        }

        return ScopeValid() && ScopeRange().intersects(range);
    }

    const SyncAccessInfo access_info_;
    VkPipelineStageFlags2 src_exec_scope_;
    SyncAccessFlags src_access_scope_;
    const AccessContext::ScopeMap &event_scope_;
    QueueId scope_queue_id_;
    const ResourceUsageTag scope_tag_;
    AccessContext::ScopeMap::const_iterator scope_pos_;
    AccessContext::ScopeMap::const_iterator scope_end_;
};

HazardResult AccessContext::DetectHazard(const vvl::Buffer &buffer, SyncAccessIndex access_index, const AccessRange &range) const {
    if (!SimpleBinding(buffer)) {
        return {};
    }
    const auto base_address = ResourceBaseAddress(buffer);
    HazardDetector detector(access_index, *this);
    return DetectHazardRange(detector, (range + base_address), DetectOptions::kDetectAll);
}

HazardResult AccessContext::DetectHazard(const vvl::Image &image, SyncAccessIndex current_usage,
                                         const VkImageSubresourceRange &subresource_range, bool is_depth_sliced) const {
    HazardDetector detector(current_usage, *this);
    ImageRangeGen range_gen = SubState(image).MakeImageRangeGen(subresource_range, is_depth_sliced);
    return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
}

HazardResult AccessContext::DetectHazard(const vvl::Image &image, const VkImageSubresourceRange &subresource_range,
                                         const VkOffset3D &offset, const VkExtent3D &extent, bool is_depth_sliced,
                                         SyncAccessIndex current_usage, SyncOrdering ordering_rule) const {
    ImageRangeGen range_gen = SubState(image).MakeImageRangeGen(subresource_range, offset, extent, is_depth_sliced);
    if (ordering_rule == SyncOrdering::kOrderingNone) {
        HazardDetector detector(current_usage, *this);
        return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
    } else {
        HazardDetectorWithOrdering detector(current_usage, ordering_rule, *this, 0,
                                            validator->syncval_settings.load_op_after_store_op_validation);
        return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
    }
}

HazardResult AccessContext::DetectHazard(const vvl::ImageView &image_view, SyncAccessIndex current_usage) const {
    HazardDetector detector(current_usage, *this);
    auto range_gen = MakeImageRangeGen(image_view);
    return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
}

HazardResult AccessContext::DetectHazard(const vvl::ImageView &image_view, const VkOffset3D &offset, const VkExtent3D &extent,
                                         SyncAccessIndex current_usage, SyncOrdering ordering_rule) const {
    HazardDetectorWithOrdering detector(current_usage, ordering_rule, *this, 0,
                                        validator->syncval_settings.load_op_after_store_op_validation);
    ImageRangeGen range_gen(MakeImageRangeGen(image_view, offset, extent));
    return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
}

HazardResult AccessContext::DetectHazard(const ImageRangeGen &const_range_gen, SyncAccessIndex current_usage,
                                         const SyncOrdering ordering_rule, SyncFlags flags) const {
    ImageRangeGen range_gen(const_range_gen);
    if (ordering_rule == SyncOrdering::kOrderingNone) {
        HazardDetector detector(current_usage, *this);
        return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
    } else {
        HazardDetectorWithOrdering detector(current_usage, ordering_rule, *this, flags,
                                            validator->syncval_settings.load_op_after_store_op_validation);
        return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
    }
}

HazardResult AccessContext::DetectHazard(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
                                         SyncAccessIndex current_usage, SyncOrdering ordering_rule, SyncFlags flags) const {
    HazardDetectorWithOrdering detector(current_usage, ordering_rule, *this, flags,
                                        validator->syncval_settings.load_op_after_store_op_validation);
    const std::optional<ImageRangeGen> &attachment_gen = view_gen.GetRangeGen(gen_type);
    if (!attachment_gen) {
        return {};
    }
    ImageRangeGen range_gen(*attachment_gen);
    return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
}

HazardResult AccessContext::DetectHazard(const vvl::VideoSession &vs_state, const vvl::VideoPictureResource &resource,
                                         SyncAccessIndex current_usage) const {
    const auto image = static_cast<const vvl::Image *>(resource.image_state.get());
    const auto &sub_state = SubState(*image);
    const auto offset = resource.GetEffectiveImageOffset(vs_state);
    const auto extent = resource.GetEffectiveImageExtent(vs_state);
    ImageRangeGen range_gen(sub_state.MakeImageRangeGen(resource.range, offset, extent, false));
    HazardDetector detector(current_usage, *this);
    return DetectHazardGeneratedRangeGen(detector, range_gen, DetectOptions::kDetectAll);
}

HazardResult AccessContext::DetectImageBarrierHazard(const vvl::Image &image, const VkImageSubresourceRange &subresource_range,
                                                     VkPipelineStageFlags2 src_exec_scope, const SyncAccessFlags &src_access_scope,
                                                     QueueId queue_id, const ScopeMap &scope_map, const ResourceUsageTag scope_tag,
                                                     AccessContext::DetectOptions options) const {
    EventBarrierHazardDetector detector(SyncAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope, scope_map,
                                        queue_id, scope_tag);
    ImageRangeGen range_gen = SubState(image).MakeImageRangeGen(subresource_range, false);
    return DetectHazardGeneratedRangeGen(detector, range_gen, options);
}

HazardResult AccessContext::DetectImageBarrierHazard(const vvl::Image &image, VkPipelineStageFlags2 src_exec_scope,
                                                     const SyncAccessFlags &src_access_scope,
                                                     const VkImageSubresourceRange &subresource_range, bool is_depth_sliced,
                                                     const DetectOptions options) const {
    BarrierHazardDetector detector(*this, SyncAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope);
    ImageRangeGen range_gen = SubState(image).MakeImageRangeGen(subresource_range, is_depth_sliced);
    return DetectHazardGeneratedRangeGen(detector, range_gen, options);
}

HazardResult AccessContext::DetectImageBarrierHazard(const AttachmentViewGen &view_gen, const SyncBarrier &barrier,
                                                     DetectOptions options) const {
    BarrierHazardDetector detector(*this, SyncAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, barrier.src_exec_scope.exec_scope,
                                   barrier.src_access_scope);
    const std::optional<ImageRangeGen> &attachment_gen = view_gen.GetRangeGen(AttachmentViewGen::Gen::kViewSubresource);
    subresource_adapter::ImageRangeGenerator range_gen(*attachment_gen);
    return DetectHazardGeneratedRangeGen(detector, range_gen, options);
}

HazardResult AccessContext::DetectSubpassTransitionHazard(const SubpassBarrierTrackback &track_back,
                                                          const AttachmentViewGen &attach_view) const {
    // We should never ask for a transition from a context we don't have
    assert(track_back.source_subpass);

    // Do the detection against the specific prior context independent of other contexts.  (Synchronous only)
    // Hazard detection for the transition can be against the merged of the barriers (it only uses src_...)
    const SyncBarrier merged_barrier(track_back.barriers);
    HazardResult hazard = track_back.source_subpass->DetectImageBarrierHazard(attach_view, merged_barrier, kDetectPrevious);
    if (!hazard.IsHazard()) {
        // The Async hazard check is against the current context's async set.
        SyncBarrier null_barrier = {};
        hazard = DetectImageBarrierHazard(attach_view, null_barrier, kDetectAsync);
    }

    return hazard;
}

// This is called with the *recorded* command buffers access context, with the
// *active* access context pass in, againsts which hazards will be detected
HazardResult AccessContext::DetectFirstUseHazard(QueueId queue_id, const ResourceUsageRange &tag_range,
                                                 const AccessContext &access_context) const {
    // If the context is finalized we have a fast path to find first accesses within a range
    if (finalized_) {
        for (const auto &single_tag : sorted_first_accesses_.IterateSingleTagFirstAccesses(tag_range)) {
            const AccessRange access_range = single_tag.p_key_value->first;
            const AccessState &access = single_tag.p_key_value->second;

            // For single tag first accesses we have exact search and can assert the find
            assert(access.FirstAccessInTagRange(tag_range));

            HazardDetectFirstUse detector(access, queue_id, tag_range, access_context,
                                          validator->syncval_settings.load_op_after_store_op_validation);
            HazardResult hazard = access_context.DetectHazardRange(detector, access_range, DetectOptions::kDetectAll);
            if (hazard.IsHazard()) {
                return hazard;
            }
        }
        for (const auto &multi_tag : sorted_first_accesses_.IterateMultiTagFirstAccesses(tag_range)) {
            const AccessRange access_range = multi_tag.p_key_value->first;
            const AccessState &access = multi_tag.p_key_value->second;

            // For multi tag first accesses the search is not exact, so we need to check for range inclusion
            // (on average multi tag search is faster than going over the entire access map)
            if (!access.FirstAccessInTagRange(tag_range)) {
                continue;
            }

            HazardDetectFirstUse detector(access, queue_id, tag_range, access_context,
                                          validator->syncval_settings.load_op_after_store_op_validation);
            HazardResult hazard = access_context.DetectHazardRange(detector, access_range, DetectOptions::kDetectAll);
            if (hazard.IsHazard()) {
                return hazard;
            }
        }
    }
    // The context is not finalized. We have to iterate over the entire access map
    else {
        for (const auto &recorded_access : access_state_map_) {
            // Cull any entries not in the current tag range
            if (!recorded_access.second.FirstAccessInTagRange(tag_range)) {
                continue;
            }
            HazardDetectFirstUse detector(recorded_access.second, queue_id, tag_range, access_context,
                                          validator->syncval_settings.load_op_after_store_op_validation);
            HazardResult hazard = access_context.DetectHazardRange(detector, recorded_access.first, DetectOptions::kDetectAll);
            if (hazard.IsHazard()) {
                return hazard;
            }
        }
    }
    return {};
}

HazardResult AccessContext::DetectMarkerHazard(const vvl::Buffer &buffer, const AccessRange &range) const {
    if (!SimpleBinding(buffer)) {
        return HazardResult();
    }
    const VkDeviceSize base_address = ResourceBaseAddress(buffer);
    HazardDetectorMarker detector(*this);
    return DetectHazardRange(detector, (range + base_address), DetectOptions::kDetectAll);
}

template <typename Detector>
HazardResult AccessContext::DetectHazardRange(Detector &detector, const AccessRange &range, DetectOptions options) const {
    if (!range.non_empty()) {
        return {};
    }

    HazardResult hazard;

    if (static_cast<uint32_t>(options) & DetectOptions::kDetectAsync) {
        // Async checks don't require recursive lookups, as the async lists are
        // exhaustive for the top-level context so we'll check these first
        for (const auto &async_ref : async_) {
            hazard = async_ref.Context().DetectAsyncHazard(detector, range, async_ref.StartTag(), async_ref.GetQueueId());
            if (hazard.IsHazard()) {
                return hazard;
            }
        }
    }
    const bool detect_prev = (options & DetectOptions::kDetectPrevious) != 0;
    auto pos = access_state_map_.LowerBound(range.begin);
    hazard = DetectHazardOneRange(detector, detect_prev, pos, access_state_map_.end(), range);
    return hazard;
}

template <typename Detector>
HazardResult AccessContext::DetectHazardGeneratedRangeGen(Detector &detector, ImageRangeGen &range_gen,
                                                          DetectOptions options) const {
    HazardResult hazard;

    if ((options & DetectOptions::kDetectAsync) != 0) {
        // Async checks don't require recursive lookups, as the async lists are
        // exhaustive for the top-level context so we'll check these first
        for (const auto &async_ref : async_) {
            ImageRangeGen range_gen_copy(range_gen);  // original range gen is needed later
            hazard = async_ref.Context().DetectAsyncHazard(detector, range_gen_copy, async_ref.StartTag(), async_ref.GetQueueId());
            if (hazard.IsHazard()) return hazard;
        }
    }

    const bool detect_prev = (options & DetectOptions::kDetectPrevious) != 0;
    using ConstIterator = AccessMap::const_iterator;
    auto do_detect_hazard_range = [this, &detector, &hazard, detect_prev](const ImageRangeGen::RangeType &range,
                                                                          const ConstIterator &end, ConstIterator &pos) {
        hazard = DetectHazardOneRange(detector, detect_prev, pos, end, range);
        return hazard.IsHazard();
    };
    ForEachEntryInRangesUntil(access_state_map_, range_gen, do_detect_hazard_range);
    return hazard;
}

template <typename Detector>
HazardResult AccessContext::DetectAsyncHazard(const Detector &detector, const AccessRange &range, ResourceUsageTag async_tag,
                                              QueueId async_queue_id) const {
    assert(range.non_empty());
    HazardResult hazard;
    auto pos = access_state_map_.LowerBound(range.begin);
    if (pos != access_state_map_.end() && pos->first.begin < range.end) {
        hazard = detector.DetectAsync(pos, async_tag, async_queue_id);
    }
    return hazard;
}

template <typename Detector>
HazardResult AccessContext::DetectAsyncHazard(const Detector &detector, ImageRangeGen &range_gen, ResourceUsageTag async_tag,
                                              QueueId async_queue_id) const {
    using ConstIterator = AccessMap::const_iterator;
    HazardResult hazard;

    auto do_async_hazard_check = [&detector, async_tag, async_queue_id, &hazard](const ImageRangeGen::RangeType &range,
                                                                                 const ConstIterator &end, ConstIterator &pos) {
        while (pos != end && pos->first.begin < range.end) {
            hazard = detector.DetectAsync(pos, async_tag, async_queue_id);
            if (hazard.IsHazard()) return true;
            ++pos;
        }
        return false;
    };
    ForEachEntryInRangesUntil(access_state_map_, range_gen, do_async_hazard_check);
    return hazard;
}

template <typename Detector>
HazardResult AccessContext::DetectHazardOneRange(Detector &detector, bool detect_prev, AccessMap::const_iterator &pos,
                                                 const AccessMap::const_iterator &the_end, const AccessRange &range) const {
    HazardResult hazard;
    AccessRange gap = {range.begin, range.begin};

    while (pos != the_end && pos->first.begin < range.end) {
        // Cover any leading gap, or gap between entries
        if (detect_prev) {
            // TODO: After profiling we may want to change the descent logic such that we don't recur per gap...
            // Cover any leading gap, or gap between entries
            gap.end = pos->first.begin;  // We know this begin is < range.end
            if (gap.non_empty()) {
                // Recur on all gaps
                hazard = DetectPreviousHazard(detector, gap);
                if (hazard.IsHazard()) return hazard;
            }
            // Set up for the next gap.  If pos..end is >= range.end, loop will exit, and trailing gap will be empty
            gap.begin = pos->first.end;
        }

        hazard = detector.Detect(pos);
        if (hazard.IsHazard()) return hazard;
        ++pos;
    }

    if (detect_prev) {
        // Detect in the trailing empty as needed
        gap.end = range.end;
        if (gap.non_empty()) {
            hazard = DetectPreviousHazard(detector, gap);
        }
    }

    return hazard;
}

template <typename Detector>
HazardResult AccessContext::DetectPreviousHazard(Detector &detector, const AccessRange &range) const {
    if (prev_.empty()) {
        return {};
    }
    AccessContext descent_context;
    for (const auto &prev_dep : prev_) {
        const ApplyTrackbackStackAction barrier_action(prev_dep.barriers, nullptr);
        prev_dep.source_subpass->ResolveAccessRangeRecursePrev(range, barrier_action, descent_context, false);
    }
    AccessMap &descent_map = descent_context.access_state_map_;
    for (auto prev = descent_map.begin(); prev != descent_map.end(); ++prev) {
        HazardResult hazard = detector.Detect(prev);
        if (hazard.IsHazard()) {
            return hazard;
        }
    }
    return {};
}

}  // namespace syncval